一种超疏水石墨烯/聚乙烯醇气凝胶的制备方法及应用

文档序号:28745309发布日期:2022-02-07 23:12阅读:331来源:国知局
一种超疏水石墨烯/聚乙烯醇气凝胶的制备方法及应用

1.本发明属于材料技术领域,特别涉及一种用于高通量、高精度乳液分离的超疏水石墨烯/聚乙烯醇气凝胶的制备方法及应用。


背景技术:

2.随着社会工业化的快速发展,海上石油开采加剧、化工产业不断扩张,灾难性溢油事故频发和工业污水排放造成的含油废水严重危害着海洋生物安全和人类健康。因此,含油废水的处理变得越来越重要。现有的一些技术如重力沉降、离心、膜过滤等可以处理层状的油水混合物;而含有表面活性剂的稳定油水乳液,由于其液滴分散稳定且粒径较小(20 um),很难被分离出来。为此学者们做了诸多努力,迄今已成功构建了一些二维超润湿分离材料,包括金属网、纤维膜、生物织物和高分子聚合物膜,可以很好的分离乳液。虽然二维超润湿材料在乳液分离领域取得了很大的进步,但是二维的超润湿分离材料的分离速度和分离精度会相互制约,想要开发出具有高通量高精度的二维的超润湿分离材料几乎不可能。


技术实现要素:

3.鉴于上述现有技术的不足,本发明的目的在于提供一种同时具有高通量和高精度的用于乳液分离的超疏水石墨烯/聚乙烯醇气凝胶的制备方法及应用,旨在解决现有乳液分离材料通量小精度低的问题。
4.为实现上述目标,本发明采用如下技术方案:一种超疏水石墨烯/聚乙烯醇气凝胶的制备方法,包括:首先将聚乙烯醇加入去离子水中,高温搅拌一段时间,形成聚乙烯醇溶液; 再将氧化石墨烯加入去离子水中,超声得到氧化石墨烯悬浊液;然后将聚乙烯醇溶液加入氧化石墨烯悬浊液中,经超声和搅拌处理,得到氧化石墨烯/聚乙烯醇悬浊液;随后放如冰箱中让氧化石墨烯沿着冰晶形成的方向分布;然后通过冷冻干燥机让去离子水升华,保留氧化石墨烯多孔结构,同时析出的聚乙烯醇加固了多孔结构;最后在石墨烯/聚乙烯醇气凝胶表面和内部气相沉积低表面能修饰剂,得到牢固的超疏水石墨烯/聚乙烯醇气凝胶。
5.在上述制备方法中,所述聚乙烯醇的分子量为110000-200000。
6.在上述制备方法中,所述高温为80℃-110℃,搅拌时间为10-12小时,聚乙烯醇溶液的浓度为15 mg/ml-25 mg/ml。
7.在上述制备方法中,氧化石墨烯悬浊液的浓度为5mg/ml。
8.在上述制备方法中,所述氧化石墨烯和聚乙烯醇用量的质量比为1:1。
9.在上述制备方法中,所述氧化石墨烯/聚乙烯醇悬浊液的形成要先超声2小时,再在磁力搅拌机上以500转/分钟搅拌2小时。
10.在上述制备方法中,所述冰箱冷冻的温度为0到-20℃。
11.在上述制备方法中,所述冷冻干燥的温度为-58℃,时间为36-48小时,环境为真空。
12.在上述制备方法中,所述气相沉积的温度为40-80℃,时间为4-6小时。
13.在上述制备方法中,所述低表面能修饰剂为全氟辛基三氯硅烷、正辛基三氯硅烷、全氟癸基三氯硅烷和正辛基三乙氧基硅烷中的一种或多种。
14.应用:所述的超疏水石墨烯/聚乙烯醇气凝胶在油包水乳液分离中的应用。所述的油包水乳液中的油为石油醚、二氯乙烷、二甲苯、正己烷、二氯甲烷、三氯甲烷中的一种或多种,表面活性剂为司班80。
15.与现有技术相比,本发明的优点在于:(1)超疏水石墨烯/聚乙烯醇气凝胶的制备方法简单方便,只需要简单的两步就可以代替传统的复杂工序,节约人力物力,同时对环境无害。
16.(2)由于石墨烯本身的疏水性再加上修饰剂的修饰,石墨烯/聚乙烯醇气凝胶表现出超疏水性和超亲油性,其中水的接触角高达155
°
,油在450 ms内渗透到其内部。
17.(3)得益于蜂窝状石墨烯片的相互支撑和pva的强化作用,超疏水石墨烯/聚乙烯醇气凝胶具有优异的力学性能和循环压缩稳定性。
18.(4)在复杂多变的孔径和超疏水性的协同作用下,超疏水石墨烯/聚乙烯醇气凝胶打破了传统分离材料孔径必须小于水滴粒径的筛分机制,仅在重力下就可以分离水滴粒径小于自身孔径数倍的油包水乳液,而且具有超高通量(3255 l/m2·
h)和超高纯度(99.9%),比需要外部压力驱动的2维聚合物或无机膜高出1-2数量级。
19.用途:超疏水石墨烯/聚乙烯醇气凝胶可以用在工厂污水净化、海上石油收集,厨余油污处理等领域将乳液中的油水快速分开,实现环境保护和能源回收。
附图说明
20.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
21.图1为超疏水石墨烯/聚乙烯醇气凝胶的工艺流程图。
22.图2为超疏水石墨烯/聚乙烯醇气凝胶的实物图。
23.图3为超疏水石墨烯/聚乙烯醇气凝胶的抗压测试图。
24.图4为超疏水石墨烯/聚乙烯醇气凝胶的电镜图。其中(a)为放大200倍,(b)为放大500倍,(c)为放大800倍和(d)为放大1000倍。
25.图5为超疏水石墨烯/聚乙烯醇气凝胶的接触角。
26.图6为超疏水石墨烯/聚乙烯醇气凝胶的应力应变曲线。(a)为万能材料试验机,(b)为不同压缩比例的应力应变曲线和(c)为不同压缩次数的应力应变曲线。
27.图7为乳液分离装置和乳液粒径分布图。其中(a)为乳液分离装置,(b-c)为未加表面活性剂的油包水乳液的光学显微镜图和粒径分布图和(d-e)为添加表面活性剂的油包水乳液的光学显微镜图和粒径分布图。
28.图8为乳液分离效率和通量。其中(a)为未加表面活性剂的油包水乳液分离的效率和通量和(b)为添加表面活性剂的油包水乳液分离的效率和通量。
29.注:图1-图8中用到的超疏水石墨烯/聚乙烯醇气凝胶是实施例1中制备得到的。
具体实施方式
30.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,所描述的实施例显然仅仅是本发明中的一部分,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
31.实施例1(1)将1 g聚乙烯醇加入到50 ml去离子水中,在95 ℃的油浴锅中搅拌10小时,形成20mg/ml的聚乙烯醇溶液;再将100 mg的氧化石墨烯加入到15 ml的去离子水中,超声2小时,形成稳定的氧化石墨烯悬浊液;然后将5 ml的上述聚乙烯醇溶液加入到上述氧化石墨烯悬浊液中,超声2小时,以500转/分钟的转速磁力搅拌2小时,形成5 mg/ml的氧化石墨烯/聚乙烯醇悬浊液。
32.(2)将上述氧化石墨烯/聚乙烯醇悬浊液倒入用乙醇(约1 ml,便于脱模)预湿的圆柱形聚丙烯模具(直径为18 mm)中,在0℃下冷冻24 h,形成氧化石墨烯/聚乙烯醇圆柱形冰块;然后用冻干机(fd-1a-50,北京博一康实验仪器有限公司)在真空中

