光学抛光制剂的制作方法

文档序号:3765157阅读:593来源:国知局
专利名称:光学抛光制剂的制作方法
发明的背景本发明涉及用于抛光光学表面的制剂。所述要抛光的表面可以是玻璃或塑料表面。
人们熟知,为了制得令人满意的光学表面,要求该表面无刮痕,并且Ra尽可能低。这种Ra值是表面上最高点和最低点之间与抛光的玻璃片平面垂直的平均距离。因此,认为表面在亚微米尺度上并非完全平坦,Ra是在最高点和最低点之间差异的量值。显然该数值越低,光学透明度就越好,失真的可能性也越小。
但是,抛光的另一个考虑是达到所需的光学完美性的速度。玻璃抛光是一种仅在水性环境中进行的化学-机械过程。要求抛光化合物与玻璃表面和水进行反应,并要求所述表面受到研磨。某些材料(如二氧化铈)非常具有活性,但是研磨性能不佳。其它材料(如氧化铝)的研磨性很好,但是表面活性不佳。LeeClark在发表于Journal of Non-Crystalline Solids 120(1990),152-171,题为“在玻璃抛光中的化学过程”的文章讨论了该问题。在工业条件下,以较短时间而非长时间结束抛光非常有利,尤其当要求不降低抛光质量和/或还可改进质量的话。
抛光加工有两种方法。在第一种方法中,使磨粒在水性介质(通常基于去离子水)中的糊浆与要抛光的表面接触,令一块垫板以预定的图案在该表面上移动,使糊浆中的磨粒对该表面进行抛光。在第二种方法中,将磨粒嵌入树脂基质中形成模具,随后用模具抛光该表面。本发明涉及使用糊浆的第一种方法。
本领域已经提出了使用各种糊浆制剂。美国专利4,576,612报道了在原位以受控制的量形成糊浆的方法,该方法所用垫板的表面层是含有磨粒的树脂层,在使用过程中该树脂逐渐溶解而释放出抛光磨粒。据称适用的磨粒包括二氧化铈、氧化锆和氧化铁。
EP 608730-A1描述了一种用于抛光光学元件表面的磨料糊浆,该糊浆包括选自氧化铝、玻璃、金刚石、金刚砂、碳化钨、碳化硅或氮化硼的磨粒,其的粒径最高仅1微米。
美国专利5,693,239描述了一种用于抛光金属工件并使之平面化的水性糊浆,它包括α氧化铝和其它软化形式的氧化铝或无定形二氧化硅的亚微米颗粒。
在用于化学-机械抛光半导体基片的相关糊浆制剂领域中,也存在多种方法,这些方法同样使用上述那些磨料,不同之处在于分散介质的组成。
当然成功地抛光玻璃在一定程度上取决于玻璃的硬度。抛光很硬的玻璃可能需要很长时间,而且如果对此试验采用较硬磨料这种显而易见的方法将会产生光洁度上的问题。
在取得所需结果方面,现有技术的糊浆制剂通常是非常有效的。但是它们通常需要长的时间。已开发出一种新的制剂,它是由两种氧化物“氧化铝和二氧化铈”协同在一起起作用的,使得它们相互作用时产生的效果比单种组分的效果之和更好。这种制剂能在比现有糊浆短得多的时间内获得很高的光学完美性,无需升高温度这种有时用来增强活性的方法。另外,它们能很有效地抛光很硬的玻璃,对表面很少产生或不会产生伴随的损伤。它们可用于“垫板”型或“倾斜(pitch)”型抛光设备。
发明的综述本发明提供一种光学抛光制剂,它包括分散有磨粒的分散介质,所述磨粒包括α-氧化铝和二氧化铈颗粒,氧化铝与二氧化铈的比例为95∶5-85∶15,较好为96∶4-88∶12。
在一些较好的制剂中,所述氧化铝的形式是粒径基本上完全是亚微米级的,并且平均粒径小于0.5微米,最好为0.15-0.25微米的颗粒。在本说明书中,所述“平均粒径”理解为使用Horiba L-910型粒径分析仪测得的D50值。这种氧化铝可用例如美国专利4,657,754所述的方法制得。
市售的二氧化铈一般是稀土金属氧化物的混合物,其最多量组分为二氧化铈。其它组分可包括氧化钕、氧化钐、praeseodymia和氧化镧。还可存在更微量的其它稀土元素。实践中发现在抛光用途中“二氧化铈”的纯度不会对磨粒的性能产生多大影响,因此以二氧化铈名称购得的“二氧化铈”中的所有其它稀土金属氧化物均对适用于本发明的性能作出或多或少的贡献。出于描述的目的,将产品中二氧化铈的重量百分数占主要地位的稀土金属氧化物的混合物称为“二氧化铈”。市售的“二氧化铈”的例子包括50D1和Superox50(均购自Cercoa PenYan N.Y.),它们分别含有约75%和34%的二氧化铈;其例子还有Rhodox76(购自Rhone Poulenc),含有约50%的二氧化铈。
