装饰被膜的制作方法

文档序号:15174943发布日期:2018-08-14 18:20阅读:174来源:国知局

本发明涉及一种装饰被膜,其形成于树脂基材表面,是通过具有透光性的树脂将金属的微粒结合而成的。



背景技术:

一直以来,在汽车等车辆中,为了测定与其前方的障碍物或车辆之间的距离,会在其前部的中心位置搭载毫米波雷达等雷达装置。雷达装置中,从雷达装置照射出的例如毫米波等电波,经过前格栅和/或车辆制造公司的徽章向前方放射。放射出的电波被前方车辆或前方障碍物等对象物体反射,该反射波经过前格栅等回到雷达装置。

因此,配置于前格栅、徽章等雷达装置的光路中的部位,常采用电波透过损失少、并且能够赋予所期望的美观效果的材料、涂料,一般会在树脂基材的表面形成装饰被膜。

另一方面,一直以来银被膜的可见光透过率高,红外线屏蔽性能优异,因此被用于各种用途。并且,银被膜的电波屏蔽性能也优异,因此例如能够保护会由于电波而发生错误反应的电子设备免于受到外部电波的干扰,或者抑制由电子设备产生的电波的放射。因此,银被膜有时也会作为电波屏蔽被膜使用。

例如,专利文献1提出一种装饰被膜,其具备分散于装饰被膜内的银合金的微粒、和将银合金的微粒结合且具有透光性的结合树脂。装饰被膜中所含的微粒的银合金由银和镍的合金构成,相对于银而含有1~30质量%的范围的镍。

在先技术文献

专利文献1:日本特开2015-080934号公报



技术实现要素:

但是,根据后述的发明人的实验可知,专利文献1涉及的装饰被膜中,由于微粒是银镍合金构成的,因此随着镍相对于银的含量增加,装饰被膜的辉度会大大降低。另一方面,了解到为了确保装饰被膜的辉度,如果将进行合金化的镍的含量相对于银而加以限制(使其减少),则在持续使用装饰被膜时,装饰被膜容易变色。

本发明是鉴于这样的问题而完成的,其目的在于,提出一种能确保装饰被膜的辉度,并且即使持续使用,装饰被膜也难以变色的装饰被膜。

发明人反复进行认真研究,结果认为在由银镍合金构成的微粒(银合金的微粒)的表面,由于表面等离子体共振吸收的影响,装饰被膜容易变色。具体而言,如图8a所示,认为如果向银合金的微粒照射光,则通过光的能量使银合金的微粒振动,其内部的自由电子发生移动,银合金的微粒容易极化。

像这样,发明人认为如图8b所示,在银合金的微粒的表面,容易发生被称为表面等离子体激元的表面电磁波,光的特定波长被吸收,银合金的微粒的能量容易增幅(表面等离子体共振吸收)。由此,认为银合金的微粒周边的构成物质会接受到增幅能量,导致装饰被膜的变色。

因此,发明人为了减少表面等离子体共振吸收,着眼于镍的化合物将由银构成的银微粒的表面的一部分包围(银和镍没有合金化)而形成的复合微粒。通过使复合微粒的镍的化合物存在于银微粒的周围,能够抑制表面等离子体共振吸收,因此推定可抑制结合树脂的变质,抑制装饰被膜的变色(颜色变化)。

本发明是基于这些而完成的,是一种在位于雷达装置路径上的树脂基材的表面形成的装饰被膜,其特征在于,所述装饰被膜至少具备复合微粒和结合树脂,所述复合微粒是包含镍和氧的化合物以包围由银构成的银微粒的表面的一部分的方式附着于所述银微粒而形成的,所述结合树脂将分散于所述装饰被膜内的所述复合微粒结合,并具有透光性,所述镍相对于所述银,以0.5~30.0质量%的范围存在。

根据本发明,装饰被膜成为至少具备分散于装饰被膜内的复合微粒、和将分散的复合微粒结合并具有透光性的结合树脂的结构,因此成为具有电波透过性和电绝缘性的被膜。

另外,本发明涉及的装饰被膜中分散有复合微粒,所述复合微粒是包含镍和氧的化合物以包围银微粒的表面的一部分的方式附着于银微粒而形成的。因此,与分散有银镍合金的微粒的被膜相比,能够确保装饰被膜的辉度(金属光泽性),并且即使持续使用,装饰被膜也难以变色。

