一种基于芴类芳胺化合物的发光材料及其制备方法和有机电致发光器件与流程

文档序号:23990001发布日期:2021-02-20 13:10阅读:77来源:国知局
一种基于芴类芳胺化合物的发光材料及其制备方法和有机电致发光器件与流程

[0001]
本发明涉及化学及发光材料技术领域,具体是一种基于芴类芳胺化合物的发光材料及其制备方法和有机电致发光器件。


背景技术:

[0002]
进入21世纪以后,人们需要更能符合未来生活需要、性能更好的新一代平板显示器来迎接“4c”(即通信、汽车电子、计算机、消费性电子器材)及“4g”(即第四代移动通信)时代的来临。有机发光二极管(oled)作为新一代的显示技术,拥有液晶平板显示器所无可比拟的优势。利用有机发光现象的有机电气元件通常具有阳极、阴极及它们之间包括有机物层的结构。为了提高有机电气元件的效率和稳定性,有机物层通常由各种不同物质构成的多层结构组成,例如,由空穴注入层、空穴输送层、发光层、电子输送层及电子注入层等组成。
[0003]
空穴传输层(htl)负责调节空穴的注入速度和注入量,在所述oled中,酞菁铜(cupc)、4,4
’-
双[n-(1-萘基)-n-苯基氨基]联苯(npb)、n,n
’-
二苯基-n,n
’-
双(3-甲基苯基)-(1,1
’-
联苯基)-4,4
’-
二胺(tpd)、4,4’,4
”-
三(3-甲基苯基苯基氨基)三苯胺(mtdata)等常用作在空穴传输区域中包含的化合物。然而,使用这些材料的oled在使量子效率和使用寿命恶化方面存在问题。这是因为当在高电流下驱动oled时,在阳极与空穴注入层之间出现热应力,并且所述热应力显著降低装置的使用寿命。此外,由于空穴传输区域中使用的有机材料具有非常高的空穴迁移率,所以可能破坏空穴-电子电荷平衡并且量子效率(cd/a)可能降低。
[0004]
为了解决寿命和效率问题,通常会在空穴输送层和发光层之间加入发光辅助层(多层空穴输送层)。发光辅助层主要起到辅助空穴传输层的作用,因此有时也称为第二空穴传输层。发光辅助层使得从阳极转移的空穴能够平稳地移动到发光层,并且可以阻挡从阴极转移的电子,以将电子限制在发光层内,减少空穴传输层与发光层之间的势垒,降低有机电致发光器件的驱动电压,进一步增加空穴的利用率,从而改善器件的发光效率和寿命。目前作为发光辅助层的材料有限,这类材料大多采用芴环结构,它们在具备较高的空穴迁移率,同时具备较高的t1能量阻挡复合后的激子外扩到传输层,使得从阳极转移的空穴能够平稳地移动到发光层,减少空穴传输层与发光层之间的势垒,降低器件的驱动电压,进一步增加空穴的利用率,从而改善器件的发光效率和寿命。但芴环结构在器件中的应用仍需要从以下方面进行改善:(1)结晶度和成膜性需要进一步提升;(2)玻璃化转变温度和热稳定性需要提高;(3)筛选与空穴传输材料能级更加合理的能级搭配,进一步降低驱动电压;(4)兼顾发光层材料与传输材料,提高器件的寿命和效率。


技术实现要素:

[0005]
本发明实施例的目的在于提供一种基于芴类芳胺化合物的发光材料,以解决上述
背景技术中提出的问题。
[0006]
为实现上述目的,本发明实施例提供如下技术方案:一种基于芴类芳胺化合物的发光材料,其结构通式为式i:
[0007][0008]
式中,x选自化学键,o,s,si(r5r6),c(r7r8),nr9中的一种;
[0009]
a,b,c,d中任意两个为1,其余为0;
[0010]
r1、r2、r3、r4各自独立地选自氢、经取代或未经取代的c1~c30烷基、经取代或未经取代的c6~c30芳基、经取代或未经取代的3元到30元杂芳基、经取代或未经取代的c1~c30烷氧基、经取代或未经取代的c6~c30芳氧基、与相邻取代基连接形成单环或多环的c3~c30脂肪族环或c6~c30芳香族环中的一种;且r1、r2、r3、r4取代基的位置均为其所在环上的任意位置;
[0011]
r5、r6、r7、r8、r9各自独立地选自氢、经取代或未经取代的c1~c30烷基、经取代或未经取代的c6~c30芳基、经取代或未经取代的3元到30元杂芳基、经取代或未经取代的c1~c30烷氧基、经取代或非取代的c10~c30稠环基中的一种;
[0012]
l1、l2、l3、l4各自独立地为连接键、经取代或未经取代的c6~c30芳基、经取代或未经取代的3元至30元杂芳基、经取代或未经取代的c10~c30稠环基、经取代或未经取代的c5~c30螺环基中的一种;
[0013]
ar1~ar8各自独立地选自经取代或未经取代的c1~c30烷基、经取代或未经取代的c6~c30芳基、经取代或未经取代的3元到30元杂芳基、经取代或未经取代的c10~c30稠环基、经取代或未经取代的c5~c30螺环基、与相邻取代基连接形成单环或多环的c3~c30脂肪族环或c6~c30芳香族环中的一种。