58
°
c下干燥48 h,获得石墨烯/聚乙烯醇气凝胶。
33.(3)将石墨烯/聚乙烯醇气凝胶置于含有100 μl 全氟辛基三氯硅烷的聚四氟乙烯(ptfe)容器中,在60℃下密封4 小时,最终得到超疏水石墨烯/聚乙烯醇气凝胶fgpa。
34.实施例2(1)将1 g聚乙烯醇加入到50 ml去离子水中,在95 ℃的油浴锅中搅拌10小时,形成20mg/ml的聚乙烯醇溶液;再将100 mg的氧化石墨烯加入到15 ml的去离子水中,超声2小时,形成稳定的氧化石墨烯悬浊液;然后将5 ml的上述聚乙烯醇溶液加入到上述氧化石墨烯悬浊液中,超声2小时,以500转/分钟的转速磁力搅拌2小时,形成5 mg/ml的氧化石墨烯/聚乙烯醇悬浊液。
35.(2)将上述氧化石墨烯/聚乙烯醇悬浊液倒入用乙醇(约1ml,便于脱模)预湿的圆柱形聚丙烯模具(直径为18mm)中,在-20℃下冷冻24 h,形成氧化石墨烯/聚乙烯醇圆柱形冰块;然后用冻干机(fd-1a-50,北京博一康实验仪器有限公司)在真空中

58
°
c下干燥48 h,获得石墨烯/聚乙烯醇气凝胶。
36.(3)将石墨烯/聚乙烯醇气凝胶置于含有100 μl 全氟癸基三氯硅烷的聚四氟乙烯(ptfe)容器中,在60℃下密封4 h,最终得到超疏水石墨烯/聚乙烯醇气凝胶fgpa。
37.实施例3(1)将1 g聚乙烯醇加入到50 ml去离子水中,在95 ℃的油浴锅中搅拌10小时,形成20mg/ml的聚乙烯醇溶液;再将100 mg的氧化石墨烯加入到15 ml的去离子水中,超声2小时,形成稳定的氧化石墨烯悬浊液;然后将5 ml的上述聚乙烯醇溶液加入到上述氧化石墨烯悬浊液中,超声2小时,以500转/分钟的转速磁力搅拌2小时,形成5 mg/ml的氧化石墨烯/聚乙烯醇悬浊液。
38.(2)将上述氧化石墨烯/聚乙烯醇悬浊液倒入用乙醇(约1ml,便于脱模)预湿的长宽高为30 mm、20 mm和20 mm的长方体聚丙烯模具中,在-20℃下冷冻24 h,形成氧化石墨烯/聚乙烯醇长方体冰块;然后用冻干机(fd-1a-50,北京博一康实验仪器有限公司)在真空


