保护性窗用玻璃层叠物的中间膜的制作方法

文档序号:3707138阅读:260来源:国知局
专利名称:保护性窗用玻璃层叠物的中间膜的制作方法
为了安全,抗冲击和防火,在许多建筑物的内部和外部应用,包括窗、玻璃隔墙、门等使用保护性窗用玻璃。保护性窗用玻璃一般是通过放置在片或面板之间的聚合物膜中间层将几层玻璃片或聚合物面板结合在一起的夹层材料构成的层叠结构。一层或多层玻璃片可以被任选的透明刚性聚合物片取代,如聚碳酸酯聚合物片。中间层由相对较厚的聚合物膜构成,聚合物膜具有韧性和可粘合性,在玻璃破裂或破碎情况下可将玻璃粘合在中间层上。采用通用的中间膜构成的保护性窗用玻璃,用于窗、门和隔墙时必须隔绝环境大气,以使它具备阻燃性,防止火灾时玻璃的破裂或粉碎。为了防止火灾的蔓延,在门、窗和隔墙中常加入包含钢材和其它不透明材料的阻燃性材料以及膨胀材料。然而,这些材料很重,不能达到视觉透明窗用玻璃应用所需要的光学透明度。
美国专利A-5,244,709描述了一种方法,该方法将膨胀材料,通常是水合的碱金属硅酸盐膜层叠在两个不同厚度的透明玻璃面板之间。这种方法要求膜和透明玻璃都相当厚(分别为0.5-5.0毫米和8.0-21.0毫米),才能得到需要的火焰保护,无论是通过火焰或其它方式,一旦达到膜的局部热限,该材料就膨胀,由此使该材料不再能用作光学层叠物。许多情况下,加入添加剂以降低发生膨胀时的温度。这些添加剂除了可以降低膨胀温度外,还提高了最终材料的雾度和成本。
美国专利A-4,978,405描述了一种制造阻燃的保护性窗用玻璃的方法,该方法在甲基丙烯酸酯和其它添加剂的树脂薄膜中加入金属丝网,将这一组合的薄膜层叠在玻璃板之间。加入金属丝网虽可提高安全性特征但会影响并且很可能降低了最终玻璃产品的光学质量。在甲基丙烯酸酯树脂中加入添加剂以提高阻燃性,也会降低透光率和机械性能,造成不能接受的雾度,并增加最终产品的成本。另外,在薄膜中加入金属丝网造成不美观的效果,增加最终隔火玻璃板的重量,使板更难以处理。
美国专利A-4,681,810中,在PVB中加入了复杂的制剂以提高其阻燃性,该制剂包括形成炭的有机磷酸酯和氧螯合的有机亚磷酸酯。在昂贵的PVB薄膜中加入大量添加剂会将该材料的最终成本提高到在许多工业应用中无法接受的地步。
在美国专利A-5,230,954中描述了在特别配制的玻璃板之间夹有氟碳树脂夹层薄膜的层叠物。氟碳树脂特别是氟化乙烯丙烯共聚物(FEP);四氟乙烯全氟烷氧基乙烯共聚物(PFA);聚氯三氟乙烯(PCFE);乙烯四氟乙烯共聚物(ETFE);和聚偏二氟乙烯(PVDF)在330℃,12Kg/cm2压力下热压粘合到玻璃上。由于这种方法需要高温和高压,需要特别配制的玻璃和高温高压釜才能减少层叠期间玻璃开裂和碎裂的可能。
现有技术的各种保护性窗用玻璃层叠物在透明玻璃之间夹有膨胀材料的层叠物;在甲基丙烯酸酯树脂/加有添加剂的薄膜和玻璃片之间夹有金属丝网的层叠物;有大量阻燃添加剂的PVB薄膜层叠物;以及在高温和高压下粘合在特别配制的玻璃上的氟碳树脂的层叠物;都明显具有由结构和制造过程带来的固有的缺陷。
本发明的一个目的是提供可以在标准的工业层叠温度和工艺下制造,适用于保护性窗用玻璃层叠物的阻燃性氟聚合物的中间层薄膜。该薄膜具有优良的阻燃性和光学质量,以及高机械强度。这些薄膜可以配制成透明、半透明或不透明的,取决于它们的具体应用。薄膜可以加入纤维增强层,以提高该层叠物的结构强度。
本发明的保护性窗用玻璃层叠物包括至少两层保护性窗用玻璃层,至少一层氟聚合物中间层,该中间层包括至少85%(重量)四氟乙烯/六氟丙烯/偏二氟乙烯(THV)共聚物,和至少一层嵌埋在氟聚合物中间层中的增强层。
本发明还包括制造保护性窗用玻璃层叠物的方法,该方法包括下列步骡a)使包括至少85%(重量)THV共聚物的氟聚合物薄膜在包括至少一种气相有机化合物的惰性气氛下经0.045-0.76瓦特/小时/米2(0.15-2.5瓦特/小时/英尺2)的电晕放电处理;b)提供至少两片保护性窗用玻璃;和c)将氟聚合物薄膜的中间层层叠到保护性窗用玻璃板上。
