混合动力车辆的控制装置制造方法

文档序号:3860119阅读:98来源:国知局
混合动力车辆的控制装置制造方法
【专利摘要】本发明提供具备仅利用电动机行驶的模式、和并用电动机与发动机的模式的混合动力车辆的控制装置。ECU(400)在MG(2)(300B)的电动机温度超过了阈值温度时,从仅利用MG(2)(300B)的行驶模式向限制MG(2)(300B)的负载的行驶模式转移。ECU(400)在行驶用电池(310)的充电状态超过了阈值的情况下进行控制,以便将用于驱动MG(2)(300B)的系统电压变更得较低,并且将阈值温度变更得较高来维持仅利用MG(2)(300B)的行驶模式。
【专利说明】混合动力车辆的控制装置
【技术领域】
[0001]本发明涉及混合动力车辆的控制装置。
【背景技术】
[0002]公知有利用发动机和电动机的至少一方的动力来行驶的混合动力车辆。在混合动力车辆中,被控制为向电动机供给电力的电池的蓄电量或充电状态(SC)在规定范围内。在电池的SOC为规定范围的下限值以下时强制驱动发动机,通过利用发动机的驱动力进行发电而得到的电力对电池充电,使电池的SOC恢复。
[0003]另一方面,在混合动力车辆中,虽然为了提高燃油效率而要求使能够仅利用电动机来行驶的距离尽可能增大,但已知有一种在电动机的温度超过规定的允许温度时,为了防止电动机的性能降低而进行控制来限制电动机的负载的技术。
[0004]在下述的专利文献I中,公开了一种在电动机的温度超过规定的温度时,实施对电动机被施加的负载进行限制的负载限制控制的混合动力驱动装置,公开了具备检测车辆的装载状态或牵引状态的单元,并基于检测出的装载状态或牵引状态来决定负载限制开始温度。具体而言,在处于牵引状态且行驶阻力大于非牵引状态的情况下,将负载限制开始温度决定为比非牵引状态下的温度低的一侧。另外,在牵引量较大时,与牵引量较小时相比,进一步将负载限制开始温度决定为较低的一侧。由此,即使在电动机能够承受的边界温度即发热边界温度已定的状况下,当装载量较多或者行驶阻力伴随着牵引状态而增加,温度上升率上升时,也能够将电动机的温度维持在发热边界温度内。
[0005]另外,下述的专利文献2中公开了一种在插电式混合动力车辆中,不给用户带来不协调感地确保从仅利用电动机的动力来优先进行行驶的⑶(Charge Depletting mode)向利用发动机和电动机的动力来行驶的CS (Charge Sustain mode)转移时的排气净化性能的车辆的控制装置。
[0006]专利文献1:日本特开2009 - 255916号公报
[0007]专利文献2:日本特开2011 - 51395号公报
[0008]但是,对于在电动机的温度超过规定的温度时实施对施加于电动机的负载进行限制的负载限制控制而言,虽然在保护电动机方面是有效的技术,但若一律对电动机的负载进行限制,则存在仅利用电动机行驶的距离最终变短的问题。例如,在向电动机供给电力的电池的SOC足够高的情况下,虽然从电池向电动机供给的电力有富余量,但是若电动机的温度达到规定的温度,则向负载限制控制转移,尽管本来能够充分活用电池的电力,但由于电动机侧的状况导致无法维持仅利用电动机的动力实现的行驶,存在无法有效活用电池的电力的问题。
[0009]尤其在能够利用家庭用电源等来自车辆外部的电源的电力对电池充电的插电式混合动力车辆中,由于来自家庭用电源的电力是由电力公司等高效发电而得到的,因此期望优先且充分地活用电池的电力。
【发明内容】

[0010]本发明的目的在于,提供一种在利用发动机和电动机的至少一方的动力来行驶的混合动力车辆中,使能够仅利用电动机的动力行驶的距离与目前为止相比能够增大的控制装置。
[0011]本发明涉及具备发动机和电动机的混合动力车辆的控制装置,其特征在于,作为行驶模式,所述车辆具备当电动机的温度超过阈值温度时以限制了电动机负载的状态行驶的模式,所述车辆具备经由逆变器向所述电动机供给电力的电池,并根据所述电池的充电状态来变更所述电池向所述电动机供给的电压。
[0012]在本发明的I个实施方式中,所述车辆进行变更,以使与向所述电动机供给电力的电池的充电量较小的情况相比,在所述电池的充电量较大的情况下,向所述电动机供给的电压相对变小。
[0013]另外,在本发明的其他实施方式中,所述车辆变更所述电压,并且也变更以限制了电动机负载的状态行驶的阈值温度。