58
°
c下干燥48 h,获得石墨烯/聚乙烯醇气凝胶。
39.(3)将石墨烯/聚乙烯醇气凝胶置于含有100 μl 全氟癸基三氯硅烷的聚四氟乙烯(ptfe)容器中,在60℃下密封4 h,最终得到超疏水石墨烯/聚乙烯醇气凝胶fgpa。
40.如图2所示直径16 mm、高度12 mm的样品可以稳定的放置在纤细的花朵上,经计算其密度低至3.54 mg/cm3,孔隙率高达99.86%。
41.图3中可以看出,fgap被砝码压缩之后依然可以快速恢复原貌,表明fgpa具有良好的力学弹性。
42.图4利用扫描电镜观察fgpa的微观结构。如图4中(a)和(b)所示,fgpa呈现出互连通的蜂窝状骨架,孔隙大小为40-60 um。且从它的放大图图4中的(c)中可以看到一些丝状物连接在go片之间,图4中(d)一些丝状物附着在go片上,这是因为在冷冻干燥过程中温度降低和溶液挥发,pva链逐渐析出连接在go之间或迁移并富集到go的表面。
43.图5中(a)为fgpa不同位置的水接触角,由于fgpa是一个三维立体结构,为了确保数据的准确性,测量了其上表面、下表面、侧面和横截面的水的接触角,每一位置使用三个不同的样品测量接触角,可以看出fgpa每个位置的接触角都大于150
°
,表明fgpa达到了超疏水状态;图5中(b)显示了油则依然会渗透进入fgpa的过程,完全浸没的时间为450 ms,表明保持着超亲油状态。
44.图6中(a)为静态压力机,(b)为fgpa在压缩量为20%、40%、60%、80%时的应力应变曲线,表现出完全可逆的压缩性,应变高达80%,应力高达8.3 kpa。(c)为fgpa的循环压缩1、10、50、100次的应力应变曲线(最大应变为40%),其中插图为压缩100次后fgpa的内部形貌电镜图。与第1次循环相比,10次循环后,应力应变曲线几乎重合;50次循环后,最大压应力保持不变,但略微发生了一些塑形变形;而继续循环100后,相应的压应力应变曲线(滞回曲线)出现轻微收缩,最终趋于稳定,而且从插图可以看出蜂窝状结构并没有被破坏。这些结果有力地证明了气凝胶在反复压缩变形时具有优异的超弹性和抗疲劳性能,从而为气凝胶在含油废水修复中的长期稳定应用铺平了道路。
45.如图7中(a)所示过滤系统分为三部分,上部玻璃管用于浇注油包水乳液,中间是fgpa及其密封环,底部的玻璃容器用来收集滤液;为了进一步了解分离过程,我们使用光学显微镜记录了分离前后乳状液中液滴的分布情况,图7中(b)为正己烷包水(稳定)分离前后的光学显微镜照片和实物对比图,图7中(d)为正己烷包水(不稳定乳液)分离前后的光学显微镜照片和实物对比图,其中观察到过滤之前大量的水滴,而过滤后的油中没有发现水滴,这证实了fgpa具有乳液分离的能力;图7中(c)和(e)分别为稳定和不稳定的油包水乳液的粒径分布图,稳定油包水(正己烷、石油醚、二氯乙烷和二氯甲烷)乳剂乳状液中的液滴粒径分布范围大部分在1 ~ 10 μm之间,四种未添加表面活性剂的不稳定油包水(正己烷、石油醚、二氯乙烷和二氯甲烷)乳剂液滴粒径分布范围大部分在1~20 μm之间。分离后,dls仪器没有收到收集到的滤液信号。表面活性剂为span 80,浓度为0.5mg/ml。
46.图8经过计算稳定油包水(正己烷、石油醚、二氯乙烷和二氯甲烷)乳剂的通量值分别为4263、3581、3087、3255 l/m2·
h,并利用kf库仑仪测量滤液中的水分含量,计算分离效率,稳定油包水(正己烷、石油醚、二氯乙烷和二氯甲烷)乳剂的分离效率均超过99.98%,如图8中(a)所示。不稳定油包水(正己烷、石油醚、二氯乙烷和二氯甲烷)乳剂的通量值分别为2106、1989、2989、2754 l/m2·
h,不稳定油包水(正己烷、石油醚、二氯乙烷和二氯甲烷)乳
剂的分离效率均超过99.99%,如图8中(b)所示,说明fgpa对油包水乳状液具有快速高效的分离能力。
47.以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1