氟聚合物薄膜包括至少85%(重量)的THV聚合物即含四氟乙烯(ECTFE)、六氟丙烯(HFP)和偏二氟乙烯(VDF)链段的热塑性弹性体三元共聚物。在美国专利A-3,235,537、A-3,132,123、A-3,635,926、A-3,528,954、A-3,642,742和A-4,029,868中描述了THV聚合物和其制造方法,这些专利的内容在此引用作为参考。THV聚合物是嵌段或接枝共聚物,由弹性软链段(即六氟丙烯和偏二氟乙烯)与氟塑料硬链段(即四氟乙烯)构成。较好的THV聚合物是市售的聚合物,其ECTFE∶HFP∶VDF的摩尔比约为42-60∶20-18∶38-22。还可以使用THV和其它氟聚合物的混合物,这些氟聚合物包括但不限于氟化乙烯丙烯共聚物(FEP)、全氟烷氧基聚合物(PFA)、全氯四氟乙烯(PCFE)、乙烯-四氟乙烯共聚物(ETFE)、聚偏二氟乙烯(PVDF)、氯乙烯四氟乙烯(ECTFE)和二氯乙烯四氟乙烯(ECCTFE)。
由THV和其它氟化聚合物的混合物构成的层叠物可用于补偿原料成本和改善THV的材料强度性能。加入的氟聚合物具有较大的机械韧性和热稳定性,当与THV混合时,制得的材料除了具有提高的机械强度外,还具有优良的阻燃性和热稳定性。THV和其它氟聚合物的混合物(掺合聚合物)可根据具体应用以不同浓度混合。对保护性窗用玻璃层叠物,薄膜的至少85%(重量)必须是THV,以保持透明。本文中使用的“透明”指按ASTM D-1003法其雾度值小于4%,“半透明”指雾度值为4-25%,“不透明”指雾度值大于25%。按照ASTM D-1003法定义,“透光度”指透射光与入射光的比值。“雾度”是指通过样品时,前向散射光中相对于入射光束的偏离大于2.50的百分比。这些数值是在光通过样品时用BYK Gardner Hazemeter记录的。
保护性窗用玻璃层叠物可用于光学层叠物(军用和紧急救护车辆的挡风玻璃或窗用玻璃),其可视透明度很重要,层叠物必须是透明的;在光透射应用中(如一些建筑物用途),半透明特性可以被接受。未经训练人员的眼睛不能检测到低于2-4%的雾度。对在大多数机动车辆、窗和门的光学隔火或安全玻璃的应用,根据ASTM D-1003法测定的合适雾度值应小于4.0%,较好的小于3.0%,最好小于2.0%。
不透明的保护性窗用玻璃层叠物可用于不要求视觉透明的一些结构。
99-85%THV与1-15%FEP的混合物显示的雾度值<4%,因此是透明薄膜。当FEP在混合物中的浓度上升到15-50%时,薄膜成为半透明,雾度值为4-25%。对THV和CETFE或ECCTFE的混合物,当次要聚合物的浓度为1-30%时,也是半透明的。当FEP浓度上升至50-75%时,薄膜丧失其“看穿”性能,成为不透明。不透明薄膜制得的玻璃层叠物的雾度值>25%。ECTFE或ECCTFE以30-70%浓度与THV混合也显示前面所述的薄膜的不透明性。
含有THV和>75%的FEP或>75%ECTFE或ECCTFE的混合物的薄膜不能以满意的方式与玻璃粘合,因此不适合于在工业高压条件下制造的玻璃层叠物。
THV聚合物具备的许多性能使它成为优秀的隔火中间层薄膜的候选者。THV具有优异的阻燃性、优良的光学透明度、低粘合温度、优良的化学稳定性、可与玻璃粘合、低水分吸收、储存和加工期间的低的湿度敏感性、高的UV光稳定性、和优良的挠性和伸长率。THV的优良的阻燃性是由于高百分数的氟原子,这些氟原子包围碳骨架,形成可显著减少骨架碎裂和聚合物燃烧的壳。
优选用于本发明的THV树脂级别包括分子量在200,000(THV-200G聚合物,可从Dyneon,3M Corporation和Hoechst Corp.的合办企业,Minneapolis,MN)至500,000(THV-500G聚合物,来自Dyneon)的树脂。这些THV级的熔体流动速率在260℃和5kg/cm2压力下为5-25克/10分钟,使其易于挤出成薄膜。较好的还有聚合物熔点约为115-125℃并包含约42摩尔%的ECTFE的THV树脂级,和聚合物熔点约为165-180℃并包含约60摩尔%ECTFE的THV树脂级。
THV最佳级别的选择取决于要求应用的具体需要。THV-200G具有较小的分子量和较低的粘度,具有较高的熔体流动指数和断裂点伸长率,然而,THV-500G具有较高的熔融温度和弯曲模量。本发明中,合适的THV级别的熔体流动速率的可接受范围为1.0-25.0,较好的为3.0-20.0,最好为5.0-10.0。由于THV聚合物的软化温度范围相对较高,不需要通常要求的交联处理来扩大软化范围。这为更好的薄膜一致性和更好的光学质量创造了条件。
在此使用的ECTFE和ECCTFE聚合物可以Halar商品名从AusimontCorporation(Italy)购得。在此使用的其它氟聚合物可从Daikin(日本)和Dupont(美国)获得。