[0014]
优选的,所述发光材料的结构通式为式ii~式iv中的一种:
[0015][0016]
优选的,与相邻取代基连接形成单环或多环的c3~c30脂肪族环或c6~c30芳香族环中的至少一个碳原子不置换或置换为氮、氧、硫、硅中的至少一个。
[0017]
优选的,r1、r2、r3、r4各自独立地选自甲基、乙基、丙基、异丙基、叔丁基、烷氧基、芳氧基、苯基、联苯基、萘基中的一种。
[0018]
优选的,r5、r6、r7、r8、r9各自独立地选自甲基、乙基、烷氧基、苯基、萘、蒽、菲中的一种。
[0019]
在上述技术方案中,术语“经取代或未经取代的”意指被选自以下的一个、两个或更多个取代基取代:氘;卤素基团;腈基;羟基;羰基;酯基;甲硅烷基;硼基;经取代或未经取代的烷基;经取代或未经取代的环烷基;经取代或未经取代的烷氧基;经取代或未经取代的烯基;经取代或未经取代的烷基胺基;经取代或未经取代的杂环基胺基;经取代或未经取代的芳基胺基;经取代或未经取代的芳基;和经取代或未经取代的杂环基,或者被以上所示的取代基中的两个或更多个取代基相连接的取代基取代,或者不具有取代基。例如,“两个或更多个取代基相连接的取代基”可以包括联苯基。换言之,联苯基可以为芳基,或者可以解释为两个苯基相连接的取代基。
[0020]
优选的,所述发光材料的化学结构式为式1~式120中的任一种:
[0021]
[0022]
[0023]
[0024]
[0025][0026]
本发明实施例的另一目的在于提供一种上述的发光材料的制备方法,其中,结构通式为式ii的发光材料的合成路线如下:
[0027][0028]
其制备方法包括以下步骤:
[0029]
将反应物b-ii、无水四氢呋喃、n-buli、反应物a-ii进行反应,并经提纯,得到中间体c-ii;
[0030]
将中间体c-ii、冰醋酸、浓硫酸、碳酸氢钠溶液进行反应,并经提纯,得到中间体d-ii;
[0031]
将中间体d-ii、反应物e-ii、甲苯进行混合后,再加入pd2(dba)3、p(t-bu)3、t-buona进行反应,并经提纯,得到中间体f-ii;
[0032]
将中间体f-ii、反应物g-ii、甲苯进行混合后,再加入pd2(dba)3、p(t-bu)3、t-buona进行反应,并经提纯,得到结构通式为式ii的发光材料;
[0033]
具体的可包括以下步骤:
[0034]
(1)将反应物b-ii(1.1eq)加入到三口瓶中,加入无水四氢呋喃,氮气置换三次,随后将反应体系降温至-78℃,滴加(2.5m)n-buli(1.1eq),在-78℃下搅拌2h。将反应物a-ii(1.0eq)溶于四氢呋喃中,滴加至反应体系,滴加完毕后升温至室温搅拌10h。加入蒸馏水终止反应,分液收集有机相,加入无水硫酸镁干燥。除去剩余的水分,过滤除去无水硫酸镁,将有机相通过旋转蒸发仪除去溶剂,得到固体有机物。浓缩结束后向其中加入乙酸乙酯和乙醇加热至80℃回流,搅拌3h,抽滤得到固体,滤饼用石油醚淋洗,放入65℃烘箱中烘干12h,得到中间体c-ii。
[0035]
(2)将中间体c-ii(1.0eq)加入三口瓶中,加入冰醋酸,加热至120℃,用滴定管缓慢滴加浓硫酸,搅拌5min。冷却至室温,加入碳酸氢钠溶液终止反应,分液,水相用二氯甲烷萃取三次,收集有机相,加入无水硫酸镁干燥,除去剩余的水分,过滤除去无水硫酸镁,将有机相通过旋转蒸发仪除去溶剂得到固体有机物,加入甲苯中,升温至100℃使固体有机物完全溶解,之后逐渐降低温度到大部分固体析出,过滤,将滤饼用石油醚淋洗,放入80℃烘箱干燥12h,得到中间体d-ii。
[0036]
(3)在反应容器中加入中间体d-ii(1.0eq)以及反应物e-ii(1.2eq)溶于干燥甲苯之后,在氮气氛围下加入pd2(dba)3(0.011eq)、p(t-bu)3(0.06eq)、t-buona(2.0eq);升温到110℃,并且搅拌混合物10h,使用硅藻土趁热抽滤,除去盐和催化剂,滤液冷却至室温,接着将蒸馏水添加到滤液中进行洗涤,分液后保留有机相,用乙酸乙酯萃取水相,接着使用硫酸镁干燥合并后的有机层,并且使用旋转式蒸发器去除溶剂,置于1,4-二氧六环中,升温至100℃使固体有机物完全溶解,之后逐渐降低温度到大部分固体析出,过滤,将滤饼用石油醚淋洗,放入65℃烘箱干燥12h,得到中间体f-ii;
[0037]
(4)在反应容器中加入中间体f-ii(1.0eq)以及反应物g-ii(1.2eq)溶于干燥甲苯之后,在氮气氛围下加入pd2(dba)3(0.011eq)、p(t-bu)3(0.06eq)、t-buona(2.0eq);升温到110℃,并且搅拌混合物10h,使用硅藻土趁热抽滤,除去盐和催化剂,滤液冷却至室温,接着将蒸馏水添加到滤液中进行洗涤,分液后保留有机相,用乙酸乙酯萃取水相,接着使用硫酸镁干燥合并后的有机层,并且使用旋转式蒸发器去除溶剂,置于1,4-二氧六环中,升温至100℃使固体有机物完全溶解,之后逐渐降低温度到大部分固体析出,过滤,将滤饼用石油醚淋洗,放入65℃烘箱干燥12h,得到结构通式为式ii的发光材料。
