一种光透微纳薄膜及其制造方法与流程

文档序号:19740869发布日期:2020-01-18 05:11阅读:153来源:国知局
一种光透微纳薄膜及其制造方法与流程

本发明涉及光学现象技术领域,尤其涉及一种光透微纳薄膜及其制造方法。



背景技术:

目前,除标准显示屏外,透明显示技术近年来已得到了快速发展。

透明显示本身具有一定的穿透性,在显示屏幕本身信息的同时还要求其能和屏幕后面的背景有机结合一起。作为信息的媒介,播放一些产品信息及相关画面,大幅提升产品关注度的同时,又要求显示屏不影响使用场地(如橱窗、商场等)的采光,这将对显示屏的光透性要求越来越高。



技术实现要素:

本发明的目的在于提供一种光透微纳薄膜及其制造方法,在保证观察者能看到显示屏幕背后环境的同时,清晰看到激光投影机投放的图像。

本发明的技术方案是:一种光透微纳薄膜包括基材层、设于所述基材层一端的透明光学可移胶,设于所述基材层另一端的微纳结构层,在所述透明光学可移胶远离微纳结构层的一端设有离型膜,在所述微纳结构层远离透明光学可移胶的一端设有纳米颗粒涂敷层;所述微纳结构层上排布设有多个凹点和凸点,其中,n个凸点中设置至少一个凹点,n为大于三的正整数;n个凸点和至少一个凹点形成一个光学结构区,所述微纳结构层由多个光学结构区组成。

上述方案中,通过设置微纳结构层,且微纳结构层的多个凸点和凹点的结构形式,可有效的实现通过对光波的波前、波谱、波矢、偏振和能流等参量进行的有效调节,保证观察者能看到显示屏幕背后环境的同时,清晰看到激光投影机投放的图像。

优选的,所述光学结构区的正投影为规则的正多边形。

优选的,每个所述光学结构区中的凹点位于光学结构区正多边形中心向一侧偏置上。

优选的,每个所述光学结构区中,n个凸点和一个凹点构成棱锥结构。

优选的,每个所述光学结构区中,n个凸点在一个凹点的周边设置,相邻的两个光学结构区共用一侧凸点。

优选的,所述基材层的厚度为10微米~200微米之间。

本发明还提供一种光透微纳薄膜的制造方法,包括以下步骤:

步骤一,加工基材层,采用pvc、pet、pc中的任意一种或组合加工基材层;

步骤二,加工微纳结构层,在上述步骤一完成的基材层表面用热压印或紫外压印的方法制作所述微纳结构层;

步骤三,加工纳米颗粒涂敷层,在上述步骤二完成的微纳结构层之上用喷涂或辊涂的涂布方法涂一层纳米颗粒涂层形成纳米颗粒涂敷层;

步骤四,在所述基材层远离微纳结构层的另一端涂布透明的透明光学可移胶,再复合一层离型膜;

步骤五,完成光透微纳薄膜的加工。

优选的,所述步骤三的所述纳米颗粒涂层包括纳米颗粒材料和聚合物材料组合构成,所述聚合物材料为热风干燥聚合物涂料或紫外光辐射固化。

优选的,所述纳米颗粒材料为多层包覆结构的纳米颗粒材料,其为金属氧化物和/或半导体氧化物。

与相关技术相比,本发明的有益效果为:具有高对比度,在成像的同时还能看到像背后景物,可以粘贴在任意平整的表面,大幅面应用可以配合投影机做不断扩展延伸,适合大幅广告使用和远距离观看使用。

附图说明

图1为本发明提供的光透微纳薄膜的结构示意图;

图2为本发明提供的光透微纳薄膜中的微纳结构层的结构示意图。

具体实施方式

以下将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。为叙述方便,下文中如出现“上”、“下”、“左”、“右”字样,仅表示与附图本身的上、下、左、右方向一致,并不对结构起限定作用。

如图1~2所示,本发明提供的一种光透微纳薄膜包括基材层1、设于所述基材层1一端的透明光学可移胶2,设于所述基材层1另一端的微纳结构层3,在所述透明光学可移胶2远离微纳结构层3的一端设有离型膜4,在所述微纳结构层3远离透明光学可移胶2的一端设有纳米颗粒涂敷层5。