市售的二氧化铈是颗粒状的,具有双峰粒径分布,峰值粒径在0.4微米和4微米附近,较大粒径颗粒构成颗粒的主体。这使得粉末总的D50值小于4微米,通常为3-3.5微米。发现对二氧化铈进行研磨,使之具有约0.2微米,较好约0.4微米的相对均匀的粒径,从而使粒径分布较窄时,制剂的性能不会受到很大的影响,除非玻璃特别坚硬或者要求很高的目测完美性。在这种情况下,通常发现未研磨的粒径分布更为有效。
分散磨粒的介质是水,尽管其中可存在少量的水溶性液体,如醇。通常使用去离子水,其中加入表面活性剂,它起有助于使磨粒保持良好分散的作用。糊浆中的固体含量通常为5-15重量%,甚至高达20重量%。对于倾斜型抛光设备,固体含量更低即更稀。一般来说,低固体含量的糊浆抛光速度较慢,而高固体含量的糊浆存在磨粒从糊浆中沉淀析出的问题。因此从实践考虑规定糊浆中的固体含量为5-15重量%,较好为8-12重量%。
较好实例的描述下面将参照一些实施例进一步说明本发明,所述实施例用于说明使用本发明的效果以及改变二氧化铈组分的纯度和粒径分布的效果。但是这些实施例并不对本发明范围构成限制。
实施例1本实施例比较本发明磨粒混合物糊浆和单组分磨粒糊浆的性能。
抛光试验是在购自Rodel,Inc装有Suba500抛光垫板的双面AC500Peter Wolters机上进行的。抛光的玻璃试样是由熔凝氧化硅石英(Corning公司)制成的,被认为是相当硬的玻璃(努氏硬度为560-640)。
使用固体含量为10%的具有三种磨粒的糊浆对试样进行抛光。第一种糊浆含100%氧化铝,第二种糊浆含100%二氧化铈,第三种糊浆含相同氧化铝和二氧化铈组分的90∶10混合物。氧化铝购自Saint-Gobain IndustrialCeramics,Inc它是以直径约为0.15-0.25微米团聚物形式存在的粒径约20-50nm的α-氧化铝。团聚物的直径基本上不超过1微米。二氧化铈组分是Rhodox76,它是一种含二氧化铈约50%的稀土金属氧化物,经研磨至D50约0.4微米的粒径。糊浆都是用去离子水制成的,其中加有0.07重量%表面活性剂(购自R.T.Vanderbilt名为Darvan811的聚丙烯酸钠)。
观察表面抛光性能随时间的变化,并将得到的数据制图。结果如附

图1所示。图2数据与图1相同,但是将“抛光”轴放大,能更清楚地显示改进的效果。
由图1和图2可见,尽管用100%二氧化铈抛光的试样具有比用100%氧化铝和用混合磨粒抛光的两种试样具有更好的初始表面光洁度(即它在抛光前更光洁),但是其抛光效果不如其它两种试样好。由图2可见,单独使用氧化铝始终达不到200埃的表面光洁度Ra。另一方面,用二氧化铈抛光约19分钟,而用本发明混合物抛光小于10分钟,即可达到这样的表面光洁度。换一种角度看,抛光10分钟后用二氧化铈糊浆抛光的材料达到约900的光洁度、用铝糊浆抛光的材料达到稍小于600的光洁度,而用本发明糊浆抛光的材料可达到的表面光洁度小于200。
实施例2本实施例说明在抛光熔凝二氧化硅时二氧化铈粒径的影响。
使用与实施例1基本相同的本发明制剂,其中的二氧化铈是购自RhonePoulenc的Rhodox76。但是在四个分开的抛光评价试验中使用四种不同粒径(用Horiba LA910粒径分析仪测得的D50值)的Rhodox76。所述粒径分别为3.17微米、2.14微米、0.992微米和0.435微米。结果列于图3。由该图可见,对于这种玻璃,二氧化铈粒径对抛光性能的影响很小。使用Superox50和50D-1作为二氧化铈也得到相似的结果。