中间层薄膜宜包括含偶联剂的附加剂(0.1-0.2%(重量))。中间层薄可以含有硅烷偶联剂(0.3-2.0%(重量)),以提高中间层薄膜与玻璃的粘合力。还可以使用在玻璃或塑料窗用玻璃上的粘合剂底涂料。能与THV一起使用的较好的偶联剂是乙烯基三乙氧基硅烷(VTES)。小于0.3%(重量)浓度的硅烷偶联剂不能提高中间层薄膜与玻璃的粘合力。大于2.0%(重量)浓度的硅烷偶联剂会增加最终材料的雾度。
偶联剂的较好范围是薄膜重量的0.5-约1.7%,最好是0.7-约1.5%。
可加入其它添加剂,如颜料、着色剂或母料和IR或UV光阻挡剂,以获得保护性窗用玻璃和/或塑料层叠物的特殊性能。
与以前一直用于隔火层叠物的PVB和甲基丙烯酸酯基薄膜不同,THV基薄膜,如本发明所述,由于其高的抗冲击力、抗缺口破坏强度和抗撕裂强度而不需要增塑剂。另外,本发明中所述的THV基薄膜由于其高阻燃性,不需要加入添加剂来提高以前的隔火应用所需的阻燃性。
可在THV或THV基薄膜之间加入玻璃纤维网作为增强层,来增强结构支撑。这样的增强层是对已知用于中间层薄膜的金属网,如美国专利A-4,978,405的改进。金属网明显增加了最终层叠的玻璃产品的重量,破坏层叠物的美观和光学性能。玻璃纤维网的加入不会明显增加最终产品的重量。由于玻璃纤维的白色以及与金属网相比相对半透明的外观,与金属网相比,纤维玻璃网能更好地保持层叠物的质量。玻璃纤维网宜嵌埋在薄膜之间,使THV或THV基混合物保持与玻璃的高粘合力。额外的结构支撑可在特别的用途使用更薄的薄膜,减少浪费并降低成本。合适的玻璃纤维网可从Bay Mills Limited,Bayex Division,Ontario,Canada和Carl Freudenberg,Technical Nonwovens,Weinheim,Germany购得。
在此使用的其它增强层包括但不限于氟聚合物纤维网、Spectra(聚对苯二甲酸乙二醇酯)纤维网、以及合适时在一些应用中的金属网。这类网可以是织物、非织造织物、编织物和杂混网的形式。还可使用增强材料的多孔片,其大小可使它在组合层叠物时嵌埋在中间层薄膜中。增强层的厚度以0.025-0.51毫米为宜。
中间层薄膜和玻璃层叠物的透明度和雾度部分取决于中间层薄膜的厚度。中间层的最小厚度与所选择用途的安全要求有关。对车辆窗用玻璃和建筑物玻璃中使用的透明的保护性窗用玻璃层叠物,氟聚合物中间层薄膜的厚度宜为0.125-1.0毫米(5-40密耳)。由抗冲击和抗渗透试验,以及破裂时层叠物保留玻璃碎片的能力来决定较好的厚度。抗冲击性高的中间层薄膜和增强层可减低满足特定安全要求所需的膜的厚度。本发明的另外的好处是当使用这些氟聚合物中间层时,减小了薄膜厚度,还可以降低保护性窗用玻璃层叠物的雾度值。
为制造本发明的中间层薄膜,可将聚合物和偶联剂和其它添加剂在高速干混机内混合,并使用熔融混料挤出机进行混料。本发明中使用了Werner Pfleiderer Corporation制造的ZSK-30型双螺杆共旋转挤出机,该挤出机有30毫米长的螺杆,但可以使用任何其它合适的混料挤出机。混料机应能均匀混合热塑性树脂原料和相对少量的需要的添加剂。
较好的制造对本发明有用的薄膜的方法中,用多孔的口模板,如4-6孔的相对较小的口模板,使挤出机排出的熔体形成线料,口模板装配有筛网过滤器,以除去熔体中的凝胶和杂质。线料在水浴中冷却;切成标准尺寸(直径为1-4毫米,长2.5-5毫米)的颗粒;然后干燥。储存颗粒制剂,并在需要时挤出成薄膜。
合适的方法中,薄膜挤出生产线配备有平板挤出口模和流延辊或转鼓,用于校准厚度并冷却该薄膜卷料。冷却后,薄膜卷成料卷。中间层薄膜的厚度和宽度取决于具体用途,厚度一般可以在约125mcm(5密耳)-1000mcm(40密耳)范围变化。
采用常规PVB保护性和安全性窗用玻璃中间层薄膜所采用的相同方法和条件,可以将本发明的中间层薄膜层叠到无机玻璃或聚合物基材上。高质量的无机玻璃层叠物可以在真空和100-200℃,较好是140-170℃和12-23巴压力条件下在高压釜中制造。较好的高压层叠条件包括在150-165℃范围的温度和在13-17巴范围压力。
使用无机玻璃的典型方法中,中间层薄膜置于玻璃板之间并修剪为合适尺寸。玻璃/薄膜/玻璃的夹层物密封在真空包中,该包抽真空直到除去所有空气。将包容了夹层物的包置于高压釜中,并按上面所述操作。