[0038]
结构通式为式iii的发光材料的合成路线如下:
[0039][0040]
其制备方法包括以下步骤:
[0041]
将反应物b-iii与四氢呋喃混合后,再滴加格式试剂反应物a-iii进行反应,生成大量沉淀,然后加入饱和nhc14溶液将格式盐转化为醇,并经提纯,得到中间体c-iii;
[0042]
将中间体c-iii和反应物d-iii溶于二氯甲烷后,再滴加三氟化硼
·
乙醚络合物进行反应,并经提纯,得到中间体e-iii;
[0043]
将中间体e-iii、反应物f-iii、甲苯进行混合后,再加入pd2(dba)3、p(t-bu)3、t-buona进行反应,并经提纯,得到中间体g-iii;
[0044]
将中间体g-iii、反应物h-iii、甲苯进行混合后,再加入pd2(dba)3、p(t-bu)3、t-buona进行反应,并经提纯,得到结构通式为式iii的发光材料;
[0045]
具体可包括以下步骤:
[0046]
(1)反应物b-iii(1.0eq)溶于四氢呋喃中,滴加格式试剂反应物a-iii(1.1eq),60℃反应24小时,生成大量沉淀,最后加入饱和300mlnhc14将格式盐转化为醇;反应完毕后,乙醚萃取,干燥旋蒸,石油醚:二氯甲烷混合溶剂(体积比3:2)硅胶柱纯化,得到中间体c-iii;
[0047]
(2)中间体c-iii(1.0eq)和反应物d-iii(2.0eq)溶于350ml二氯甲烷(ch2cl2)中,在室温条件下滴加三氟化硼
·
乙醚(bf3
·
et2o)络合物,反应30分钟,加入乙醇和水淬灭,用二氯甲烷萃取,干燥旋蒸,用乙醇:二氯甲烷重结晶得到中间体e-iii;
[0048]
(3)在反应容器中加入中间体e-iii(1.0eq)以及反应物f-iii(1.2eq)溶于干燥甲苯之后,在氮气氛围下加入pd2(dba)3(0.011eq)、p(t-bu)3(0.06eq)、t-buona(2.0eq);升温到110℃,并且搅拌混合物10h,使用硅藻土趁热抽滤,除去盐和催化剂,滤液冷却至室温,接着将蒸馏水添加到滤液中进行洗涤,分液后保留有机相,用乙酸乙酯萃取水相,接着使用硫酸镁干燥合并后的有机层,并且使用旋转式蒸发器去除溶剂,置于1,4-二氧六环中,升温至100℃使固体有机物完全溶解,之后逐渐降低温度到大部分固体析出,过滤,将滤饼用石油醚淋洗,放入65℃烘箱干燥12h,得到中间体g-iii;
[0049]
(4)在反应容器中加入中间体g-iii(1.0eq)以及反应物h-iii(1.2eq)溶于干燥甲苯之后,在氮气氛围下加入pd2(dba)3(0.011eq)、p(t-bu)3(0.06eq)、t-buona(2.0eq);升温到110℃,并且搅拌混合物10h,使用硅藻土趁热抽滤,除去盐和催化剂,滤液冷却至室温,接着将蒸馏水添加到滤液中进行洗涤,分液后保留有机相,用乙酸乙酯萃取水相,接着使用硫酸镁干燥合并后的有机层,并且使用旋转式蒸发器去除溶剂,置于1,4-二氧六环中,升温至100℃使固体有机物完全溶解,之后逐渐降低温度到大部分固体析出,过滤,将滤饼用石油醚淋洗,放入65℃烘箱干燥12h,得到结构通式为式iii的发光材料。
[0050]
结构通式为式iv的发光材料的合成路线如下:
[0051][0052]
其制备方法包括以下步骤:
[0053]
将反应物b-iv、无水四氢呋喃、n-buli、反应物a-iv进行反应,并经提纯,得到中间体c-iv;
[0054]
将中间体c-iv、冰醋酸、浓硫酸、碳酸氢钠溶液进行反应,并经提纯,得到中间体d-iv;
[0055]
将中间体d-iv、反应物e-iv、甲苯进行混合后,再加入pd2(dba)3、p(t-bu)3、t-buona进行反应,并经提纯,得到中间体f-iv;
[0056]
将中间体f-iv、反应物g-iv、甲苯进行混合后,再加入pd2(dba)3、p(t-bu)3、t-buona进行反应,并经提纯,得到结构通式为式iv的发光材料;
[0057]
其具体的制备方法可参照结构通式为式ii的发光材料的制备方法。
[0058]
本发明实施例的另一目的在于提供一种上述发光材料在制备有机电致发光器件中的应用。
[0059]
本发明实施例的另一目的在于提供一种有机电致发光器件,其包括第一电极、第二电极以及至少一层设置在所述第一电极和所述第二电极之间的有机物层,所述的有机物层包含上述的发光材料。
[0060]