实施例3在本实施例中,研究了二氧化铈的来源,具体是其纯度对抛光效率是否有影响。制备本发明制剂,它含有约10%二氧化铈组分并相应地含有约90%与实施例1制剂相同的氧化铝。使用实施例1所述的设备和方法,试验用这些制剂来抛光熔凝石英玻璃。得到图4所示的结果。第一个试样“S”为“Superox50”,它含有约34%二氧化铈。第二个试样“R”是“Rhodox76”,它含有约50%二氧化铈。第三个试样“D”是“50D1”,它含有约75%二氧化铈。由图可见,三种试样的抛光性能相差很小。因此可见,在本发明制剂中其它稀土金属氧化物起的作用与二氧化铈相似。
实施例4本实施例测定二氧化铈粒径对B270玻璃(硬玻璃,努氏硬度为530)抛光效率的影响。上述实施例是在实验室条件下仅测试以Ra值表示的“表面光洁度”,但是本实施例的评价是在生产厂中,由技术人员通过肉眼观察完美性来确定终点的。这意味着比Ra值更进了一步,因为Ra值不一定能表示抛光操作遗留的表面缺陷造成的“灰度”。
使用购自Rodel公司带“Suba10”抛光垫的4800 P.R.Hoffman双面抛光机。在抛光过程中向工件施加约1.5psi(1.034×104帕)的压力。当达到预定的表面完美性(透明度)后确定为抛光的终点。
制得三种本发明制剂。这三种制剂均在同样相对比例的去离子水中含有并分散有与实施例1所述相同量的氧化铝和表面活性剂组分,以及二氧化铈组分。组分上的差异在于二氧化铈的粒径。对于第一种制剂(制剂A),二氧化铈组分预先被研磨至D50为0.4微米。对于第二和第三种制剂(制剂B和B’),均直接使用制造商供应的二氧化铈(Superox50),两者的仅有差异在于被抛光玻璃试样的尺寸。使用第二种制剂B’时,被抛光的试样尺寸较小,因此抛光过程中同一抛光机施加在试样上的压力更大,从而更快地达到抛光终点。对于第四种制剂“制剂C”,使用生产商供应的二氧化铈(Rhodox76)。如上面所述,在Horiba910粒径分析仪上测得的直接由生产商供应的材料具有双峰粒径分布,其大部分颗粒的粒径峰在约4微米。结果列于表1。
表1制剂试样起始厚度终止厚度时间(分钟)A 24 4.180mm4.168mm 120B 10 4.186mm4.155mm 60B’ 20 4.183mm4.163mm 40C 10 4.180mm4.150mm 50制剂A(使用经研磨的二氧化铈组分)90分钟抛光以后,试样表面产生均匀的浅灰色,再需要抛光30分钟,才除去了这种灰度,得到小于1/10波长的平坦度。制剂B和B’在工件表面上抛光作用强烈并且均匀。制剂C也能很好地快速抛光。B270玻璃产品具有优良的表面平坦度。其它抛光材料则会抛光产生“斑点”,不象用本发明这些制剂那样产生一致而均匀的工件。
因此可以认为,当透明度是关键要求时,用含有未经研磨的二氧化铈组分的制剂具有明显的优点。相反,含有经研磨的二氧化铈组分的制剂,能够快速研磨并使工件快速平坦,但是需要更长时间达到目测的完美性。
权利要求
1.一种光学抛光制剂,它包括固体含量为5-20重量%的水性糊浆,所述固体中85-95重量%是平均粒径小于0.5微米的α-氧化铝组分,相应地20-5重量%是平均粒径为0.2-4微米的粉末状二氧化铈。
2.如权利要求1所述的光学抛光制剂,其中糊浆的固体含量为8-12重量%。
3.如权利要求1所述的光学抛光制剂,其中氧化铝组分的平均粒径为0.15-0.25微米。
4.如权利要求1所述的光学抛光制剂,其中二氧化铈组分具有双峰粒径分布,平均粒径为3-4微米。
全文摘要
发现一种含有氧化铝和二氧化铈组分的光学抛光糊浆能产生比单独使用这两种组分更好的抛光性能。
文档编号C09G1/02GK1290289SQ99802868
公开日2001年4月4日 申请日期1999年2月16日 优先权日1998年2月18日
发明者R·W·大拉孔托, R·施莱尔 申请人:圣戈本工业陶瓷股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1