对层叠到本发明薄膜上有用的玻璃或聚合物基材包括保护性和安全性窗用玻璃领域已知的所有窗用材料。较好的层叠基材包括阻燃和抗冲击的基材,包括但不限于硼硅玻璃、钠钙玻璃、回火的无机玻璃、聚碳酸酯、聚丙烯酸酯、以及它们的组合。可对层叠基材的表面进行本领域已知的增强耐磨性热反射率等处理。层叠基材可用金属线网或其它增强材料增强。
为提高薄膜与无机玻璃的粘合力,宜在高压层叠之前用硅氧烷底涂料(如氨基三丙基硅氧烷)的水溶液或其在水/醇(如异丙醇)混合物中的溶液(如0.5-10%(重量))涂布接触表面。可通过浸渍、喷涂或刷涂来涂敷,随后立刻干燥或在120-180℃保持2-5分钟后干燥。对最佳粘合,施用单分子层硅烷,单位表面积上的量可根据基材和中间层的化学性能和表面积,以及所使用的硅烷的润湿性能变化。
公式硅烷(克)=基材(克)×基材的比表面积(米2/克)/硅烷润湿的比表面积(米2/克)。该公式可用于计算将中间层粘合到基材所需的硅烷涂料的最佳量。
实施例下面的实施例具体说明了本发明的实施方案。这些实施例说明了本发明,但不构成对本发明范围的限制。
将THV和THV/氟聚合物混合物的制剂加工成薄膜方法#1用“Werner Pfleiderer Co.”of Ramsey,USA制造的配备两个直径30毫米的共旋转螺杆的双螺杆挤出机ZSK-30,混合THV和THV/FEP聚合物的熔体与偶联剂,制得THV和THV/FEP聚合物的制剂。所有制剂在干的高速(涡轮)混合器中以300rpm预混合20分钟。然后输送到双螺杆挤出机。挤出机ZSK-30配备有筛网过滤器,随后是四孔口模板。所有制剂挤出为线料。该线料于水浴中冷却,然后切成直径2.5-3毫米,长3-4毫米的粒料。对THV制剂,双螺杆挤出机的料筒温度如下原料区#1100-115℃,料筒区#2145-155℃,料筒区#3170-180℃,料筒区#4190-200℃,料筒区#5200-210℃,口模板205-225℃。螺杆转速为96rpm。粒料在75-80℃预干燥。
方法#2对THV/FEP混合物制剂,双螺杆挤出机的料筒温度如下原料区#1210-225℃,料筒区#2225-270℃,料筒区#3285-300℃,料筒区#4290-305℃,料筒区#5300-315℃,口模板300-315℃。螺杆转速为70rpm。用室温空气流干燥粒料。
方法#3对THV/ECTFE和THV/ECCTFE混合物的制剂,双螺杆挤出机的料筒温度如下原料区#1170-185℃,料筒区#2205-215℃,料筒区#3225-240℃,料筒区#4230-245℃,料筒区#5235-250℃,口模板245-260℃。螺杆转速为75rpm。用室温空气流干燥粒料。
挤出方法#1中,用Extrusion System Limited(ESL),United Kingdom制造的单螺杆挤出机构成的流延薄膜生产线将挤出的粒料加工成薄膜。ESL挤出机的螺杆直径为32毫米,螺杆的相对长度为24倍直径。挤出机配备有平板挤出口模,该口模有约32厘米(13英寸)宽的模孔。由制剂制得两种厚度,0.13毫米(5密耳)和0.18毫米(7密耳)的薄膜。单螺杆薄膜挤出机的料筒分成四个加热区,逐渐升高聚合物材料温度,直至模头接套、过滤器和平板口模。对纯的THV-200G薄膜,料筒在其1-4区的各区温度分别保持在100-110℃、140-155℃、165-180℃和180-190℃范围。模头接套温度保持在约190-195℃。在口模中部,温度保持在约190-200℃,在其两边保持在190-200℃,口模唇部保持在195-205℃。对THV-500G混合物,料筒在其1-4区的各区温度分别保持在185-195℃、235-240℃、255-265℃、260-270℃。模头接套温度保持在约250-260℃。在口模中部,温度保持在约230-240℃,在其两边保持在240-250℃,口模唇部保持在245-255℃。
THV/FEP混合物需要高得多的挤出温度。对THV/FEP混合物,料筒在其1-4区的各区温度分别保持在215-225℃、250-265℃、270-280℃、285-295℃。模头接套温度保持在约285-290℃。在口模中部,温度保持在约290-295℃,口模边缘和唇部保持在295-300℃。THV/ECTFE和THV/ECCTFE混合物要求略低于THV/FEP混合物的温度,但仍高于纯的THV。对THV/ECTFE和THV/ECCTFE混合物,料筒在其1-4区的各区温度分别保持在205-215℃、225-235℃、230-240℃、230-240℃。模头接套温度保持在约225-230℃。在口模中部,温度保持在约230-235℃,口模边缘和唇部保持在235-240℃。
