波长变换部件和发光设备的制作方法

文档序号:14417348阅读:114来源:国知局
波长变换部件和发光设备的制作方法

本发明涉及适于作为投影机用荧光轮等的波长变换部件和使用了该波长变换部件的发光设备。



背景技术:

近年来,为了使投影机小型化,提出了使用led(发光二极管,lightemittingdiode)等的光源和具有荧光体层的波长变换部件的发光设备。例如,提出了所谓的反射型的荧光轮,其中,使光源的光在荧光体层发生波长变换,利用与波长变换部件邻接设置的反射基板将所得到的荧光向光源的入射侧反射,并取出至外部(例如,参照专利文献1)。反射型的荧光轮具有向外部的荧光取出效率高、容易使投影机高亮度化的优点。

荧光体层因来自光源的光的照射而伴有发热,因此,要求耐热性。由此,提出了具有通过在耐热性高的玻璃基质中分散无机荧光体粉末而成的荧光体层的波长变换部件。然而在这种情况下,有时由于荧光体层与反射基板的热膨胀系数差,导致在两者的界面发生应力变形。例如使用金属基板作为反射基板时,由于其与荧光体层的热膨胀系数差大,应力变形变大。其结果,存在由于使用中受到的振动等而发生荧光体层产生裂纹或者荧光体层从反射基板剥离这样的问题的危险。

为了减轻上述的问题,可以考虑减小反射基板与荧光体层的热膨胀系数差的方法。例如,现有文献2中公开了将反射基板制成陶瓷基板和金属反射层的2层结构并在陶瓷基板侧的表面设置有荧光体层的波长变换部件(投影机用荧光轮)。与金属材料相比,陶瓷基板的热膨胀系数低,因此能够减小与荧光体层的热膨胀系数差。

现有技术文献

专利文献

专利文献1:日本特开2015-1709号公报

专利文献2:国际公开第2015/068562号公报



技术实现要素:

发明要解决的课题

即使减小反射基板与荧光体层的热膨胀系数差,有时也不能充分减小在两者的界面发生的应力变形。

因此,本发明的技术课题在于,提供一种降低在基板与荧光体层的界面发生的应力变形、在使用时不易破损的波长变换部件。

用于解决课题的技术方案

本发明的波长变换部件的特征在于,其为基板与荧光体层接合而成的波长变换部件,上述荧光体层通过在玻璃基质中分散无机荧光体粉末而成,在30℃~上述荧光体层的固接点的温度范围中,将基板的热膨胀系数设为α1、荧光体层的热膨胀系数设为α2时,满足-10×10-7≤α1-α2≤10×10-7(/℃)的关系。其中,固接点意指:由tf-(tf-tg)/3(tg:玻璃化转变点、tf:屈服点)表示的温度。

本发明的发明人进行研究的结果,发现在波长变换部件的基板与荧光体层的界面发生的应力变形起因于其制造工序。具体如下说明。

在基板上形成荧光体层而成的波长变换部件,例如通过将含有玻璃粉末和无机荧光体粉末的生片贴附于基板上并进行烧制而制作。具体而言,若对生片进行烧制,则形成包括玻璃粉末和无机荧光体粉末的烧结体的荧光体层。荧光体层在其固接点固接于基板,之后冷却至常温附近,由此得到在基板上形成荧光体层而成的波长变换部件。其中,在30℃~荧光体层的固接点的温度范围中,基板的热膨胀系数与荧光体层的热膨胀系数之差大时,荧光体层固接于基板后,在降温过程中容易在两者的界面发生残留应力。因此,通过在30℃~荧光体层的固接点的温度范围中,如上述规定基板的热膨胀系数与荧光体层的热膨胀系数之差,能够抑制上述问题的发生。

本发明的波长变换部件中,优选基板包括氧化物陶瓷或玻璃。

本发明的波长变换部件中,优选氧化物陶瓷为多结晶氧化铝或单结晶蓝宝石。

本发明的波长变换部件中,优选荧光体层与基板熔接。采用该构成时,能够不使用耐热性低的树脂粘接剂等而接合荧光体层和基板,因此,能够得到耐热性优异的波长变换部件。具体而言,树脂粘接剂因激发光的照射热发生劣化而黑化,因此,发光强度容易经时降低,但是,采用上述结构时,不易发生这样的问题。另外,由于树脂粘接剂的热传导性低,所以在利用树脂粘接剂将荧光体层与基板粘接时,在荧光体层产生的热难以向基板侧散放。而在荧光体层与基板熔接时,在荧光体层产生的热容易高效地向基板侧散放。

本发明的波长变换部件中,优选荧光体层的厚度为30~300μm。

本发明的波长变换部件中,优选无机荧光体粉末包括选自氮化物荧光体、氮氧化物荧光体、氧化物荧光体、硫化物荧光体、硫氧化物荧光体、卤化物荧光体和铝酸盐荧光体中的1种以上。