在此,复合微粒中相对于银而以小于0.5质量%的范围含有镍的情况下,能够确保装饰被膜1的辉度,但经过持续使用,装饰被膜容易变色。另一方面,复合微粒中相对于银而以超过30.0质量%的范围含有镍的情况下,装饰被膜的辉度降低,会损害装饰被膜的金属的光泽性。

作为更优选的技术方案,本发明涉及的银微粒的平均粒径(平均一次粒径)为2~200nm。如果银微粒的平均粒径为该范围,则通过被称为表面等离子体共振吸收的现象,光容易被吸收。但在这样的形态下,通过存在包围银微粒的表面的一部分的包含镍和氧的化合物,能够抑制光能的吸收,因此即使使用这样的尺寸的银微粒,也能够抑制装饰被膜的颜色变化。

在银微粒的平均粒径大于200nm的情况下,银微粒容易发生漫反射,由此容易使银的光泽降低。另外,在银微粒的平均粒径小于2nm的情况下,入射到装饰被膜的光难以被反射。

根据本发明涉及的装饰被膜,能够确保辉度,并且即使持续使用也难以变色。

附图说明

图1是对本发明的实施方式涉及的装饰被膜进行说明的示意性剖视图。

图2是对图1所示的装饰被膜的结构进行说明的示意图。

图3是表示车辆前方的前格栅(树脂基材)及其表面的徽章、和树脂基材后方的配置于车辆内部的雷达装置的关系的示意性立体图。

图4是表示车辆前方的前格栅(树脂基材)及其表面的徽章、和树脂基材后方的配置于车辆内部的雷达装置的关系的示意性剖视图。

图5是表示实施例1涉及的装饰被膜中的银、碳、氧和镍的分布的照片。

图6是表示实施例1~4和比较例1~6涉及的镍相对于银的比例(镍/银)、与使用它的装饰被膜的(耐候性试验前的)初期l值的关系的图表。

图7是表示实施例1~3、比较例1、2、4和5涉及的镍相对于银的比例(镍/银)、与使用它的装饰被膜的由耐候性试验得到的色差δe的关系的图表。

图8a是用于说明通过光使银微粒发生极化之前的状态的示意图。

图8b是用于说明表面等离子体共振吸收的示意图。

具体实施方式

1.关于装饰被膜

图1是对本发明的装饰被膜的实施方式进行说明的示意性剖视图。图2是对图1所示的装饰被膜的结构进行说明的示意图。图3和图4是表示车辆前方的前格栅(树脂基材)及其表面的徽章、和树脂基材后方的配置于车辆内部的雷达装置的关系的示意性立体图和示意性剖视图。

图1所示的装饰被膜1,构成在作为前格栅f的树脂基材20的表面安装的徽章。如图3所示,在车身a的前方装备的雷达装置d,被配置于前格栅f的背后。本实施方式中,从雷达装置d照射出的毫米波l1,如图4所示经过前格栅f及其表面的徽章e向前方放射。放射出的毫米波l1被前方车辆或前方障碍物等对象物体反射,其反射波(毫米波l2)经过徽章e和前格栅f回到雷达装置d。像这样,装饰被膜1(徽章)在位于雷达装置d的路径上的树脂基材20的表面形成。

装饰被膜1应用在位于雷达装置路径上的树脂基材20(前格栅f)的表面,因此需要成为外观上具有金属光泽性,并且具有电波透过性(电绝缘性)的被膜。

具体而言,如图1所示,可以在装饰被膜1上沿目测方向(x方向)进一步层叠透明的树脂被膜2,装饰被膜1作为光辉层发挥作用,树脂被膜2作为装饰被膜1的保护层发挥作用。树脂被膜2可以是由透明的高分子树脂构成的、与装饰被膜1接合的接合片。另外,树脂被膜2可以通过透明的接合剂贴合于装饰被膜1。

装饰被膜1如图2所示,具备复合微粒1e,复合微粒1e具备由银构成的银微粒1a、和以包围银微粒1a的表面的一部分的方式附着于银微粒1a的包含镍和氧的化合物1d。复合微粒1e分散于装饰被膜1内。装饰被膜1还具备将分散于装饰被膜1内的复合微粒1e结合的、具有透光性的结合树脂1b。