[0014]另外,在本发明的其他实施方式中,所述车辆进行变更以使所述电压变小,并且进行变更以使所述阈值温度变高。
[0015]根据本发明,在利用发动机和电动机的至少一方的动力来行驶的混合动力车辆中,可使能够仅以电动机的动力行驶的距离与目前相比增大,从而提高燃油效率。
【专利附图】

【附图说明】
[0016]图1是实施方式的系统构成图。
[0017]图2是E⑶的构成框图。
[0018]图3是表不SOC和系统电压的关系的图表。
[0019]图4是表不SOC和阈值温度的关系的图表。
[0020]图5是表不S0C、系统电压和阈值温度的关系的表说明图。
[0021]图6是实施方式的处理流程图。
[0022]图7是表不SOC和系统电压的其他关系的图表。
[0023]图8是表不SOC和阈值温度的其他关系的图表。
【具体实施方式】
[0024]以下,基于附图对本发明的实施方式进行说明。
[0025]图1示出本实施方式中的混合动力车辆10的系统构成图。混合动力车辆10例如是插电式混合动力车辆。车辆10是利用发动机100和第2电动发电机MG (2)300Β的至少任意一方的动力来行驶的车辆,能够利用家庭用电源等来自车辆外部的交流电源19的电力对向MG (2) 300Β等供给电力的行驶用电池310进行充电。
[0026]车辆10除了具备发动机100、MG (2) 300B和行驶用电池310之外,还具备动力分割机构200、减速器14、逆变器330、升压变换器320、发动机ECU406、MGECU402和HVECU404
坐寸ο
[0027]动力分割机构200将发动机100产生的动力分配给输出轴212和第I电动发电机MG (1) 300A。发动机100、MG (1) 300A和MG (2) 300B经由动力分割机构200连结,由此对于发动机100、MG (1) 300A和MG (2) 300B的各转速而言,若任意2个转速被决定,则剩余的转速也被决定。
[0028]减速器14将由发动机100、MG (I) 300A、MG (2) 300B产生的动力传递至驱动轮12,或将驱动轮12的驱动传递至发动机100或MG (I) 300A、MG (2) 300B。
[0029]逆变器330对行驶用电池310的直流和MG (I) 300A、MG (2) 300B的交流进行相
互转换。
[0030]升压变换器320在行驶用电池310和逆变器330之间进行电压转换。
[0031]发动机E⑶406控制发动机100的工作状态。MGE⑶402根据车辆10的状态对MG
(1)300A、MG(2)300B、逆变器330和行驶用电池310的充放电状态进行控制。HVECU404对系统整体进行控制,以使发动机E⑶406和MGE⑶402相互管理控制,车辆10能够最高效地行驶。发动机E⑶406、MGE⑶402以及HVE⑶404也可以不是独立的构成而合并为I个E⑶。在附图中,示出这3个E⑶被合并为一个E⑶400。
[0032]E⑶400被供给来自车速传感器、加速器开度传感器、节气门开度传感器、MG (I)转速传感器、MG (2)转速传感器、发动机转速传感器、MG (I)温度传感器、MG (2)温度传感器以及对行驶用电池的状态进行监视的监视单元340的信号。E⑶400在使MG (I )300A或MG
(2)300B作为电动机发挥作用的情况下,在将来自行驶用电池310的直流电力通过升压变换器320升压后,利用逆变器330将其转换为交流电力并向MG (1)300A和MG (2)300B供给。另外,ECU400在对行驶用电池310充电时,利用经由动力分割机构200传递的发动机100的动力使MG (I) 300A发电,或者利用经由减速器14传递的车辆的行驶能量使MG (2)300B发电。ECU400将由MG (1) 300A或MG (2) 300B发电得到的交流电力通过逆变器330转换为直流电力,并利用升压变换器320降压来供给至行驶用电池310。当然,E⑶400也可以将来自交流电源19的交流电力在充电装置11中转换为直流电力并向行驶用电池310供给,由此对行驶用电池310进行充电。