本发明的波长变换部件中,优选荧光体层中的无机荧光体粉末的含量为30~80体积%。

优选本发明的波长变换部件为轮形状。采用该构成时,容易利用旋转进行散热,能够减少伴随荧光体层的升温而发生的破损和温度淬灭。因此,特别适于作为高亮度的投影机光源用部件。

本发明的发光设备的特征在于,具备上述的波长变换部件和对波长变换部件中的荧光体层照射激发光的光源。

本发明的发光设备适于作为投影机光源。

本发明的波长变换部件的制造方法包括:制作含有玻璃粉末和无机荧光体粉末的生片的工序;将生片贴附于基板上,通过进行烧制形成荧光体层的工序。其中,特征在于,在30℃~上述荧光体层的固接点的温度范围中,将基板的热膨胀系数设为α1、荧光体层的热膨胀系数设为α2时,满足-10×10-7≤α1-α2≤10×10-7(/℃)的关系。其中,固接点与上述同样,意指:由tf-(tf-tg)/3(tg:玻璃化转变点、tf:屈服点)表示的温度。

发明的效果

根据本发明,能够提供降低在荧光体层与基板的界面发生的应力变形、在使用时不易破损的波长变换部件。

附图说明

图1是本发明的一个实施方式所涉及的波长变换部件的截面示意图。

图2是使用了本发明的一个实施方式所涉及的波长变换部件的发光设备的侧面示意图。

具体实施方式

以下,对本发明的优选实施方式进行说明。其中,下述的实施方式仅为例示,本发明不受下述的实施方式任何限定。

(波长变换部件1)

图1是表示本发明的一个实施方式的波长变换部件的简要截面图。如图1所示,波长变换部件1具备基板10和与其表面接合的荧光体层20。荧光体层20通过在玻璃基质21中分散无机荧光体粉末22而成。

优选荧光体层20与基板10熔接。作为无机接合层,可以列举玻璃层。具体而言,可以列举包括与玻璃基质21相同的组成的玻璃层。

波长变换部件1的形状尺寸能够根据使用波长变换部件1的设备的形状尺寸等适当设定。作为波长变换部件1的形状,例如可以列举矩形板状、圆盘状、轮形状。特别是在用于投影机用光源时,优选为轮形状。此外,可以在基板10的表面(至少一个主面)的整体形成荧光体层20,也可以仅在基板10的表面的一部分形成荧光体层10。

(基板10)

作为基板10,可以列举包括氧化物陶瓷、玻璃的基板。作为氧化物陶瓷,可以列举多结晶氧化铝、单结晶蓝宝石等。多结晶氧化铝可以为多孔体。多结晶氧化铝作为反射基板使用。另一方面,单结晶蓝宝石具有光透过性,因此,能够作为透过型的波长变换部件使用。

(荧光体层20)

荧光体层20含有玻璃基质21和无机荧光体粉末22。例如,荧光体层20通过在包括玻璃粉末烧结体的玻璃基质21中分散无机荧光体粉末22而成。这样,容易得到在玻璃基质21中均匀分散有无机荧光体粉末22的荧光体层20。

作为玻璃基质21的组成,例如,优选含有sio2、b2o3中的1种以上60~90质量%。具体而言,可以列举sio2-b2o3-ro(r为mg、ca、sr或ba)系玻璃、sio2-b2o3-r’2o(r’为li、na或ka)系玻璃、sio2-b2o3-ro-r’2o系玻璃等。

本实施方式中,在30℃~荧光体层20的固接点的温度范围中,将基板10的热膨胀系数设为α1、荧光体层20的热膨胀系数设为α2时,满足-10×10-7≤α1-α2≤10×10-7(/℃)的关系。在α1-α2过小时,根据上述的理由,有在基板10与荧光体层20的界面发生的应力变形(自基板10对荧光体20的拉伸应力)变大、在使用时发生破损的危险。而在α1-α2过大时,在基板10与荧光体层20的界面发生的应力变形(自基板10对荧光体20的压缩应力)变大,荧光体层20容易从基板10剥离。α1-α2优选为-8×10-7以上、特别优选-6×10-7以上(/℃),优选为8×10-7以下、特别优选6×10-7以下(/℃)。

