一种二维双核铕配合物及制备方法和应用

文档序号:30543396发布日期:2022-06-29 00:11阅读:82来源:国知局
一种二维双核铕配合物及制备方法和应用

1.本发明属于金属配合物技术领域,具体涉及一种二维双核铕配合物及制备方法和应用。


背景技术:

2.近年来,随着材料科学的不断发展进步,人们已经不再满足于只获得具有单一性质和功能的材料,而是更加青睐于能够获得同时具有两种或两种以上性质和功能的材料,如兼具导电性与磁性、磁-光学性、多孔性与磁性、手性与磁性等,其中集合发光性和磁性的多功能材料是目前很多生产技术的本质所在,具有重要的理论意义和潜在的应用价值。但是由于金属离子和配体之间配位关系的多样化,以及磁相互作用的复杂性,人们对于准确预测配合物结构、光学性质和磁性质之间的关系还存在很大困难,到目前为止,仅有少量这样的材料被报导,所以如何对配体和金属离子进行合理的选择与设计,使其按照期望的方式进行配位,并最终得到目标功能,成为构建此类多功能材料的关键所在。


技术实现要素:

3.针对目前构建同时具有光学和磁性双功能材料难的问题,为了更好地研究同一材料中光学性质和磁性质之间的关系,本发明提供了一种二维双核铕配合物及制备方法和应用。
4.为了达到上述目的,本发明采用了下列技术方案:
5.一种二维双核铕配合物,所述铕配合物的结构简式为:[eu2(μ
3-l)2(μ
4-l)(h2o)3]n,结构式为:
[0006][0007]
所述铕配合物的晶体属单斜晶系,空间群为p21/n,晶胞参数为:/n,晶胞参数为:α=90
°
,β=97.504(2)
°
,γ=90
°