各区温度可根据所使用的树脂的熔体流动速率在相对较小的范围内变化。对0.13毫米厚薄膜螺杆转速保持为23.0rpm,对0.18毫米厚薄膜为23.3rpm。用3辊的流延辊架挤出和冷却各薄膜,并卷到7.6厘米(3英寸)的芯上。
挤出方法#2中,使用基于David-Standard制造的单螺杆挤出机的流延薄膜生产线,将挤出的粒料加工成薄膜。David-Standard挤出机的螺杆直径为51毫米,螺杆相对长度为24倍直径。挤出机配备有平板挤出口模,该口模有约140厘米(55英寸)宽的模孔。制得三种厚度,0.18毫米(7密耳)、0.25毫米(10密耳)和0.36毫米(14密耳)的THV-200G薄膜。单螺杆薄膜挤出机的料筒分成四个加热区,逐渐升高聚合物材料温度,直至模头接套、过滤器和平板口模。料筒在其1-4区的各区温度分别保持在110-125℃、155-170℃、180-200℃和190-210℃。模头接套温度保持在约195-205℃。在口模中部,温度保持在约190-200℃,口模两边温度保持在195-205℃,唇部保持在195-200℃。
各区温度可根据所使用的树脂的熔体流动速率在相对较小的范围内变化。对所有薄膜,螺杆转速保持在25.0rpm。用3辊的流延辊架挤出和冷却各薄膜,并卷到7.6厘米(3英寸)的芯上。
层叠在玻璃中间的隔火薄膜用3毫米厚,7.5×7.5厘米大小的透明钠钙玻璃片制得层叠的无机玻璃样品,该玻璃片用异丙醇清洁,除去玻璃表面的灰尘、油腻和其它污染物。
将一片薄膜切成7.5×7.5厘米的样品用于层叠。将该薄膜样品放在两块清洁的玻璃片中间,然后将整个玻璃夹层物放入实验室压机,Model 3891(由Carver,Inc.,Wabash,Indiana制造),压机配备由微处理机监测的温度-原料-时间控制系统。采用加热和加压程序来模拟典型的光学层叠物制造中的高压釜条件。层叠过程中加热使薄膜表面熔化,有助于将聚合物薄膜与玻璃基材粘合。一些试验中,用设定在140℃和12巴压力的真空条件下的工业用高压釜制得一组全尺寸的(100×100厘米)玻璃层叠物。
玻璃层叠物的试验方法试验按上面所述制得的层叠物样品的透光率、雾度、冲击和隔火性能。使用HazeGardPlus雾度仪(从BYK Gardener Corporation(USA,Germany)获得),按照ASTMD-1003法,测量层叠物的雾度值。采用ANSI标准Z26.1 T2测量透光率,采用ANSI标准Z26.1 T18测量实施例1和2的雾度。
采用下列标准试验测量层叠物的冲击性能冲击试验CEN/TC129/WG13/N42;落球试验DIN 52338;落球试验ECE R43 A6/4.2;和落球试验NF P 78406。防火性用ISO标准834试验测定。根据这一标准,隔火玻璃必须通过30分钟的火焰试验。
实施例1用方法#2挤出得到不同厚度的薄膜,这些薄膜包含从3M公司得到的THV-200G树脂和0.7-1.5%(重量)从OSI Specialty Chemicals,West Virginia获得的VTES偶联剂,并进行试验以确定对安全和性能的最佳厚度。由至少0.25毫米(10密耳)厚的薄膜获得可接受的落球安全试验结果和阻燃性试验结果。这优于市售用于玻璃层叠物的PVB中间层薄膜,该种材料通常厚度至少为0.76毫米(28密耳)。THV薄膜的雾度值列于表1。THV薄膜的雾度<4%,很好地满足了透明光学层叠物的要求。
表1用THV-200G树脂制得的薄膜的层叠物
(a)重复3次落球试验。如果重物未穿透层叠物上的两个玻璃板为合格(穿透其中一个玻璃板也可接受)。
落球试验要求将一个球形重物从一定高度落到放置在支架上的层叠物。采用如下的重量/高度1.03千克/6.0米2.26千克/4.0米4.10千克/1.5米(b)如果层叠物在火焰中可经受30分钟以上,认为其隔火试验合格。
实施例2用方法#1挤出得到不同厚度的薄膜,这些薄膜包含从3M公司得到的THV-500G树脂和0.7-1.5%(重量)从OSI Specialty Chemicals,West Virginia获得的VTES偶联剂,并进行试验以确定安全和成本的最佳厚度。对小于0.25毫米(10密耳)厚的中间层薄膜,THV薄膜获得可接受的落球冲击试验结果和阻燃性试验结果。THV-500G薄膜具有比THV-200G更好的机械性能,但是阻燃性和THV-200G相同。该薄膜的雾度<4%。