优选的,所述有机物层包括发光辅助层;所述发光辅助层部分或全部包含所述的发光材料。
[0061]
此外,有机物层还可以包括其它功能层,其它功能层具体可选自以下功能层中的一种或几种:发光层、空穴注入层(hil)、空穴传输层(htl)、空穴注入-空穴传输功能层(即兼具空穴注入及空穴传输功能)、电子阻挡层(ebl)、空穴阻挡层(hbl)、电子传输层(etl)、
电子注入层(eil)、电子传输-电子注入功能层(即兼具电子传输及电子注入功能)。
[0062]
上述各个功能层的种类没有特殊限制,为本领域技术人员熟知的常规功能层即可。
[0063]
第一电极作为阳极,阳极优选包含具有高逸出功的材料。例如ag、pt或au。优选的阳极材料在此是导电混合金属氧化物。特别优选的是氧化锡铟(ito)或氧化铟锌(izo)。此外优选的是导电的掺杂有机材料,特别是导电的掺杂聚合物。由于在水和/或空气存在下本发明器件的寿命会缩短,所以所述器件被适当地(取决于应用)结构化、提供接点并最后密封。
[0064]
空穴传输材料是能够接收来自阳极或空穴注入层的空穴并将空穴传输至发光层的材料,并且具有高空穴迁移率的材料。其具体实例包括基于芳基胺的有机材料、导电聚合物、同时具有共轭部分和非共轭部分的嵌段共聚物等,但不限于此。
[0065]
发光层的材料是一种通过分别接收来自空穴传输层和电子传输层的空穴和电子,并将所接收的空穴和电子结合而能发出可见光的材料。发光层包括主体材料和掺杂材料;所述掺杂材料部分或全部包含所述发光材料。
[0066]
优选的,所述主体材料和掺杂材料的质量比为(90~99.5):(0.5~10)。
[0067]
所述主体材料优选为4,4'-n,n'-联苯二咔唑(cbp)、八羟基喹啉(alq3)、金属苯氧基苯并噻唑化合物、聚芴、芳族稠环、锌络合物中的一种或几种。发光层的厚度为10~500nm。
[0068]
掺杂材料可以包括荧光掺杂和磷光掺杂。
[0069]
所述磷光掺杂材料的包括铱、铂等的金属络合物的磷光材料。例如,可以使用ir(ppy)3等绿色磷光材料,firpic、fir6等蓝色磷光材料和btp2ir(acac)等红色磷光材料。
[0070]
电子阻挡层可以设置在空穴传输层与发光层之间。作为电子阻挡层,可以使用本领域中已知的材料,例如基于芳基胺的有机材料。
[0071]
空穴阻挡层材料,可以使用现有技术中公知的具有空穴阻挡作用的化合物,例如,浴铜灵(bcp)等菲咯啉衍生物、噁唑衍生物、三唑衍生物、三嗪衍生物等,但不限于此。
[0072]
电子传输层可以起到促进电子传输的作用。电子传输材料是有利地接收来自阴极的电子并将电子传输至发光层的材料,具有高电子迁移率的材料是合适的。作为本发明有机电致发光器件的电子传输层材料,可以使用现有技术中公知的具有电子传输作用的化合物,例如,8-羟基喹啉的al配合物;包含alq3的配合物;有机自由基化合物;羟基黄酮-金属配合物等等,但不限于此。
[0073]
电子注入层可以起到促进电子注入的作用。具有传输电子的能力,防止发光层中产生的激子迁移至空穴注入层。本发明中使用的电子注入材料包括芴酮、蒽醌二甲烷、联苯醌、噻喃二氧化物、唑、二唑、三唑、咪唑、苝四羧酸、亚芴基甲烷、蒽酮等及其衍生物,金属配合物,含氮五元环衍生物等,但不限于此。
[0074]
第二电极作为阴极,通常优选具有小功函数的材料使得电子顺利注入有机材料层。包括:金属,例如镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡和铅,或其合金;多层结构材料,例如lif/al或lio2/al。
[0075]
在本发明实施例中,可通过溶液涂覆法和真空沉积法的方式形成上述各种功能层。溶液涂覆法意指旋涂、浸涂、喷墨印刷、丝网印刷、喷洒法等,但不限于此。
[0076]
另外,上述的有机电致发光器件可以为有机电致发光器件、有机太阳电池、电子纸、有机感光体或有机薄膜晶体管等,但不限于此。
[0077]
与现有技术相比,本发明实施例的有益效果是:
[0078]
本发明实施例提供的一种基于芴类芳胺化合物的发光材料,相比于现有技术具有以下优点:
[0079]
(1)该发光材料的母核存在两个芳胺的侧链,一方面化合物芳胺侧链的存在使化合物的分子量增加,提高化合物的稳定性,另一方面,两个芳胺侧链是给电子基团,提高空穴迁移率的同时,与发光层和空穴传输层的能级更加匹配。
[0080]
(2)该发光材料具有合适的homo值,使空穴有小的注入势垒,利用本发明的发光材料制备的有机电致发光器件的驱动电压可大幅降低,寿命和效率可显著提升,这些性能上的显著效果使材料满足量产的条件。
[0081]
(3)该发光材料的制备方法简单,合成路线较短,原料易得,得到的粗品容易提纯,可得到高纯度的发光辅助层材料,适合工业化生产。
具体实施方式