所述基材层1采用pvc、pet、pc等透明聚合物材料的一种或组合加工形成。

pvc(polyvinylchloride),聚氯乙烯,在过氧化物、偶氮化合物等引发剂;或在光、热作用下按自由基聚合反应机理聚合而成的聚合物。

pet(polyethyleneterephthalate),聚对苯二甲酸乙二醇酯,由对苯二甲酸二甲酯与乙二醇酯交换或以对苯二甲酸与乙二醇酯化先合成对苯二甲酸双羟乙酯,然后再进行缩聚反应制得。属结晶型饱和聚酯,为乳白色或浅黄色、高度结晶的聚合物,表面平滑有光泽。

pc(polycarbonate)pc,聚碳酸酯塑料,是非晶态聚合物,在熔化和冷却后变成透明的玻璃状物,具有优良的光学和力学性能。

上述材料都具有透明度高,可阻挡紫外线,光泽性好的特性。

所述基材层1的厚度为10微米~200微米之间。如选用pet的材料,其厚度则为150微米。

所述透明光学可移胶2是一种预成型的胶贴,为具有一定柔韧性的高透明胶,方便贴附于大幅玻璃等载体上。

所述微纳结构层3都过所述微纳结构层3都过在基材层1上用纳米压印的方法制成,其可有效管理光线传播方向,有效屏蔽照射到屏幕的干扰光线环境光的干扰,不会减少传播只至观察者眼中的机会,而相对增加投影图像强度。在所述微纳结构层外层涂布有纳米颗粒层。

上排布设有多个凸点32和凹点33,其中,n个凸点32中设置至少一个凹点33,n为大于三的正整数。在本实施例中n为4。4个凸点32和一个凹点33形成一个光学结构区31,所述微纳结构层3由多个光学结构区31组成。

如图2所示,所述光学结构区31的正投影为规则的正多边形。每个所述光学结构区中,n个凸点32和一个凹点33构成棱锥结构。所述棱锥结构由四个不等面的三角面构成。在其它实施例中,所述棱锥结构也可以由四个或以上或小于四个的等面或不等面的三角面构成。

每个所述光学结构区31中的凹点33位于该光学结构区31正多边形中心向一侧偏置上。在本实施例中,向图2中的左侧偏置。每个所述光学结构区31中,4个凸点32和一个凹点33构成棱锥结构。该呈棱锥的偏置结构的结合,可让微纳结构层具有较好的透光性的同时又能清晰看到激光投影机投放在其上的图像。

每个所述光学结构区31中,4个凸点32在一个凹点33的周边设置,相邻的两个光学结构区31共用一侧凸点32。

所述纳米颗粒涂敷层5内为多层包覆结构的纳米颗粒,其可对特定波长光线具有吸收和散射作用。所述的纳米颗粒涂敷层对波长近似650nm,530nm,450nm的入射光线具有选择性散射和折射作用。

本发明还提供一种光透微纳薄膜的制造方法,包括以下步骤:

步骤s1,加工基材层,采用pvc、pet、pc中的任意一种或组合加工基材层。

步骤s2,加工微纳结构层,在上述步骤一完成的基材层表面用纳米压印的方法制作所述微纳结构层。所述纳米压印法为加温加压的热压印法或紫外光辐射固化的紫外成型方法。纳米压印的法即通过专用模具在基材层表面压印成多个棱锥形的光学结构区。

步骤s3,加工纳米颗粒涂敷层,在上述步骤二完成的微纳结构层之上用喷涂或辊涂的涂布方法涂一层纳米颗粒涂层形成纳米颗粒涂敷层。所述纳米颗粒涂层包括纳米颗粒材料和聚合物材料组合构成,所述聚合物材料为热风干燥聚合物涂料或紫外光辐射固化。所述纳米颗粒材料为多层包覆结构的纳米颗粒材料,其为金属氧化物和/或半导体氧化物。纳米颗粒对特定波长的光波具有吸收和散射的作用。

在本实施例中,纳米颗粒采用二氧化硅、二氧化钛以及银包覆中任意两种或三种组合,这种组合材料对投影机投送的图像光波在红(650nm)绿(530nm)兰(450nm)有很高的响应值,而对环境中的其它杂散光基本不会吸收和散射。

步骤s4,在所述基材层远离微纳结构层的另一端涂布透明的透明光学可移胶,再复合一层离型膜。

步骤s5,完成光透微纳薄膜的加工。

以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1