[0033]作为行驶模式,车辆10具有优先进行不利用发动机100的动力而利用MG(2)300B的动力的行驶(EV行驶)的模式、和进行利用发动机100和MG (2) 300B双方的动力的行驶(HV行驶)的模式。优先进行EV行驶的模式是与维持行驶用电池310的电力相比优先进行消耗的模式,作为基本的控制,E⑶400监视行驶用电池310的S0C,在行驶用电池310的充电状态(SOC)为一定值以上且由MG (2)温度传感器检测的电动机温度达到阈值温度之前维持该EV行驶模式,当电动机温度超过阈值温度时解除EV行驶模式并转移至对MG (2)300B的负载进行限制的控制。如果行驶用电池310的充电状态(SOC)小于一定值,则转移至HV行驶。
[0034]车辆10还具备用于将与交流电源19连接的叶片(paddle) 15连接的连接器13、和将经由连接器13供给的来自交流电源19的电力转换为直流并向行驶用电池310供给的充电装置11。充电装置11根据来自HVECU404的控制信号对向行驶用电池310充电的电力量进行控制。
[0035]图2示出E⑶400的构成框图。E⑶400具备输入接口 I / F410、运算部(处理器)420、存储器430以及输出接口 I / F440。
[0036]输入接口 I / F410如上所述被供给来自车速传感器、加速器开度传感器、节气门开度传感器、MG (I)转速传感器、MG (2)转速传感器、发动机转速传感器、MG (I)温度传感器、MG (2)温度传感器以及对行驶用电池的状态进行监视的监视单元340的信号。在附图中,仅示出了其中的由MG (2)温度传感器检测出的MG (2)的电动机温度T、和行驶用电池310的充电状态(SOC)。
[0037]运算部420作为功能块具备比较部、系统电压/阈值温度设定部、EV行驶控制部和负载限制部。作为第I功能,比较部将检测出的MG (2)300B的电动机温度与阈值温度进行大小比较来判定电动机温度T是否超过了阈值温度Tth。另外,作为第2功能,比较部将检测出的行驶用电池310的SOC与规定的阈值SOC (SOCl)进行大小比较。系统电压/阈值温度设定部根据行驶用电池310的SOC来设定系统电压V和阈值温度Tth。具体而言,系统电压/阈值温度设定部访问存储器430,基于存储器430所存储的S0C、系统电压和阈值温度Tth之间的规定的关系来设定系统电压V和阈值温度Tth。EV行驶控制部为了以EV行驶模式对车辆10进行行驶控制而控制MG (2) 300B、发动机100的驱动。负载限制部基于比较部中的比较结果,进行对MG (2) 300B的负载加以限制的各种控制。具体而言,当在比较部中判定为电动机温度T超过了阈值温度Tth的情况下,负载限制部对MG (2)的负载进行限制,在电动机温度T未超过阈值温度Tth的情况下,负载限制部不限制MG (2)的负载而维持EV行驶模式。
[0038]输出接口 I / F440将运算部420中的处理结果作为控制指令输出。
[0039]存储器430如上述那样,预先存储行驶用电池310的S0C、系统电压V和阈值温度Tth的关系。
[0040]图3中示出行驶用电池310的SOC和系统电压的关系。SOC被以将满充电状态设为100的百分率表示。系统电压是作为从行驶用电池310向MG (2) 300B供给的交流电力的基础的直流电压的电压,是被升压变换器320升压后的直流电压、即向逆变器330施加的直流电压。系统电压值由升压变换器320中的升压比决定。
[0041]如图所示,若SOC为SOCl以下则系统电压V是VI,若SOC在SOCl和S0C2 (S0C1< S0C2)之间则系统电压V根据SOC而减少,若SOC为S0C2以上则系统电压V是V2。这里,Vl > V2。由此,在SOC大于某个值SOCl时,设定为随着SOC变大,系统电压V依次变小。S0C1、S0C2是任意的,例如设定为SOCl = 50%,S0C2 = 70%。另外,V1、V2也是任意的,例如设定为Vl = 650V, V2 = 500V。
[0042]根据SOC使系统电压V降低的理由如下所述。即,若行驶用电池310的SOC为某个值SOCl以上,则由于行驶用电池310的蓄电量有富余,所以应该尽可能地消耗行驶用电池310的蓄电量来将MG (2) 300B作为电动机进行驱动,维持仅利用MG (2) 300B的动力行驶的EV行驶模式来使基于EV行驶模式的行驶距离增大。另外,若虽然行驶用电池310的蓄电量有富余,但MG (2)300B的电动机温度变高而超过了阈值温度,则为了防止MG (2)300B的不良情况或损伤,不得不转移至对MG (2) 300B的负载进行限制的负载限制控制。其中,若MG (2)30B的电动机温度变高则导致破损是因为由于浪涌电压而在电动机的线圈间产生放电,结果导致绝缘性损坏而短路,是因为该现象存在温度依赖性,在温度较高时以低的浪涌电压开始放电。因此,反之在电动机温度较高时,若浪涌电压足够低则在线圈间不会产生放电,为了降低浪涌电压而只要改变升压变换器320的升压比来降低升压后的系统电压V即可。在本实施方式中,根据这样的原理,在SOC为某个值SOCl以上且蓄电量有富余的情况下,通过使系统电压V从Vl降低来使浪涌电压降低,防止在MG (2)300B的线圈间发生放电。