[0082]
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
[0083]
材料实施例1
[0084]
该材料实施例提供了一种基于芴类芳胺化合物的发光材料,其合成路线如下:
[0085][0086]
其制备方法如下:
[0087]
(1)将反应物b-4(110mmol)加入到三口瓶中,加入500ml无水四氢呋喃,氮气置换三次,随后将反应体系降温至-78℃,滴加(2.5m)n-buli(110mmol),在-78℃下搅拌2h。将反
应物a-4(100mol)溶于四氢呋喃中,滴加至反应体系,滴加完毕后升温至室温搅拌10h。加入蒸馏水终止反应,分液收集有机相,加入无水硫酸镁干燥。除去剩余的水分,过滤除去无水硫酸镁,将有机相通过旋转蒸发仪除去溶剂,得到固体有机物。浓缩结束后向其中加入100ml乙酸乙酯和500ml乙醇加热至80℃回流,搅拌3h,抽滤得到固体,滤饼用200ml石油醚淋洗,放入65℃烘箱中烘干12h,得到中间体c-4(36.4g,产率:76%,ms:478.80)。
[0088]
(2)将中间体c-4(70mmol)加入三口瓶中,加入350ml冰醋酸,加热至120℃,用滴定管缓慢滴加7ml浓硫酸,搅拌5min。冷却至室温,加入200ml碳酸氢钠溶液终止反应,分液,水相用350ml二氯甲烷萃取三次,收集有机相,加入无水硫酸镁干燥,除去剩余的水分,过滤除去无水硫酸镁,将有机相通过旋转蒸发仪除去溶剂得到固体有机物,加入300ml甲苯中,升温至100℃使固体有机物完全溶解,之后逐渐降低温度到大部分固体析出,过滤,将滤饼用200ml石油醚淋洗,放入80℃烘箱干燥12h,得到中间体d-4(28.0g,产率:87%,ms:460.02)。
[0089]
(3)在反应容器中加入中间体d-4(60mmol)以及反应物e-4(72mmol)溶于360ml干燥甲苯之后,在氮气氛围下加入pd2(dba)3(0.66mmol)、p(t-bu)3(3.6mmol)、t-buona(120mmol);升温到110℃,并且搅拌混合物10h,使用硅藻土趁热抽滤,除去盐和催化剂,滤液冷却至室温,接着将蒸馏水添加到滤液中进行洗涤,分液后保留有机相,用300ml乙酸乙酯萃取水相,接着使用硫酸镁干燥合并后的有机层,并且使用旋转式蒸发器去除溶剂,置于240ml 1,4-二氧六环中,升温至100℃使固体有机物完全溶解,之后逐渐降低温度到大部分固体析出,过滤,将滤饼用150ml石油醚淋洗,放入65℃烘箱干燥12h,得到中间体f-4(30.6g,产率:85%,ms:599.20);
[0090]
(4)在反应容器中加入中间体f-4(48mmol)以及反应物g-4(57.6mmol)溶于240ml干燥甲苯之后,在氮气氛围下加入pd2(dba)3(0.528mmol)、p(t-bu)3(2.88mmol)、t-buona(96mmol);升温到110℃,并且搅拌混合物10h,使用硅藻土趁热抽滤,除去盐和催化剂,滤液冷却至室温,接着将蒸馏水添加到滤液中进行洗涤,分液后保留有机相,用150ml乙酸乙酯萃取水相,接着使用硫酸镁干燥合并后的有机层,并且使用旋转式蒸发器去除溶剂,置于150ml 1,4-二氧六环中,升温至100℃使固体有机物完全溶解,之后逐渐降低温度到大部分固体析出,过滤,将滤饼用100ml石油醚淋洗,放入65℃烘箱干燥12h,得到发光材料4(33.4g,产率:82%)。
[0091]
对所得发光材料4进行检测分析,结果如下:
[0092]
质谱测试:理论值为848.38;测试值为848.62。
[0093]
元素分析(%):
[0094]
理论值:c,89.12;h,5.70;n,3.30;o,1.88;
[0095]
测试值:c,89.10;h,5.73;n,3.28;o,1.91。
[0096]
材料实施例2
[0097]
该材料实施例提供了一种基于芴类芳胺化合物的发光材料,其合成路线如下:
[0098][0099]
其制备方法如下:
[0100]
(1)将反应物b-50(110mmol)加入到三口瓶中,加入500ml无水四氢呋喃,氮气置换三次,随后将反应体系降温至-78℃,滴加(2.5m)n-buli(110mmol),在-78℃下搅拌2h。将反应物a-50(100mol)溶于四氢呋喃中,滴加至反应体系,滴加完毕后升温至室温搅拌10h。加入蒸馏水终止反应,分液收集有机相,加入无水硫酸镁干燥。除去剩余的水分,过滤除去无水硫酸镁,将有机相通过旋转蒸发仪除去溶剂,得到固体有机物。浓缩结束后向其中加入100ml乙酸乙酯和500ml乙醇加热至80℃回流,搅拌3h,抽滤得到固体,滤饼用200ml石油醚淋洗,放入65℃烘箱中烘干12h,得到中间体c-50(36.2g,产率:78%,ms:464.02)。