THV-200G样品(0.18毫米薄膜)的透光率为86.4%;THV-500G样品(0.18毫米薄膜)的透光率为87.2%。对THV-200G样品的0.18毫米(7密耳)薄膜和0.24毫米(9.5密耳)薄膜所进行的抗振性/落球试验(50千克的包从1.2米处落下)证明这两种厚度都具有可接受的薄膜强度。26千克大理石从不同高度落到0.18毫米(7密耳)薄膜时在3米处击穿,落到0.24毫米(9.5密耳)薄膜时在4米处击穿。
实施例3采用方法#2将THV-200G和FEP(从Daikin Corporation,日本获得的FEP级别NP-20)的混合物制成薄膜,试验决定提高机械强度又能减小薄膜雾度的FEP最佳浓度。当混合物中FEP浓度增加到15%以上时,透光率下降到小于75%,混合的薄膜的雾度提高到大于4%。FEP浓度为混合物总量的1-15%时的混合物制得雾度值小于或等于4%的薄膜,使它们可用作透明光学层叠物。试验结果列于表2。
实施例4采用方法#2挤出含15-50%FEP(可从Daikin Corporation获得的NP-20)的THV/FEP混合物,制得的薄膜为半透明。这些薄膜的雾度值为4-25%。尽管这样的雾度值使这些薄膜不适合用于透明层叠物,但是中间层薄膜的阻燃性和机械性能可被接受。试验结果列于表2。
实施例5采用方法#2挤出含50-75%FEP(可从Daikin Corporation获得的NP-20)的THV/FEP混合物,制得的薄膜不具有光学透明度,是不透明的。中间层薄膜的雾度值>25%。尽管这样的雾度值使这些薄膜不适合用于光学层叠物,但是中间层薄膜的阻燃性和机械性能可被接受。试验结果列于表2。
不存在偶联剂时,FEP浓度>75%的THV混合物在标准的高压釜条件下不能充分与基材粘合。
表2混合物浓度和雾度值THV/FEP混合物
采用ASTM D-1003法测定雾度。
实施例6采用方法#3挤出含1-30%ECTFE(可从Ausimont Corporation,意大利获得的Halar300树脂)的THV/ECTFE混合物,制得的薄膜为半透明。薄膜的雾度值为4-25%。尽管这样的雾度值使这些薄膜不适合用于透明层叠物,但是该薄膜的阻燃性和机械性能可被接受。试验结果列于表3。
实施例7采用方法#3挤出含30-70%ECTFE(可从Ausimont Corporation,意大利获得的Halar 300树脂)的THV/ECTFE混合物,制得的薄膜不显示光学透明度,是不透明的。薄膜的雾度值>25%。尽管这样的雾度值使这些薄膜不适合用于光学层叠物,但是该薄膜的阻燃性和机械性能可被接受。试验结果列于表3。
实施例8采用方法#3挤出含1-30%ECTFE(可从Ausimont Corporation,意大利获得的Halar353树脂)的THV/ECTFE混合物,制得的薄膜显示一定的光学透明度,为半透明。薄膜的雾度值为4-25%。尽管这样的雾度值使这些薄膜不适合用于光学层叠物,但是该薄膜的阻燃性和机械性能可被接受。试验结果列于表3。
实施例9采用方法#3挤出含30-70%ECTFE(可从Ausimont Corporation,意大利获得的Halar 353树脂)的THV/ECTFE混合物,制得的薄膜未显示光学透明度,是不透明的。薄膜的雾度值为>25%。尽管这样的雾度值使这些薄膜不适合用于光学层叠物,但是该薄膜的阻燃性和机械性能可被接受。试验结果列于表3。
表3THV/ECTFE和THV/ECCTFE混合物
实施例10使用偶联剂以提高THV和THV/FEP薄膜和未用底涂料预处理其表面的板坯的粘合性。使用THV-200G(3M公司)与偶联剂(乙烯基三乙氧基硅烷(VTES)或氨基丙基三乙氧基硅烷(APTES))制得几种制剂,VTES和APTES都可从OSI Specialty Chemicals,West Virginia获得。通过方法#1制得薄膜,薄膜组分在挤出前机械滚混1小时,确保均匀的混合物。其中一种薄膜采用下面实施例13描述的电晕放电处理。这些薄膜的评价表明在氟化树脂中加入APTES制得带有黄色调的薄膜。在薄膜中加入VTES制得无色薄膜。未混合的THV-200G样品的雾度试验结果列于表4。
