一种膨胀型水性防火涂料及其制备方法与流程

文档序号:21451234发布日期:2020-07-10 17:44阅读:638来源:国知局

本发明涉及防火涂料领域,具体涉及一种抗冲击、抗拉伸、抗弯折的膨胀型水性防火涂料及其制备方法。



背景技术:

钢结构防火涂料是一种应用于钢铁基材表面,在发生火灾时,通过阻燃、隔热降低钢材遇火升温速率,防止钢构快速形变坍塌,提高钢构抗灾能力的功能型涂料。目前,已商品化的防火涂料种类很多。依据分散介质,可分为水性与溶剂型;依据应用膜厚,可分为:厚型、薄型、超薄型;依据耐火隔热机理,可分为:膨胀型与非膨胀型。其中,膨胀型防火涂料由于应用膜厚低、涂层自重小、装饰性好、施工便捷(不受钢结构形状与部位限制)等优势,在各型钢构建筑中广为使用。其中,80%以上的膨胀型防火涂料为溶剂型产品。

然而,随着国家减排控霾力度的逐渐加大,传统溶剂型防火涂料涂装voc排放高(300~500g/l)、易燃、易爆等缺陷逐步暴露,市场亟需一款绿色环保、性能可靠的替代产品。水性化是膨胀型防火涂料的重要转型方向。目前,许多涂料企业相继推出了商品化的水性产品,然而由于技术缺陷,该类产品主要面向低端市场。正在意义上的高性能膨胀型水性防火解决方案尚不成熟。

目前,膨胀型水性防火涂料主要面临的技术问题有:(1)耐火性能过度依赖阻燃剂,导致颜基比过高,涂层疏松,涂层粘结强度低,抗冲击、抗拉伸性能差,同时不具备腐蚀防护功能;(2)树脂体系与阻燃剂体系引入了大量的极性基团,致使涂层吸水率高,早期耐水性差(施工遇雨易脱落),易溶胀变形,易加速金属腐蚀;(3)成炭不稳定,耐火时间短;(4)耐久性差,耐火极限随使用时间的延长下降明显;(5)施工性不佳,厚涂易开裂。



技术实现要素:

本发明的目的是提供一种适用于钢结构表面,尤其适用于处于冲击频繁(如:土石飞溅)或高湿(如:地下室、游泳馆)场合的钢结构表面,具备优异抗冲击、抗拉伸、抗弯折、耐水和耐腐蚀性能的膨胀型水性防火涂料。该涂料为水基、单组份、自干型产品,其施工便捷、涂装voc排放低、低烟、无卤,是高性能溶剂型防火涂料的环保替代品。

本发明的目的可以通过以下技术方案实现:

一种膨胀型水性防火涂料,该涂料的成分如下:

本发明技术方案中,所述的聚氨酯-乙酸乙烯酯-丙烯酸酯共聚物乳液是通过如下方法制备得到:

s1:将50~70质量份的聚醚多元醇、10~30质量份的聚碳酸酯二醇、1~10质量份的1,4–丁二醇、5~12质量份的二羟甲基丙酸加入充氮的反应器,在110~130℃下真空脱水;降温至80℃以下,加入150~300质量份的丁酮溶解物料;将10~20质量份的六亚甲基二异氰酸酯、30~50质量份的二苯基甲烷二异氰酸酯用丁酮稀释后缓慢滴入反应器;加入0.5~1.5质量份的二正丁基锡二月桂酸酯,在70~80℃下搅拌反应3~4h;冷却体系至45~55℃,加入0.1~0.4质量份的对苯二酚和5~20质量份的丙烯酸-β-羟丙酯继续反应2~3h;加入2~10质量份的三乙胺中和反应体系,加入250~350质量份的水,高速搅拌转相;蒸馏脱除溶剂,获得聚氨酯预聚物水分散体;