[0101]
(2)将中间体c-50(70mmol)加入三口瓶中,加入350ml冰醋酸,加热至120℃,用滴定管缓慢滴加7ml浓硫酸,搅拌5min。冷却至室温,加入200ml碳酸氢钠溶液终止反应,分液,水相用350ml二氯甲烷萃取三次,收集有机相,加入无水硫酸镁干燥,除去剩余的水分,过滤除去无水硫酸镁,将有机相通过旋转蒸发仪除去溶剂得到固体有机物,加入300ml甲苯中,升温至100℃使固体有机物完全溶解,之后逐渐降低温度到大部分固体析出,过滤,将滤饼用200ml石油醚淋洗,放入80℃烘箱干燥12h,得到中间体d-50(28.1g,产率:90%,ms:446.01)。
[0102]
(3)在反应容器中加入中间体d-50(60mmol)以及反应物e-50(72mmol)溶于360ml干燥甲苯之后,在氮气氛围下加入pd2(dba)3(0.66mmol)、p(t-bu)3(3.6mmol)、t-buona(120mmol);升温到110℃,并且搅拌混合物10h,使用硅藻土趁热抽滤,除去盐和催化剂,滤液冷却至室温,接着将蒸馏水添加到滤液中进行洗涤,分液后保留有机相,用300ml乙酸乙酯萃取水相,接着使用硫酸镁干燥合并后的有机层,并且使用旋转式蒸发器去除溶剂,置于240ml 1,4-二氧六环中,升温至100℃使固体有机物完全溶解,之后逐渐降低温度到大部分固体析出,过滤,将滤饼用150ml石油醚淋洗,放入65℃烘箱干燥12h,得到中间体f-50(26.0g,产率:81%,ms:535.17);
[0103]
(4)在反应容器中加入中间体f-50(48mmol)以及反应物g-50(57.6mmol)溶于
240ml干燥甲苯之后,在氮气氛围下加入pd2(dba)3(0.528mmol)、p(t-bu)3(2.88mmol)、t-buona(96mmol);升温到110℃,并且搅拌混合物10h,使用硅藻土趁热抽滤,除去盐和催化剂,滤液冷却至室温,接着将蒸馏水添加到滤液中进行洗涤,分液后保留有机相,用150ml乙酸乙酯萃取水相,接着使用硫酸镁干燥合并后的有机层,并且使用旋转式蒸发器去除溶剂,置于150ml 1,4-二氧六环中,升温至100℃使固体有机物完全溶解,之后逐渐降低温度到大部分固体析出,过滤,将滤饼用100ml石油醚淋洗,放入65℃烘箱干燥12h,得到发光材料50(29.7g,产率:86%)。
[0104]
对所得发光材料50进行检测分析,结果如下:
[0105]
质谱测试:理论值为718.30;测试值为718.54。
[0106]
元素分析(%):
[0107]
理论值:c,88.55;h,5.33;n,3.90;o,2.23;
[0108]
测试值:c,88.50;h,5.37;n,3.90;o,2.22。
[0109]
材料实施例3
[0110]
该材料实施例提供了一种基于芴类芳胺化合物的发光材料,其合成路线如下:
[0111][0112]
其制备方法如下:
[0113]
(1)将反应物b-75(110mmol)加入到三口瓶中,加入500ml无水四氢呋喃,氮气置换三次,随后将反应体系降温至-78℃,滴加(2.5m)n-buli(110mmol),在-78℃下搅拌2h。将反应物a-75(100mol)溶于四氢呋喃中,滴加至反应体系,滴加完毕后升温至室温搅拌10h。加入蒸馏水终止反应,分液收集有机相,加入无水硫酸镁干燥。除去剩余的水分,过滤除去无水硫酸镁,将有机相通过旋转蒸发仪除去溶剂,得到固体有机物。浓缩结束后向其中加入100ml乙酸乙酯和500ml乙醇加热至80℃回流,搅拌3h,抽滤得到固体,滤饼用200ml石油醚淋洗,放入65℃烘箱中烘干12h,得到中间体c-75(38.3g,产率:73%,ms:524.05)。
[0114]
(2)将中间体c-75(70mmol)加入三口瓶中,加入350ml冰醋酸,加热至120℃,用滴定管缓慢滴加7ml浓硫酸,搅拌5min。冷却至室温,加入200ml碳酸氢钠溶液终止反应,分液,水相用350ml二氯甲烷萃取三次,收集有机相,加入无水硫酸镁干燥,除去剩余的水分,过滤除去无水硫酸镁,将有机相通过旋转蒸发仪除去溶剂得到固体有机物,加入300ml甲苯中,升温至100℃使固体有机物完全溶解,之后逐渐降低温度到大部分固体析出,过滤,将滤饼用200ml石油醚淋洗,放入80℃烘箱干燥12h,得到中间体d-75(35.6g,产率:92%,ms:506.04)。
[0115]