表4
经电晕放电处理的样品是按上面所述制得,并按实施例13所述进行处理。含电晕放电处理样品的层叠物的透光率为89.65%。
实施例11为提高结构稳定性又不增加薄膜厚度,制备了含THV-200G并用玻璃纤维以及聚酯纤维增强的玻璃层叠物。网眼和线的大小不同的纤维玻璃和聚酯的网可从BayMills Limited,Bayex Division(Ontario,Canada)获得。纤维玻璃的非织造织物样品可从Carl Fredenberg,Technical Nonwovens(Weinheim,Germany)获得。将玻璃纤维网和非织造的粗糙材料放在两层0.125毫米(5密耳)厚的THV-200G薄膜之间,使制得的薄膜厚度约为0.25毫米(10密耳)。这种薄膜/纤维/薄膜夹层物被加热至200℃,并在Carver实验室压机中以约1,000psi(70.31Kg/cm2)压力压在四氟乙烯片之间,形成一个整体,然后层叠在上面所述的两块玻璃板之间。按照上面所述测量层叠物的透光率,结果列于下表5。最终层叠物中的增强层容许有更好的结构支撑和要求更薄的薄膜(满足冲击试验),而无显著的透光率损失。
表5
实施例12为提高结构稳定性又不增加薄膜厚度,制备了含THV-200G、0.7-1.5%(重量)VTES偶联剂和金属网的玻璃层叠物。铝筛网可从Bay Mills Limited获得,其它金属网,包括黄铜、铜和青铜网,从Delker Corporation(USA)获得各种网孔和线尺寸的网。将金属网放在两层0.125毫米(5密耳)厚的THV-2006薄膜之间,使制得的薄膜厚度约为0.25毫米(10密耳)。按照实施例12中所述加热和施压于这种薄膜/纤维/薄膜夹层物,形成一个整体,然后采用前面所述的层叠条件,层叠在两块玻璃板之间。与玻璃纤维增强相同,最终层叠物中的金属网容许有更好的结构支撑,用更薄的薄膜就足以满足中间层薄膜对冲击试验的要求。
实施例13使用方法#2挤出3M公司获得的THV-200G树脂成为0.38毫米(15密耳)厚的薄膜,在丙酮/氮气氛中经电晕放电,提高氟聚合物薄膜和玻璃基材的粘合力。使用美国专利A-3,676,181(Kowalewski)提供的电晕放电处理方法处理该薄膜。密闭的处理设备内的气氛为氮气中20%(体积)的丙酮,气体连续流动。将THV-200G薄膜连续送入密闭装置,并经0.045-0.76瓦特/小时/米2薄膜表面(0.15-2.5瓦特/小时/英尺2)处理。电晕放电处理后,薄膜的视觉透明度没有改变。
未经电晕放电处理,层叠在钠钙玻璃上的氟聚合物薄膜,在薄膜未完全粘合到玻璃基材的地方有起泡现象。未经电晕放电处理的层叠物的球端试验(Pummel test)(按授予Beckmann等的美国专利A-4,952,460中所述)显示Pummel级为0,冲击后没有玻璃留在薄膜上。电晕放电处理提高了薄膜与玻璃的粘合力,制得的层叠物显示可接受的层叠模式,球端试验级别为1-2,冲击后有5-10%的玻璃保持粘在薄膜上。
实施例14使用方法#2挤出3M公司获得的THV-500G树脂成为0.38毫米(15密耳)厚的薄膜,按实施例13中所述,在氟聚合物薄膜层叠到玻璃基材之前,在丙酮/氮气氛中经电晕放电处理。
THV-500G薄膜层叠到钠钙玻璃时,该层叠物显示薄膜几乎完全与玻璃基材分层。与未经电晕处理的THV-200样品相同,层叠物显示球端级别为0。发现,THV-500G经电晕放电处理可提高薄膜与玻璃的粘合力,制得减少起泡现象的层叠物。电晕放分处理后的THV-500G薄膜的粘合表明粘合球端级别为0-1,冲击后有0-5%玻璃残留。
实施例15使用方法#2挤出THV-200G和THV-500G与0.7-1.5%(重量)浓度的硅烷偶联剂(VTES)的制剂,并按实施例13所述进行电晕放电处理。
未经电晕放电处理,层叠物显示粘合力不足以进行试验,出现起泡和严重的分层。含THV-200G/VTES薄膜的层叠物经电晕放电处理,肉眼观察只显示很少或没有起泡或分层,即使在延长的时间内。这些经电晕放电处理的THV-200G/VTES层叠物显示球端级别为4-5,冲击后,50%以上的玻璃残留在层叠物上。含经电晕放电处理的THV-500G/VTES的层叠物显示球端值为1-3,5-15%玻璃残留在层叠物表面。THV-200G中硅烷含量增加到1.0%以上可将球端值提高到4-5。
权利要求