作为复合微粒1e,优选多个银微粒1a,在使包含镍和氧的化合物1d介于所述多个银微粒1a之间的状态下作为二次粒子凝集,进而使化合物(物质)1d以包围各银微粒1a的表面的一部分的方式附着于各银微粒1a(参照图2)。更具体而言,化合物1d以使各银微粒1a的表面的一部分露出的方式附着于银微粒1a。因此,化合物1d是被覆银微粒1a的表面的一部分的被覆部,除了镍和氧以外,可以含有在制作阶段残留的氢原子等作为其一部分。另外,可以在银微粒1a的周围,进一步形成在制作银微粒1a的阶段中作为原料使用的保护剂(分散剂)1c的层。

除此以外,作为复合微粒1e,可以在银微粒1a为一次粒子的状态下(即、各银微粒1a分离的状态下),包含镍和氧的化合物1d以包围银微粒1a的表面的一部分的方式附着于银微粒1a。化合物1d可以以使各银微粒1a的表面的一部分露出的方式附着于银微粒1a。

在后述的复合微粒1e的制造方法中,例如通过调整作为银微粒1a的前驱体的银离子的浓度或制造时的加热温度,或者选择保护剂1c的种类,能够选择银微粒1a成为一次粒子或二次粒子的任一形态。

装饰被膜1中所含的由银构成的银微粒1a不连续地分散,存在于银微粒1a周围的包含镍和氧的化合物1d、结合树脂1b和保护剂1c都是具有电绝缘性的物质。因此,各个复合微粒1e彼此电绝缘,在优选状态下,各个银微粒1a、1a电绝缘。

因此,在电波通过装饰被膜1时,电波(毫米波)的衰减极少,其结果,装饰被膜1成为在外观上具有金属光泽性,并具有良好的毫米波透过性的被膜。

再者,这里本说明书中提及的“毫米波”是在电波之中其频带为30ghz~300ghz左右的电波,例如可以以频带为76ghz左右确定。另外,本说明书中提及的“装饰被膜”是构成上述车辆制造公司的徽章、车辆特有的装饰品等的构成要素。具体而言,装饰被膜是作为徽章等形成于树脂基材即前格栅的表面。

并且,本实施方式中,复合微粒1e中相对于银而以0.5~30.0质量%的范围含有镍。通过使用满足这样的范围的复合微粒1e,与分散有银镍合金的微粒的装饰被膜相比,能够确保装饰被膜1的辉度(金属光泽性),并且即使持续使用也能够抑制装饰被膜1的变色(颜色变化)。

在此,本实施方式中,复合微粒1e中相对于银而以小于0.5质量%的范围含有镍的情况下,能够确保装饰被膜1的辉度,但经过持续使用容易导致装饰被膜1变色。再者,代替该范围的复合微粒1e而使用相同程度的组合比的银镍合金的微粒的情况下,根据后述的发明人的实验可知,因持续使用导致的装饰被膜的变色更加明显。

另一方面,随着镍相对于银的比例增加,装饰被膜的辉度有降低的倾向。复合微粒1e中相对于银而以超过30.0质量%的范围含有镍的情况下,装饰被膜1的辉度下降,损害装饰被膜1的金属的光泽性。再者,代替该范围的复合微粒1e而使用相同程度的组成比的银镍合金的微粒的情况下,根据后述的发明人的实验可知,装饰被膜1的金属光泽性的下降更加明显。

在本实施方式中,银微粒的平均粒径(平均一次粒径)优选为2~200nm。在银微粒的平均粒径大于200nm的情况下,银微粒容易发生漫反射,由此容易引起装饰被膜1的金属光泽性下降。另外,在银微粒的平均粒径小于2nm的情况下,入射到装饰被膜1的光难以被反射。

在此,本说明书中提及的银微粒或复合微粒的“微粒”表示“纳米粒子”,本说明书中“纳米粒子”是指其平均粒径为几纳米级~几百纳米级的粒子。作为纳米粒子的粒径测定方法,可举出将银微粒的fe-sem图像、tem图像的一定范围内的粒子从图像中选取,求出这些微粒的直径(作为圆近似后的直径)的平均值作为平均粒径的方法等。