作为无机荧光体粉末22,只要是一般能够在市场上获得的无机荧光体粉末即可,没有特别限定。例如,可以列举包括氮化物荧光体粉末、氮氧化物荧光体粉末、氧化物荧光体粉末(包括yag荧光体粉末等的石榴石系荧光体粉末)、硫化物荧光体粉末、硫氧化物荧光体粉末、卤化物荧光体粉末(卤磷酸盐化物粉末等)和铝酸盐荧光体粉末等的无机荧光体粉末。其中,氮化物荧光体粉末、氮氧化物荧光体粉末和氧化物荧光体粉末的耐热性高,在烧制时比较不易劣化,故而优选。此外,氮化物荧光体粉末和氮氧化物荧光体粉末具有将近紫外~蓝的激发光变换为绿~红这样的宽幅的波长区域、并且发光强度也比较高的特征。因此,氮化物荧光体粉末和氮氧化物荧光体粉末特别是作为白色led元件用波长变换部件中使用的无机荧光体粉末22有效。

作为无机荧光体粉末22,可以列举在波长300~500nm具有激发带、在波长380~780nm具有发光峰的无机荧光体粉末,特别是在蓝色(波长440~480nm)、绿色(波长500~540nm)、黄色(波长540~595nm)或红色(波长600~700nm)发光的无机荧光体粉末。

作为照射波长300~440nm的紫外~近紫外的激发光时发出蓝色的发光的无机荧光体粉末,可以列举(sr,ba)mgal10o17﹕eu2+、(sr,ba)3mgsi2o8﹕eu2+等。

作为照射波长300~440nm的紫外~近紫外的激发光时发出绿色的荧光的无机荧光体粉末,可以列举sral2o4﹕eu2+、srbasio4﹕eu2+、y3(al,gd)5o12﹕ce2+、srsion﹕eu2+、bamgal10o17﹕eu2+,mn2+、ba2mgsi2o7﹕eu2+、ba2sio4﹕eu2+、ba2li2si2o7﹕eu2+、baal2o4﹕eu2+等。

作为照射波长440~480nm的蓝色的激发光时发出绿色的荧光的无机荧光体粉末,可以列举sral2o4﹕eu2+、srbasio4﹕eu2+、y3(al,gd)5o12﹕ce3+、srsion﹕eu2+、β-sialon﹕eu2+等。

作为照射波长300~440nm的紫外~近紫外的激发光时发出黄色的荧光的无机荧光体粉末,可以列举la3si6n11﹕ce3+等。

作为照射波长440~480nm的蓝色的激发光时发出黄色的荧光的无机荧光体粉末,可以列举y3(al,gd)5o12﹕ce3+、sr2sio4﹕eu2+

作为照射波长300~440nm的紫外~近紫外的激发光时发出红色的荧光的无机荧光体粉末,可以列举caga2s4﹕mn2+、mgsr3si2o8﹕eu2+,mn2+、ca2mgsi2o7﹕eu2+,mn2+等。

作为照射波长440~480nm的蓝色的激发光时发出红色的荧光的无机荧光体粉末,可以列举caalsin3﹕eu2+、casin3﹕eu2+、(ca,sr)2si5n8﹕eu2+、α-sialon﹕eu2+等。

此外,根据激发光、发光的波长域,也可以混合多种无机荧光体粉末来使用。例如,在照射紫外域的激发光而得到白色光时,混合使用发出蓝色、绿色、黄色、红色的荧光的无机荧光体粉末即可。

荧光体层20中的无机荧光体粉末22的含量过多时,烧结性降低,荧光体层20的机械强度容易降低。而在无机荧光体粉末22的含量过少时,难以得到所期望的发光强度。从这样的观点考虑,荧光体层20中的无机荧光体粉末22的含量以体积%计,优选为20~90%、30~80%、特别优选40~75%。

无机荧光体粉末22的平均粒径过大时,有时发光色变得不均匀。因此,无机荧光体粉末22的平均粒径优选为50μm以下、特别优选25μm以下。但是,无机荧光体粉末22的平均粒径过小时,有时发光强度降低。因此,无机荧光体粉末22的平均粒径优选为1μm以上、特别优选5μm以上。

荧光体层20的厚度优选为30~300μm、特别优选50~200μm。荧光体层20的厚度过小时,难以得到所期望的发光强度。而在荧光体层20的厚度过大时,存在来自荧光体层20的光的取出效率差、发光强度降低的趋势。此外,荧光体层20的厚度越大,荧光体层20与基板10的界面应力越容易变大,因此,容易得到本发明的效果。

(波长变换部件1的制造方法)

接着,对波长变换部件1的制造方法的一例进行说明。

首先,使用含有用于构成玻璃基质21的玻璃粉末和无机荧光体粉末22的混合粉末,制作生片。具体而言,对于混合粉末,适量添加有机溶剂、树脂粘合剂等并进行混炼,由此得到浆料,之后,在pet(聚对苯二甲酸乙二醇酯)等的树脂膜上进行片材成型,由此制作生片。

玻璃粉末的粒径优选最大粒径(dmax)为200μm以下(特别是150μm以下、进一步而言为105μm以下)、并且平均粒径(d50)为0.1μm以上(特别是1μm以上、进一步而言为2μm以上)。玻璃粉末的最大粒径过大时,在荧光体层20中,激发光不易散射,发光效率容易降低。另外,平均粒径过小时,在荧光体层20中,激发光过度散射,反而使发光效率容易降低。