(3)在反应容器中加入中间体d-75(60mmol)以及反应物e-75(72mmol)溶于360ml干燥甲苯之后,在氮气氛围下加入pd2(dba)3(0.66mmol)、p(t-bu)3(3.6mmol)、t-buona(120mmol);升温到110℃,并且搅拌混合物10h,使用硅藻土趁热抽滤,除去盐和催化剂,滤液冷却至室温,接着将蒸馏水添加到滤液中进行洗涤,分液后保留有机相,用300ml乙酸乙酯萃取水相,接着使用硫酸镁干燥合并后的有机层,并且使用旋转式蒸发器去除溶剂,置于240ml 1,4-二氧六环中,升温至100℃使固体有机物完全溶解,之后逐渐降低温度到大部分固体析出,过滤,将滤饼用150ml石油醚淋洗,放入65℃烘箱干燥12h,得到中间体f-75(31.1g,产率:87%,ms:595.21);
[0116]
(4)在反应容器中加入中间体f-75(48mmol)以及反应物g-75(57.6mmol)溶于240ml干燥甲苯之后,在氮气氛围下加入pd2(dba)3(0.528mmol)、p(t-bu)3(2.88mmol)、t-buona(96mmol);升温到110℃,并且搅拌混合物10h,使用硅藻土趁热抽滤,除去盐和催化剂,滤液冷却至室温,接着将蒸馏水添加到滤液中进行洗涤,分液后保留有机相,用150ml乙酸乙酯萃取水相,接着使用硫酸镁干燥合并后的有机层,并且使用旋转式蒸发器去除溶剂,置于150ml 1,4-二氧六环中,升温至100℃使固体有机物完全溶解,之后逐渐降低温度到大部分固体析出,过滤,将滤饼用100ml石油醚淋洗,放入65℃烘箱干燥12h,得到发光材料75(33.6g,产率:82%)。
[0117]
对所得发光材料75进行检测分析,结果如下:
[0118]
质谱测试:理论值为854.37;测试值为854.91。
[0119]
元素分析(%):
[0120]
理论值:c,91.30;h,5.42;n,3.28;
[0121]
测试值:c,91.25;h,5.47;n,3.26。
[0122]
材料实施例4
[0123]
该材料实施例提供了一种基于芴类芳胺化合物的发光材料,其合成路线如下:
[0124][0125]
其制备方法如下:
[0126]
(1)反应物b-112(100mmol)溶于500ml四氢呋喃中,滴加格式试剂反应物a-112(110mmol),60℃反应24小时,最后加入饱和300mlnhc14将格式盐转化为醇;反应完毕后,500ml乙醚萃取,干燥旋蒸,凝胶管住色谱法提纯,展开剂为石油醚:二氯甲烷混合溶剂(体积比3:2),得到中间体c-112(36.7g,产率75%,ms:489.05);
[0127]
(2)中间体c-iii(70mmol)和反应物d-iii(140mmo1)溶于350ml二氯甲烷(ch2cl2)中,在室温条件下滴加20ml三氟化硼
·
乙醚(bf3
·
et2o)络合物,反应30分钟,加入40ml乙醇和40ml水淬灭,反应,用350ml二氯甲烷萃取,干燥旋蒸,用200ml乙醇和40ml二氯甲烷混合后重结晶得到中间体e-112(33.4g,收率为87%,ms:548.09);
[0128]
(3)在反应容器中加入中间体e-112(60mmol)以及反应物f-112(72mmol)溶于360ml干燥甲苯之后,在氮气氛围下加入pd2(dba)3(0.66mmol)、p(t-bu)3(3.6mmol)、t-buona(120mmol);升温到110℃,并且搅拌混合物10h,使用硅藻土趁热抽滤,除去盐和催化剂,滤液冷却至室温,接着将蒸馏水添加到滤液中进行洗涤,分液后保留有机相,用300ml乙酸乙酯萃取水相,接着使用硫酸镁干燥合并后的有机层,并且使用旋转式蒸发器去除溶剂,置于240ml 1,4-二氧六环中,升温至100℃使固体有机物完全溶解,之后逐渐降低温度到大部分固体析出,过滤,将滤饼用150ml石油醚淋洗,放入65℃烘箱干燥12h,得到中间体g-112(33.6g,产率:88%,ms:637.25);
[0129]
(4)在反应容器中加入中间体g-112(48mmol)以及反应物h-112(57.6mmol)溶于240ml干燥甲苯之后,在氮气氛围下加入pd2(dba)3(0.528mmol)、p(t-bu)3(2.88mmol)、t-buona(96mmol);升温到110℃,并且搅拌混合物10h,使用硅藻土趁热抽滤,除去盐和催化剂,滤液冷却至室温,接着将蒸馏水添加到滤液中进行洗涤,分液后保留有机相,用150ml乙
酸乙酯萃取水相,接着使用硫酸镁干燥合并后的有机层,并且使用旋转式蒸发器去除溶剂,置于150ml 1,4-二氧六环中,升温至100℃使固体有机物完全溶解,之后逐渐降低温度到大部分固体析出,过滤,将滤饼用100ml石油醚淋洗,放入65℃烘箱干燥12h,得到发光材料112(30.6g,产率:83%)。
[0130]
对所得发光材料112进行检测分析,结果如下:
[0131]
质谱测试:理论值为768.35;测试值为768.77。
[0132]
元素分析(%):
[0133]
理论值:c,90.59;h,5.77;n,3.64;