s2:将80~120质量份的聚氨酯预聚物水分散体、10~30质量份的乙酸乙烯酯、5~15质量份的叔碳酸乙烯酯、10~50质量份的甲基丙烯酸甲酯、5~30质量份的丙烯酸丁酯、5~30质量份的苯乙烯和50~150质量份的水搅拌下混合均匀得到混合单体预乳液;将部分混合单体预乳液加入反应器中,升温至80~85℃搅拌溶胀胶粒;加入过硫酸铵水溶液,搅拌聚合1h;补加剩余混合单体预乳液和过硫酸铵水溶液,继续搅拌反应4~5h;随后升温至90~95℃进行保温1h;冷却至50℃以下,加入氨水调整体系ph值为7.5~8.5,过滤,获得共聚物乳液。

本发明技术方案中,所述的聚氨酯-乙酸乙烯酯-丙烯酸酯共聚物乳液,其特征在于:所述聚醚多元醇为羟基封端的聚丙二醇,分子量为1000~2000;所述聚碳酸酯二醇为旭化成t5652n聚碳酸酯二醇,分子量为2000。

本发明技术方案中,所述的改性复合阻燃剂是通过如下方法制备得到:将5~10质量份的双季戊四醇、15~30质量份的聚磷酸铵、4~8质量份的三聚氰胺、1~5质量份的氢氧化铝、5~15质量份的金红石型二氧化钛加入反应器中,加入20~60质量份的脱水处理的丙酮,高速分散使粉体悬浮在丙酮中,缓慢加入1~6质量份的六亚甲基二异氰酸酯,室温搅拌反应30min;加入1~4质量份的迪高dispers755w分散剂,继续搅拌30min;蒸馏脱除溶剂,所得粉体用球磨机研磨至细度小于30μm,即获得改性复合阻燃剂。

本发明技术方案中,所述的改性复合阻燃剂,其特征在于:所述聚磷酸铵为科莱恩exolitap428聚磷酸铵。

本发明技术方案中:

所述的云母粉为滁州格锐矿业的gf-2云母粉(白云母);

所述防沉剂为德固赛a200气相二氧化硅;

所述润湿分散剂为迪高dispers755w分散剂;

所述消泡剂为迪高foamex810消泡剂;

所述基材润湿剂为毕克byk-349基材润湿剂;

所述防闪锈剂为合三弘sc2180水性防闪锈剂;

所述增稠剂为陶氏tt935增稠剂;

所述聚碳化二亚胺为斯塔尔xl-701聚碳化二亚胺。

一种上述的膨胀型水性防火涂料的制备方法,该方法包括以下步骤:

s1:加入水、改性复合阻燃剂、沉淀硫酸钡、云母粉、防沉剂、润湿分散剂及消泡剂,高速分散至均匀、无粉团无结块。转入研磨设备,研磨至细度小于40微米。

s2:加入二甲基乙醇胺,调整ph值至7.5~8.5。加入聚氨酯-乙酸乙烯酯-丙烯酸酯共聚物乳液、醇酯十二、基材润湿剂、防闪锈剂、异噻唑啉酮,搅拌均匀。加入增稠剂调整体系粘度至80~120ku。

s3:加入聚碳化二亚胺,搅拌均匀后室温熟化24h,即得到膨胀型水性防火涂料。

本发明的有益效果:

首先,本发明创新性公开了一种具备优异抗冲击、抗拉伸、抗弯折性能的膨胀型水性防火涂料。该涂料使用聚氨酯-乙酸乙烯酯-丙烯酸酯共聚物乳液为成膜物。其中,基于聚酯多元醇及聚碳酸酯二醇的聚氨酯链段,可赋予涂层优异的韧性与弹性;丙烯酸酯及苯乙烯单元可以提供适度的微相分离,确保体系的机械强度并调节链段的柔顺性;乙酸乙烯酯、叔碳酸乙烯酯单元可以提高粘结强度,提升涂层强度并改善涂刷手感。