一般而言,银微粒的平均粒径为纳米级,因此通过被称为表面等离子体共振吸收的现象,银微粒的能量容易增幅。其结果,银微粒周边的构成物质容易接受到增幅能量而发生变色。

但是,在本实施方式中,即使银微粒1a的平均粒径为该范围,本实施方式通过包含镍和氧的化合物1d以包围银微粒1a的表面的一部分的方式进行被覆,更优选使部分银微粒1a彼此夹着化合物1d凝集,由此能够减少从银微粒1a向结合树脂1b的表面等离子体共振吸收导致的增幅能量。其结果,能够抑制装饰被膜1的颜色变化。

并且,银微粒1a的晶体直径更优选为2nm~98nm的范围。在此,晶体直径小于2nm的情况下,入射到装饰被膜1的光难以被反射。另一方面,在晶体直径超过98nm的情况下,电波(电磁波)难以透过装饰被膜1。

结合树脂1b是具有透光性的高分子树脂,具有电绝缘性。作为这样的结合树脂,例如可举出丙烯酸类树脂、聚碳酸酯树脂、聚对苯二甲酸乙二醇酯树脂、环氧树脂、聚苯乙烯树脂等。

结合树脂1b如上所述,优选与保护剂1c的亲和性良好的树脂。例如在使用具有羰基的丙烯酸树脂作为保护剂1c的情况下,粘合剂树脂优选选择相同种类的丙烯酸树脂。

另外,装饰被膜1整体所含的复合微粒1e优选为83~99质量%。如果复合微粒1e相对于装饰被膜1整体小于83质量%,则有时由银微粒1a实现的装饰被膜1的金属光泽性不充分。另一方面,在复合微粒1e相对于装饰被膜1整体超过99质量%的情况下,有时由结合树脂1b实现的与树脂基材20的附着性不充分。

2.装饰被膜1的成膜方法

首先,制作复合微粒的胶体溶液。复合微粒如上所述,是具备由银构成的银微粒、和以包围银微粒的表面的一部分的方式附着于银微粒的包含镍和氧的化合物的微粒。

其制作方法中采用液相还原法。具体而言,准备具有还原能力的还原溶液,在该还原溶液中根据需要溶解保护剂(分散剂)。接着,添加离子状态的镍(具体而言为镍溶液),之后添加离子状态的银(具体而言为银溶液)。由此,银作为银微粒析出,并且,包含镍和氧的化合物作为被覆银微粒的表面的一部分的被覆物附着在银微粒的周围。

在此,在添加了保护剂的情况下,容易控制银微粒的生长速度,调整银微粒的平均粒径。作为保护剂,优选与银微粒的附着性良好,并且与之后添加的结合树脂的亲和性良好的高分子树脂。

通过使所添加的银离子和镍离子的含量变化,能够调整作为复合微粒的组成的银与镍的组成比。另外,关于银微粒的平均粒径,可以通过调整加热温度和加热时间进行控制,也可以如上所述通过保护剂的种类进行控制。

接着,从所制造的复合微粒的胶体溶液中,通过过滤等除去未反应物,之后替换为适当的溶剂,并添加结合树脂,能够得到作为装饰被膜的原料的涂料。将该涂料涂布于树脂基材20,然后进行加热,由此能够在树脂基材20的表面形成装饰被膜1。

实施例

以下,基于实施例对本发明进行说明。

<实施例1>

相对于597g作为还原剂的氨基乙醇,滴加含有3.84g硝酸镍的水溶液,放置一段时间,使镍离子分散于氨基乙醇中。然后,向该溶液滴加在纯水中溶解有220g硝酸银的水溶液,以60℃加热混合120分钟。由此使银微粒析出,以包围银微粒的方式使包含镍和氧的化合物析出。这样制作了复合微粒。

将所制作的复合微粒在室温下进行3小时uf过滤。得到由平均粒径(平均一次粒径)为30nm的银微粒、以及包围银微粒的包含镍和氧的化合物构成的复合微粒的胶体溶液,所述化合物中相对于银的重量包含0.5重量%的镍。