此外,本发明中,最大粒径和平均粒径是指通过激光衍射测得的值。

接着,叠层生片和基板10,根据需要进行压制,由此制作叠层体。通过对叠层体进行烧制,得到波长变换部件1。此外,基板10和玻璃粉末选择各自的热膨胀系数成为上述关系的材料。为了得到致密的烧结体,烧制温度优选为玻璃粉末的软化点以上。另外,烧制温度过高时,存在无机荧光体粉末在玻璃粉末中溶出而发光强度降低的危险。因此,烧制温度优选为玻璃粉末的软化点+150℃以下、特别优选为玻璃粉末的软化点+100℃以下。

(发光设备2)

图2是表示使用了波长变换部件1的发光设备2的一个实施方式的侧面示意图。发光设备2具有波长变换部件1和光源30。光源30对波长变换部件1照射激发光l1。激发光l1入射波长变换部件1中的荧光体层20时,波长变换为荧光l2。荧光l2经作为反射基板的基板10反射,向光源30侧射出。荧光l2由配置于光源30与波长变换部件1之间的分光器40分离,取出至外部。

实施例

以下,基于具体的实施例对本发明进行详细说明,本发明不受以下的实施例任何限定,在不变更其要旨的范围内能够进行适当变更来实施。

表1表示实施例1~3和比较例1、2。

[表1]

(1)波长变换部件的制作

以成为表1所述的玻璃组成的方式调配原料,通过熔融骤冷法将玻璃成型为膜状。使用球磨将所得到的玻璃膜进行湿式粉碎,得到平均粒径为2μm的玻璃粉末。

使用振动混合机将所得到的玻璃粉末和yag荧光体粉末(yttriumaluminumgarnet:y3al5o12、平均粒径15μm)混合成以体积比计为玻璃粉末﹕荧光体粉末=30﹕70。在所得到的混合粉末50g中适量添加结合剂、增塑剂、溶剂等,进行24小时混炼,由此得到浆料。将该浆料使用刮刀法(刀片间隔200μm)涂布于pet膜上,使其干燥,由此制作生片。所得到的生片的厚度为120μm。

在多结晶氧化铝基板(maruwa制ha-96-2、180mm×15mm、厚度0.25mm)的表面,贴附切断为相同的大小的上述的生片,使用热压接机,以100℃施加10kpa的压力3分钟,由此制作叠层体。将叠层体在大气中以600℃进行1小时脱脂处理之后,以表1所述的烧制温度烧制30分钟,由此制作波长变换部件。所得到的波长变换部件中的荧光体层的厚度为100μm。

荧光体层的固接点和30℃~固接点的温度范围中的热膨胀系数通过如下述操作而测定。将上述所得到的玻璃粉末和yag荧光体粉末的混合粉末使用模具以50mpa进行压制,制作压粉体。将压粉体用电炉以表1所述的烧制温度烧制60分钟,由此得到致密的烧结体。将所得到的烧结体加工成规定形状,由使用tma(热机械分析)装置(rigaku制thermoplustma8310)得到的热膨胀曲线求出玻璃化转变点tg和屈服点tf,由固接点=tf-(tf-tg)/3的式子计算固接点。热膨胀曲线在升温过程中变化为具有陡峭的斜率的直线。将该弯曲点设为玻璃化转变点tg。进而进行升温时,烧结体由于软化,在外观上停止伸长,检测到收缩。将该拐点设为屈服点tf。另外,根据热膨胀曲线,计算30℃~上述荧光体层的固接点的温度范围中的热膨胀系数。对于多结晶氧化铝基板,也由使用tma装置得到的热膨胀曲线计算30℃~荧光体层的固接点的温度范围中的热膨胀系数。

(2)特性评价

关于上述制作的波长变换部件,确认到基板与荧光体层的界面的残留应力。此外,基板和荧光体层均为不透明体,无法利用偏光显微镜等观察光学变形,因此,测定波长变换部件的翘曲量作为残留应力的指标。具体而言,将波长变换部件的长度方向的端部按压于平板时,测定相反侧的端部与平板的距离,作为翘曲量进行评价。此外,在表中,将以荧光体层侧凹进去的方式翘曲的情况记为正、将以基板侧凹进去的方式翘曲的情况记为负。

由表1可知,与比较例1、2的波长变换部件相比,实施例1~3的波长变换部件的翘曲量的绝对值小,基板与荧光体层的界面的残留应力小。

符号说明

1波长变换部件

2发光设备

10基板

20荧光体层

21玻璃基质

22无机荧光体粉末

30光源

40分光器

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1