[0043]这样,由于通过根据SOC降低系统电压V,来使浪涌电压降低,防止线圈间的放电,所以电动机的温度的允许范围相应地增大。这是由于即使电动机的温度变高,若浪涌电压足够低则也不会发生放电,这意味着能够使电动机温度的阈值温度、即用于进行负载限制的阈值温度从EV行驶模式转移至更高温侧。
[0044]图4中示出行驶用电池310的SOC和阈值温度Tth的关系。在SOC为SOCl以下时阈值温度Tth为T2,在SOC超过SOCl时使阈值温度Tth依次增大,在SOC为S0C2以上时将阈值温度Tth设定为Tl。这里,T1>T2。通过较高地设定阈值温度Tth,即使MG (2)300B的电动机温度变高,也不会超过阈值温度Tth,相应地能够不向负载限制控制转移而维持EV行驶模式。
[0045]此外,在图3、图4中,虽然将SOC和系统电压的关系、以及SOC和阈值温度的关系规定为函数,但当然也能够将上述关系规定为表。
[0046]图5中不出对S0C、系统电压和阈值温度的关系进行规定的表的一例。按每隔SOC规定对应的系统电压和阈值温度。例如,在SOC为X (%)的情况下,系统电压是Vx (V),阈值温度是Tx (°C),在SOCSy (%)的情况下,系统电压是Vy (V),阈值温度是Ty (°C)等。具体而言,在SOC为50%的情况下,系统电压是650V,阈值温度是180度,在SOC为70%的情况下,系统电压是500V,阈值温度是220°C等。在存储器430中,S0C、系统电压和阈值温度的关系被存储为图3、图4所示那样的函数,或者被存储为图6所示那样的表。而且,ECU400内的运算部420利用存储器430所存储的这样的关系来输出切换EV行驶模式和负载限制的控制指令。
[0047]图6中示出本实施方式的E⑶400的处理流程图。首先,E⑶400设定默认的阈值温度Tth(SlO)。优选默认的阈值温度Tth根据默认的系统电压来设定,例如在默认的系统电压为650V时,将默认的阈值温度Tth设为180°C。
[0048]接着,ECU400取得MG (2) 300B的电动机温度T (SII)。
[0049]在取得了电动机温度T后,E⑶400将取得的电动机温度T和阈值温度Tth进行比较(S12)。
[0050]在比较的结果不是T > Tth、即MG (2) 300B的电动机温度尚未超过阈值温度Tth时,E⑶400为了维持仅利用MG(2)300B的动力来行驶的EV行驶模式而进行控制(S13)。另夕卜,在比较的结果是T > Tth、即MG (2)300B的电动机温度超过了阈值温度Tth时,E⑶400取得行驶用电池310的S0C(S14),并比较取得的SOC和阈值S0C、即SOCl (S15)。阈值SOC例如能够与在SlO中设定阈值温度Tth时同时设定。作为阈值SOC的SOCl例如是50%。
[0051]如果比较的结果不是SOC > SOCl、即行驶用电池310的SOC为SOCl以下,则视为行驶用电池310的蓄电量没有富余,按照原则,由于MG (2) 300B的电动机温度T超过了阈值温度Tth,所以从EV行驶控制转移至负载限制控制(S16)。虽然负载限制控制是限制MG
(2)300B的负载,除了 MG (2) 300B之外还并用发动机100的动力的控制,但并不一定限定于此。例如,也可以伴随减速器14中的减速比的改变或发动机扭矩的改变。另外,在比较的结果是SOC > SOCl、即行驶用电池310的SOC超过SOCl的情况下,视为行驶用电池310的蓄电量有富余,E⑶400根据SOC从默认值重新设定系统电压和阈值温度(S17)。具体而言,E⑶400利用存储器430中预先存储的S0C、系统电压和阈值温度的关系,重新设定与在S14中取得的SOC对应的系统电压和阈值温度。重新设定的系统电压比默认的系统电压低,重新设定的阈值温度比默认的阈值温度高。若将默认的系统电压、阈值温度分别设为Vo、Ttho,将重新设定的系统电压、阈值温度分别设为Vr、TthrJU Vo > Vr, Ttho < Tthr。