接着,作为配合剂,制作了混合有40g丙二醇单乙醚、8.86g苯乙烯、8.27g丙烯酸乙基己酯、15g甲基丙烯酸月桂酯、34.8g甲基丙烯酸-2-羟基乙酯、3.07g甲基丙烯酸、30g酸式磷酸氧六甲基丙烯酸酯(acidphospoxyhexamonomethacrylate)、43g丙二醇单乙基醚聚合引发剂、0.3g过辛酸叔丁酯的配合剂1。

将0.38g的ディスパピック190(ビックケミー·ジャパン公司制)、0.23g的epocrossws-300(日本触媒公司制)、0.09g的byk-330(ビックケミー·ジャパン公司制)、150g的1-乙氧基-2-丙醇与0.465g的该配合剂1混合从而调制涂料,将其作为结合树脂与复合微粒混合。接着,采用旋涂法将所得到的混合物涂布之后,以80℃进行30分钟热处理,形成装饰被膜。

<实施例2~4>

与实施例1同样地形成装饰被膜。与实施例1的不同点是,在实施例2~4中变更了硝酸银与硝酸镍的比例,以使得装饰被膜中的镍相对于银依次成为1.0质量%、2.0质量%、30.0质量%。

<比较例1~3>

与实施例1同样地形成装饰被膜。比较例1是用于表示添加镍的意义的比较例,比较例2是用于确定镍相对于银的下限值的比较例,比较例3是用于确定镍相对于银的上限值的比较例。

比较例1~3与实施例1的不同点是,比较例1中没有添加硝酸镍,在比较例2、3中变更了硝酸银与硝酸镍的比例,以使得装饰被膜中的镍相对于银依次成为0.25质量%、35.0质量%。

<比较例4~6>

与实施例1同样地形成装饰被膜。比较例4~6是相对于实施例1~3的具备银和镍没有合金化的复合微粒的装饰被膜的特性,与具备银和镍合金化而形成的银合金的微粒的装饰被膜的特性进行比较的比较例。

比较例4~6与实施例1的不同点是,按照上述专利文献1,制作将银和镍合金化而形成的银合金的微粒。比较例4中变更了银和镍的比例,以使得装饰被膜中的镍相对于银依次成为0.6质量%、1.0质量%、30.0质量%。

[显微镜观察]

对于实施例1涉及的装饰被膜,通过透射型电子显微镜(tem),采用能量色散型x射线光谱分析法(edx),调查了银、碳、氧和镍的分布。将该结果示于图5。图5是表示实施例1涉及的装饰被膜中的银、碳、氧和镍的分布的照片。图5中,左上的照片是装饰被膜中的银的分布,右上的照片是装饰被膜中的碳的分布,左下的照片是装饰被膜中的氧的分布,右下的照片是装饰被膜中的镍的分布,图中的白色部分相当于该元素。

[耐候性试验(日照试验)]

对于实施例1~4和比较例1~6涉及的装饰被膜,将它们在相同条件下暴露在相当于直射太阳光的光下一定时间,由此实施了耐候性试验(日照试验)。具体而言,通过色彩色差计(コニカ·ミノルタ制:cr400)测定耐候性试验前后的实施例1~4和比较例1~6涉及的装饰被膜的由cie1976表色系(jisz8729)规定的表色系(l、a、b)的明度l、色谱指数a、b,基于这些算出色彩变化幅度(色差δe)。

图6是表示实施例1~4和比较例1~6涉及的镍相对于银的比例(镍/银)、与使用它的装饰被膜的(耐候性试验前的)初期l值的关系的图表。图7是表示实施例1~3、比较例1、2、4和5涉及的镍相对于银的比例(镍/银)、与使用它的装饰被膜的由耐候性试验得到的色差δe的关系的图表。

〔结果1:关于复合微粒〕

如图5所示,分散于实施例1涉及的装饰被膜中的复合微粒,由于其制作方法与比较例4~6的银合金的微粒不同,因此成为包含镍和氧的化合物以间断地包围由银构成的银微粒的表面的一部分的方式附着于银微粒而形成的微粒。

〔结果2:关于镍的比例的下限值〕

如果将实施例1~3的装饰被膜与比较例1和2的装饰被膜进行对比,则如图6所示,它们的初期l值为相同程度。但是,如图7所示,比较例1和2涉及的装饰被膜的色差δe比实施例1~3大。