[0134]
测试值:c,90.62;h,5.80;n,3.59。
[0135]
材料实施例5~材料实施例21
[0136]
参照材料实施例1至4的合成方法完成对发光材料1,7,15,20,26,32,40,48,56,61,68,80,86,95,103,109,117的合成,其质谱、分子式、产率如表1所示。
[0137]
表1
[0138][0139][0140]
器件实施例1
[0141]
该器件实施例提供了一种有机电致发光器件,其制备方法包括以下步骤:
[0142]
将费希尔公司涂层厚度为150nm的ito玻璃基板放在蒸馏水中清洗2次,超声波洗涤30min,用蒸馏水反复清洗2次,超声波洗涤10min,蒸馏水清洗结束后,异丙醇、丙酮、甲醇等溶剂按顺序超声波洗涤以后干燥,转移到等离子体清洗机里,将上述基板洗涤5min,送到蒸镀机里。利用真空蒸镀装置,将已经准备好的ito透明电极上蒸镀厚度为80nm的4,4',4
”-
三[2-萘基苯基氨基]三苯基胺(2-tnata)作为空穴注入层。在形成的空穴注入层上面真空蒸镀厚度为30nm的tpd作为空穴传输层,在上述空穴输送层上以20nm的厚度真空沉积上述
材料实施例提供的发光材料1来形成发光辅助层后制作oled发光器件的发光层,其结构包括oled发光层所使用cbp作为主体材料,(btmp)2ir(acac)作为掺杂材料,掺杂材料掺杂比例为5%重量比,发光层膜厚为40nm。
[0143]
在上述发光层上真空蒸镀厚度为10nmtpbi作为空穴阻挡层,在上述空穴阻挡层上以40nm的厚度真空沉积balq作为电子传输层;在上述电子传输层上真空蒸镀厚度为1.0nm羟基喹啉锂(liq),作为电子注入层。在电子注入层上,制作膜厚为150nm的al电极层,此层为阴极层使用。
[0144]
该有机电致发光器件的结构如下:
[0145]
ito/2-tnata/tpd/发光材料1/cbp:(btmp)2ir(acac)/tpbi/balq/liq/al。
[0146]
如上所述地完成oled发光器件后,用公知的驱动电路将阳极和阴极连接起来,测量器件的电流效率以及器件的寿命。按照上述步骤完成电致发光器件的制作后,测量器件的驱动电压,发光效率和寿命。
[0147]
另外,相关材料的分子结构式如下所示:
[0148][0149]
器件实施例2~器件实施例21
[0150]
参照上述器件实施例1提供的制备方法,将器件实施例1中使用的发光材料1分别替换为上述材料实施例提供的发光材料4,7,15,20,26,32,40,48,50,56,61,68,75,80,86,95,103,109,112,117作为发光辅助层,制备得到相应的有机电致发光器件。
[0151]
器件比较例1
[0152]
该器件比较例制造了一种含有对比化合物1的有机电致发光器件。具体的,按照器件实施例1的制备方法,将发光辅助层的发光材料1置换为对比化合物1,其他方法相同,制作含有对比化合物1的有机电致发光器件。
[0153][0154]
器件比较例2
[0155]
该器件比较例制造了一种含有对比化合物2的有机电致发光器件。具体的,按照器件实施例1的制备方法,将发光辅助层的发光材料1置换为对比化合物2,其他方法相同,制作含有对比化合物2的有机电致发光器件。
[0156][0157]
器件比较例3
[0158]
该器件比较例制造了一种不含有发光辅助层的有机电致发光器件。具体的,按照器件实施例1的制备方法,将发光辅助层的发光材料1去除,其他方法相同,制作不含有发光辅助层的有机电致发光器件。
[0159]
对上述器件实施例1~21以及器件对比例1-3制备的有机电致发光器件分别加以正向直流偏置电压,利用photo research公司的pr-650光度测量设备测定有机电致发光特性,亮度为5000cd/m2下利用mcscience公司的寿命测定装置测定了t95的寿命,结果见表2。
[0160]
表2
[0161]
[0162][0163]
与器件比较例相1和不含有发光辅助层的器件比较例3相比,含有本发明实施例提供的发光材料的器件的驱动电压显著降低,其发光效率以及寿命都得到了显著提升。
[0164]
含有本发明实施例提供的发光材料的器件与结构相似的器件比较例2相比,二者的主要区别在于芳胺的侧链数不同,一方面化合物芳胺侧链的存在使化合物的分子量增
加,提高化合物的稳定性,另一方面,两个芳胺侧链是给电子基团,提高空穴迁移率的同时,与发光层和空穴传输层的能级更加匹配。在器件上体现为驱动电压降低0.9~1.6v,效率提高12.4%~19.3%,尤其是寿命,提高了112h~173h。
[0165]
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1