其次,采用了经典的“双季戊四醇/聚磷酸铵/三聚氰胺/氢氧化铝/金红石二氧化钛”成碳阻燃体系。通过合理的配比优化,确保碳源、气源、酸源充足。同时,在高温下可以形成结构稳定、数量适宜的磷酸铝和磷酸钛,增强碳层强度、提升隔热效率,有效延长涂层的耐火极限。

第三,通过极性基团的封闭,降低涂层吸水率,克服传统防火涂层不耐水、不防腐、不耐湿热等弊病。本发明使用的极性基团封闭方案分别为:(1)使用六亚甲基二异氰酸酯对阻燃剂中的羟基、氨基进行疏水改性;(2)使用聚碳化二亚胺封闭共聚物中的羧基单元。

第四,采用中等颜基比的制漆方案,提高涂层的致密性。同时,创新性的引入了高纯度、高径厚比的白云母为辅料。白云母的引入可以提升碳层强度,同时增强涂层水汽阻隔性能,避免涂层吸水引起的变形、起壳、基材腐蚀等问题,延长涂层寿命,降低维护成本。此外,由于该方案获得的涂膜韧性极佳,无需使用纤维(玻璃纤维、硫酸钙晶须、矿物绵纤维、芳纶纤维等)等材料进行增强,因此涂层更细腻、平整,装饰性更好。

最后,选取了纯水基、无卤、低烟的物料方案,使得该防火涂料的涂装voc排放可低至40g/l以下,是高性能溶剂型防火涂料的环保替代品。

该发明公开的膨胀型水性防火涂料具备优异抗冲击、抗拉伸、抗弯折性能,而且低烟、无卤、耐火性好、粘结强度高、耐水、耐腐蚀。

具体实施方式

下面结合实施例对本发明做进一步说明,但本发明的保护范围不限于此。实施例1~3及对比例1~3的水性防火涂料涂料制备步骤如下(物料配比见表1):

(1)聚氨酯预聚物水分散体的制备:将聚醚多元醇、聚碳酸酯二醇、1,4–丁二醇、二羟甲基丙酸加入充氮的反应器,在120℃下真空脱水;降温至80℃以下,加入丁酮溶解物料;将六亚甲基二异氰酸酯、二苯基甲烷二异氰酸酯用丁酮稀释后缓慢滴入反应器;加入二正丁基锡二月桂酸酯,在80℃下搅拌反应4h;冷却体系至50℃,加入对苯二酚和丙烯酸-β-羟丙酯继续反应3h;加入三乙胺中和反应体系,加入水,高速搅拌转相;蒸馏脱除溶剂,获得聚氨酯预聚物水分散体;

(2)共聚物乳液的制备:将聚氨酯预聚物水分散体、乙酸乙烯酯、叔碳酸乙烯酯、甲基丙烯酸甲酯、丙烯酸丁酯、苯乙烯和水搅拌下混合均匀得到混合单体预乳液。将部分混合单体预乳液加入反应器中,升温至80℃搅拌溶胀胶粒;加入过硫酸铵水溶液,搅拌聚合1h;补加剩余混合单体预乳液和过硫酸铵水溶液,继续搅拌反应4h;随后升温至95℃,保温1h;冷却至45℃,加入氨水调整体系ph值为7.5~8.5,过滤,获得共聚物乳液。

(3)改性复合阻燃剂的制备:将双季戊四醇、聚磷酸铵、三聚氰胺、氢氧化铝、金红石型二氧化钛加入反应器中,加入脱水处理的丙酮,高速分散使粉体悬浮在丙酮中,缓慢加入六亚甲基二异氰酸酯,室温搅拌30min;加入迪高dispers755w分散剂,继续搅拌30min;蒸馏脱除溶剂,所得粉体用球磨机研磨至细度小于30μm,即获得改性复合阻燃剂。