[0008]
该配合物中两个eu(iii)离子具有不同的配位几何构型:eu1离子与八个氧原子以四方反棱柱构型配位,其中八个氧原子分别来自六个不同的l
3-配体;eu2离子与九个氧原子以扭曲的单帽反四棱柱构型配位,其中九个氧原子分别来自四个不同的l
3-配体和三个配位水分子。5-(吡啶-3-氧基)间苯二甲酸配体通过完全脱质子的模式将金属eu(iii)离子连接成二维层状结构,eu—o键长距离在之间,eu1
···
eu2之间的距离为x射线粉末衍射证实晶体样品均一稳定。通过1000oe外磁场作用下的变温磁化率实验数据可以得出金属离子间存在反铁磁相互作用,进一步利用居里-韦斯定律对χ
m-1-t的实验值进行拟合,得到θ=-381.9k,表明配合物中金属离子间存在强反铁磁相互作用。室温条件下荧光发射光谱显示,当激发波长为394nm时,配合物的固体可发射较强红色荧光,其中615nm处对应的eu(iii)离子的5d0→7f2跃迁强度最强,量子产率为26.01%。
[0009]
一种二维双核铕配合物的制备方法,包括如下步骤:
[0010]
步骤1,将eucl3·
7h2o与5-(吡啶-3-氧基)间苯二甲酸加入含有乙腈与水的聚四氟乙烯管中,再加入少量hno3溶液;
[0011]
步骤2,将此聚四氟乙烯管置于不锈钢反应釜中密封,在433k反应3天,然后降至室温,即可析出无色块状晶体,水洗涤后真空干燥,得到二维双核铕配合物,产率为68.6%。
[0012]
进一步,所述eucl3·
7h2o、5-(吡啶-3-氧基)间苯二甲酸、乙腈与水的摩尔比为1~1.5:1:338:1959。
[0013]
进一步,所述的eucl3·
7h2o与5-(吡啶-3-氧基)间苯二甲酸的摩尔比为1.18:1。
[0014]
进一步,所述步骤2中降至室温具体为每小时降温10℃。
[0015]
一种二维双核铕配合物作为发光材料的应用。
[0016]
一种二维双核铕配合物作为磁性材料的应用。
[0017]
一种二维双核铕配合物作为光磁双功能材料的应用。
[0018]
与现有技术相比本发明具有以下优点:
[0019]
本发明的金属铕配合物是在溶剂热合成条件下得到,制取工艺简单,产率及纯度较高。本发明提供的金属铕配合物基于5-(吡啶-3-氧基)间苯二甲酸配体构筑,该配合物为二维平面结构,包含双核金属单元,在1000oe外磁场下通过变温磁化率实验数据得出金属离子间存在强反铁磁相互作用,θ=-381.9k;此外用波长为394nm的光激发该固态配合物,样品可发射较强红色荧光。该配合物同时具有反铁磁性和荧光性质,可用作磁性或发光材料,也可用作光磁双功能材料。
附图说明
[0020]
图1本发明铕配合物的晶体结构图。
[0021]
图2本发明铕配合物在298k的x射线粉末衍射图(实验及模拟图)。
[0022]
图3本发明铕配合物在1000oe外磁场作用下的磁性质及其拟合曲线图。
[0023]
图4在波长为394nm的激发波长下,本发明铕配合物在298k的固体荧光光谱图。
[0024]
图5在波长为394nm的激发波长下,本发明铕配合物在298k的固体发光图。
具体实施方式
[0025]
实施例1
[0026]
将eucl3·
7h2o(73.28mg,0.20mmol)、h2l(43.80mg,0.17mmol)溶于3ml ch3cn和6ml蒸馏水中,再加入1mol/l 100μl hno3溶液,搅拌30分钟后倒入聚四氟乙烯管中,然后放入不锈钢反应釜中,于160℃的烘箱中反应3天,以10℃/小时的速率降温,冷却至室温,得到无色块状晶体,产率为68.6%。
[0027]
配合物的结构测定:
[0028]
将晶体样品固定在bruker smart 1000ccd面探衍射仪上,以石墨单色器mokα为辐射光源,收集样品对波长为的x-ray衍射数据。以ω扫描方式,衍射数据经lp因子和经验吸收校正。全部x-ray衍射图还原为衍射指标后,用shelxtl-nt 5.10版程序包,直接法确定x-ray衍射强度的位相,初始结构经全矩阵最小二乘法做数轮修正,找出全部非氢原子坐标,确认残余峰不再有非氢原子后,做各向异性温度因子处理。c原子采用理论加氢,水分子中o原子上的氢由差值fourier合成给出,
并固定在母原子上。详细的晶体测定数据见表1。结构见图1。
[0029]
表1配合物的晶体学数据
[0030]
[0031][0032]
粉末衍射:
[0033]
使用德国bruker公司d8型测试仪,测试条件:放射源为cu-kα,扫描速率2
°
/min,扫描范围5~50
°

[0034]
x-射线粉末衍射结果表明,晶体样品物相均一,实验衍射图谱与依据晶体结构模拟的粉末衍射图谱一致,见图2。
[0035]
配合物的磁性质:
[0036]
在1000oe的外加磁场下,使用squid磁力计(quantum mpms)在2.0-300k范围内获得磁化率数据。
[0037]
变温磁化率(χm)及其与温度的乘积(χmt)随温度变化的曲线如图3所示,从图中可以看出,在300k时,χmt值为2.98cm
3 mol-1
k,随着温度的降低,χmt值逐渐减小,在2.0k时达到最小值0.04cm
3 mol-1
k。χ
m-1
随温度的变化呈线性关系,由居里-外斯定律拟合得到c=6.70cm
3 mol-1
k,θ=-381.9k(图3插图),负的θ值表明eu(ⅲ)之间存在反铁磁相互作用。
[0038]
配合物的发光性质:
[0039]
采用fluoromax-4型荧光光谱仪测试样品的发光性能。
[0040]
室温下测定了配合物的固体荧光发射光谱(图4)。从图中可看出,在394nm的激发波长下,配合物的固态荧光光谱呈现出eu(ⅲ)离子的四个特征发射峰,分别位于589、615、650、696nm处,对应于eu(ⅲ)离子的5d0→7fj(j=1,2,3,4)跃迁;其中,5d0→7f2处的跃迁最强,量子产率为26.01%。紫外灯照射下配合物发射出明显的红色荧光(图5)。
[0041]
本发明说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1