认为这是由于实施例1~3的装饰被膜与比较例1和2的装饰被膜相比,更多的镍和氧的化合物包围银微粒的周围,因此在银微粒与结合树脂之间,表面等离子体共振吸收得到抑制。由此,认为因持续的光的照射导致的银微粒的周围的构成物质接受的能量得到抑制(结合树脂的变质得到抑制),从而能够抑制装饰被膜的颜色变化(变色)。根据以上所述,如果复合微粒中镍相对于银的含量为0.5质量%以上,则能够抑制装饰被膜的变色。

〔结果3:关于镍的比例的上限值〕

如图6所示,实施例1~4的装饰被膜的初期l值比比较例3高。认为这是由于比较例3涉及的复合微粒中,更多的镍和氧的化合物包围银微粒的周围,因此损害了来自于银微粒的金属光泽性。根据以上所述,如果复合微粒中的镍相对于银的含量为30.0质量%以下,则能够确保装饰被膜的辉度,保持装饰被膜的金属的光泽性。

〔结果4:关于银合金的微粒〕

如图6所示,比较例4和5的装饰被膜的初期l值,与镍相对于银的含量为相同程度的实施例1和2的装饰被膜的初期l值大致相同。但是,如图7所示,比较例4和5的装饰被膜的色差δe比实施例1和2的装饰被膜的色差δe大。在比较例4和5中,微粒由银镍合金构成,不是镍和氧的化合物包围银微粒的周围的结构。因此,认为在比较例4和5中,容易发生由银合金导致的表面等离子体共振吸收,通过光的增幅能量使得结合树脂的变色程度较大。

并且,如图6所示,比较例6的装饰被膜的初期l值,比镍相对于银的含量相同的实施例4的装饰被膜的初期l值低。认为这是由于银和镍的合金化,损害了银原本的金属光泽性。

<实施例5>

与实施例1同样地形成了装饰被膜。与实施例1的不同点是,变更了添加硝酸银之后的溶液的加热温度和加热时间,使银微粒的平均粒径成为200nm。再者,将tem图像的一定范围内的金属粒子从图像中选取,求出其平均值,测定银合金的微粒的平均粒径。

<比较例7>

与实施例5同样地形成装饰被膜。与实施例5的不同点是,变更了添加硝酸银之后的溶液的加热温度和混合时间,使银微粒的平均粒径成为500nm。

(结果5)

观察了实施例5和比较例7的装饰被膜,结果在比较例7的情况下(银微粒的平均粒径大于200nm的情况下),发生银微粒的漫反射,与实施例5相比,装饰被膜的金属光泽性降低。因此,银微粒的平均粒径优选为200nm以下,根据后述的晶体直径的结果,银微粒的平均粒径优选为2nm以上。

<实施例6-1~6-3>

与实施例1同样地形成了装饰被膜。与实施例1的不同点是,变更了添加硝酸银之后的溶液的加热温度和加热时间,使银微粒的晶体直径依次成为2nm、25nm、98nm。再者,银微粒的晶体直径是通过由jish7805规定的x射线衍射法测定的。

<比较例8-1、8-2>

与实施例6-1同样地形成了装饰被膜。与实施例6-1的不同点是,变更了添加硝酸银之后的溶液的加热温度和加热时间,使银微粒的晶体直径依次成为1nm、99nm。

(结果6)

观察实施例6-1~6-3和比较例8-1、8-2的装饰被膜,结果了解到在比较例8-1(晶体直径:小于2nm)中,入射到装饰被膜的光难以被反射。另一方面,在比较例8-2(晶体直径:超过98nm)中,电波(电磁波)难以透过装饰被膜。再者,实施例6-1~6-3的装饰被膜具有金属光泽性,电波透过性也良好。

以上,利用附图对本发明的实施方式进行了详细说明,但具体的技术构成并不限定于该实施方式,即使在没有脱离本发明的主旨的范围内进行了设计变更等,其也包含于本发明。

附图标记说明

1…装饰被膜、1a…银微粒、1b…结合树脂、1c…保护剂(分散剂)、1d…化合物、1e…复合微粒、2…树脂被膜、20…树脂基材、f…前格栅(树脂基材)、e…徽章(装饰被膜)、d…雷达装置、l1…照射的毫米波、l2…反射的毫米波。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1