(4)水性防火漆的制备:在调漆釜中加入水、改性复合阻燃剂、沉淀硫酸钡、云母粉、防沉剂、润湿分散剂及消泡剂,高速分散至均匀、无粉团无结块。转入研磨设备,研磨至细度小于40微米。加入二甲基乙醇胺,调整ph值至7.5~8.5。加入聚氨酯-乙酸乙烯酯-丙烯酸酯共聚物乳液、醇酯十二、基材润湿剂、防闪锈剂、异噻唑啉酮,搅拌均匀。加入增稠剂调整体系粘度至80~120ku。加入聚碳化二亚胺,搅拌均匀后室温熟化24h,即得到膨胀型水性防火涂料。

表1实施例1~3及对比例1~3中物料的添加量(g)

表2水性防火漆主要技术指标

注:耐弯性测试按照依据astmd2097标准进行,采用挠曲性测试仪。检测时,将涂料涂装在皮革基材表面,养护后固定在测试仪上反复进行折弯。耐火极限采用大板燃烧试验进行测试,以钢板背火面温度达到500℃时所经历的时间来表示。

测试结果显示,实施例1~3均获得了优异抗冲击、抗拉伸、抗弯折、耐水和耐腐蚀性能的膨胀型水性防火涂料。同时,该涂层具有较好的耐久性,户外老化90天涂层耐火性、柔韧性无明显变化。试验中我们还发现,提高复合阻燃剂用量,碳层膨胀高度会随之提高,但综合强度会有所降低。当阻燃剂过量时(尤其是气源含量过高时),碳层疏松、易脱落,隔热效率降低。另一方面,提高共聚物含量,涂层的抗拉伸、抗冲击、抗腐蚀性能提高。但当共聚物过量时,碳层发泡受阻,隔热效率、耐火极限也相应降低。因此,只有遴选适宜的“阻燃剂/共聚物”配比才能获得兼顾耐火性与机械性能环保防火涂层。

在涂层抗冲击、抗拉伸、抗弯折性能方面,聚氨酯链段的比例十分关键。我们在对比例1中降低了共聚物乳液中聚氨酯链段的含量。测试结果显示,涂层的断裂伸长率显著下降,涂层的厚涂极限、抗弯折性能也随之降低。此外,涂层机械强度的下降也会作用于碳层强度,从而影响耐火极限。

除了聚氨酯链段比例外,聚氨酯链段的构成也是影响涂层韧性的重要因素。适当混拼聚碳酸酯二醇可以提升涂层韧性;不添加聚碳酸酯二醇时,涂层的断裂伸长率会降低。

在涂层耐水性、防腐性方面,极性基团的封闭8至关重要。本发明主要采用了两大极性基团封闭方案:(1)使用异氰酸酯对阻燃剂进行疏水改性;(2)使用聚碳化二亚胺封闭共聚物中的羧基单元。

在对比例2中,我们未使用六亚甲基二异氰酸酯对阻燃剂的氨基、羟基进行封端。测试结果显示,对比例2涂层的早期耐水性、耐水性、耐湿热性及耐盐雾性显著下降。同时,由于无改性包覆,阻燃剂的分解速率提高,碳层膨胀速率与膨胀高度增大,但发泡过快会导致碳层疏松、脱落,因此测得的耐火极限有所降低。试验中我们还发现,实施例2的粘结强度略高于对比例2。这可能是因为六亚甲基二异氰酸酯引入的疏水链段可以充当阻燃剂与成膜物间的桥联单元,提高涂层与阻燃剂间的结合力,提升整体涂层强度。

在对比例3中,我们未使用聚碳化二亚胺对共聚物乳液中的羧基进行封端。测试结果显示,对比例3的耐火性能无显著变化,但早期耐水性、耐水性、耐湿热性及耐盐雾性大幅降低。此外,由于对比例3中残留的羧基可以与金属结合,故测得的粘结强度略高于实施例2。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1