1.一种保护性窗用玻璃层叠物,它包括至少两层保护性窗用玻璃层,至少一层氟聚合物中间层,所述中间层包含至少85%重量的四氟乙烯/六氟丙烯/偏二氟乙烯共聚物,和至少一层嵌埋在氟聚合物中间层中的增强层。
2.如权利要求1所述的保护性窗用玻璃层叠物,其特征在于保护性窗用玻璃层选自聚碳酸酯、钠玻璃、结晶玻璃、硼硅酸盐玻璃、keraglass、丙烯酸、以及它们的组合。
3.如权利要求1所述的保护性窗用玻璃层叠物,其特征在于所述氟聚合物层还包含至少一种选自FEP、PFA、PCTFE、ETFE、PVDF、ECTFE、ECCTFE或它们的组合的氟聚合物。
4.如权利要求1所述的保护性窗用玻璃层叠物,其特征在于所述增强层选自玻璃纤维网、spectra纤维网、氟聚合物纤维网、包含阻燃剂的热塑网、金属纤维网、或它们的组合。
5.如权利要求4所述的保护性窗用玻璃层叠物,其特征在于所述增强层选自织造的、非织造的、编织的或杂混的网。
6.如权利要求1所述的保护性窗用玻璃层叠物,其特征在于所述增强层是透明的。
7.如权利要求1所述的保护性窗用玻璃层叠物,其特征在于所述层叠物的雾度最大为4%。
8.如权利要求1所述的保护性窗用玻璃层叠物,其特征在于所述氟聚合物层是具有增强网构成的中间层的两层氟聚合物薄膜的层叠物。
9.如权利要求8所述的保护性窗用玻璃层叠物,其特征在于氟聚合物层厚度小于0.51毫米(20密耳)。
10.如权利要求1所述的保护性窗用玻璃层叠物,其特征在于所述保护性窗用玻璃是玻璃。
11.如权利要求1所述的保护性窗用玻璃层叠物,其特征在于所述层叠物是具有足以满足ISO 834防火标准的热阻的隔火材料。
12.如权利要求11所述的保护性窗用玻璃层叠物,其特征在于所述隔火材料包括至少两层厚度各约为2-10毫米的保护性窗用玻璃,和85-100%重量THV和0-15%重量的选自FEP、PFA、PCTFE、ETFE、PVDF、ECTFE、ECCTFE或它们的组合的聚合物的氟聚合物中间层,以及玻璃纤维增强网,所述的氟聚合物中间层厚度约为5-25毫米。
13.如权利要求1所述的保护性窗用玻璃层叠物,其特征在于所述层叠物具有足以满足Din 52338保护标准的抗冲击性的抗冲击窗用玻璃。
14.如权利要求13所述的保护性窗用玻璃层叠物,其特征在于所述抗冲击的窗用玻璃包括至少两层厚度各约为2-10毫米的保护性窗用玻璃,和85-100%重量THV和0-15%重量的选自FEP、PFA、PCTFE、ETFE、PVDF、ECTFE、ECCTFE或它们的组合的聚合物的氟聚合物中间层,以及玻璃纤维增强网,所述的氟聚合物中间层厚度约为5-25毫米。
15.如权利要求1所述的保护性窗用玻璃层叠物,其特征在于所述氟聚合物层还包含至少一种选自偶联剂、颜料、IR光阻挡剂、UV光阻挡剂、或它们的组合的添加剂。
16.如权利要求15所述的保护性窗用玻璃层叠物,其特征在于所述氟聚合物层包含至少一种硅烷偶联剂。
17.如权利要求16所述的保护性窗用玻璃层叠物,其特征在于所述氟聚合物层包含乙烯基三乙氧基硅烷。
18.一种制造保护性窗用玻璃层叠物的方法,该方法包括下列步骤a)使包括至少85%重量THV共聚物的氟聚合物薄膜在包括至少一种气相有机化合物的惰性气氛下经0.045-0.76瓦特/小时/米2(0.15-2.5瓦特/小时/英尺2)的电晕放电处理;b)提供至少两片保护性窗用玻璃;和c)将氟聚合物薄膜的中间层层叠到保护性窗用玻璃板上。
19.如权利要求18所述的方法,其特征在于所述方法还包括层叠前在氟聚合物薄膜层中加入硅烷偶联剂的步骤。
20.如权利要求18所述的方法,其特征在于所述氟聚合物薄膜的中间层是在100-200℃真空下的高压釜中经20-60分钟层叠到包护性窗用玻璃上。
全文摘要
描述了包含氟聚合物中间层薄膜的光学屏蔽和隔火的保护性窗用玻璃层叠物。薄膜和其层叠物包含THV以及THV和FEP、ECTFE或ECCTFE的混合物,并用诸如偶联剂、颜料或色剂浓缩物、和IR或UV光阻挡剂的添加剂改性,还可进行薄膜电晕放电处理。这类薄膜还可以与纤维网相结合,使其进一步强化。
文档编号C08L27/18GK1261306SQ98806626
公开日2000年7月26日 申请日期1998年6月17日 优先权日1997年6月30日
发明者M·弗德曼, L·劳西卡, G·T·菲瑟尔 申请人:诺顿操作塑料有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1