[0052]在重新设定了系统电压和阈值温度后,E⑶400再次反复执行SlO以后的处理。其中,由于在S17中阈值温度Tth已被重新设定,所以SlO中的阈值温度Tth使用S17中重新设定的阈值温度Tthr。由于在S17中阈值温度已被重新设定的情况下,会在S12中判定是否是T > Tthr,所以即使MG (2) 300B的电动机温度变高,EV行驶控制被维持的机会也会增大。即,即使MG (2)300B的电动机温度T超过了 Ttho,只要不超过Tthr,则EV行驶控制便被维持。
[0053]如上所述,在本实施方式中,由于当行驶用电池310的SOC为某个值以上时,即使行驶用的电动机的温度超过了默认的阈值温度,通过降低系统电压,也能够维持EV行驶模式,所以可增大EV行驶模式下的行驶距离,能够提高燃油效率。尤其在插电式混合动力车辆中,通过将高效生成的电力蓄积到行驶用电池310中,维持尽可能使用高效生成的电力的EV行驶,能够提高能源效率。
[0054]在本实施方式中,在图3、图4中例示了 SOC和系统电压的关系、SOC和阈值温度的关系,但也可能有其他的关系。
[0055]图7中示出SOC和系统电压的其他关系,图8中示出SOC和阈值温度的其他关系。
[0056]在图7中,当SOC为某个值SOCl以下时系统电压V为VI,若SOC超过SOCl则系统电压V被设定为比Vl低的V2。另外,在图8中,当SOC为某个值SOCl以下时阈值温度Tth为T2,若SOC超过SOCl则阈值温度Tth被设定为比T2高的Tl。即,系统电压和阈值温度可以分别根据SOC而不连续或者阶跃地变化。
[0057]另外,在本实施方式中,如图6所示那样,在电动机温度T超过了阈值温度Tth时取得行驶用电池310的S0C(S14),但由于行驶用电池310的SOC总是以固定的控制周期被监视,所以在S14中,只要直接使用以固定的控制周期监视的SOC即可。S卩,在S14中,SOC的取得并不总是被限定为在S12中判定为是的情况。对S15而言也同样。
[0058]另外,在本实施方式中,如图6所示那样,当电动机温度T超过阈值温度Tth时根据行驶用电池310的SOC来设定系统电压、阈值温度(S17),但该处理并不仅在电动机温度T超过了阈值温度Tth时被执行,也可以在电动机温度T达到阈值温度Tth的附近时被执行。此时,在电动机温度T达到阈值温度Tth之前且预想为电动机温度T超过阈值温度Tth的时间点,预先将系统电压变更为较低,并且将阈值温度Tth变更为较高。S卩,在本实施方式中,虽然如图6所示那样在电动机温度T超过了阈值温度Tth、且行驶用电池310的SOC超过了 SOCl时变更设定系统电压和阈值温度,但作为其他的实施方式,也可以是在电动机温度T达到阈值温度Tth的附近且行驶用电池310的SOC超过了 SOCl时变更设定系统电压和阈值温度的方式。
[0059]另外,在本实施方式中,如图6所示那样,在电动机温度T超过了阈值温度Tth时根据行驶用电池310的SOC来设定系统电压、阈值温度(S17),但也可以除了电动机温度T之外,还根据MG (2) 300B的周围的气压或高度来设定系统电压。具体而言,高度越高或者气压越低,则将系统电压相对地设定为越低,并根据SOC进一步变更根据高度或气压而设定的系统电压。虽然根据高度或气压来使系统电压变化的技术是公知的,但是通过这样进一步根据SOC来变更根据高度或气压而设定的系统电压,能够在防止MG (2)300B的不良情况或破损的同时,进一步增大EV行驶距离,尤其是在山间路中行驶时是有效的。
[0060]并且,在本实施方式中,也可以在行驶用电池310的SOC超过某个值SOCl且行驶用电池310的蓄电量有富余的情况下,使系统电压降低,并且增大用于向MG (2) 300B供给冷却机油来进行冷却的电动泵的功率,更加强力地对MG (2) 300B进行冷却。
[0061]图中符号说明:10…车辆;100…发动机;300A…MG (I) ;300B…MG (2) ;310…行驶用电池;400…ECU。
【权利要求】
1.一种混合动力车辆的控制装置,是具备发动机以及电动机的混合动力车辆的控制装置,其特征在于, 作为行驶模式,所述车辆具备当电动机的温度超过阈值温度时以限制了电动机负载的状态行驶的模式, 所述车辆具备经由逆变器向所述电动机供给电力的电池,并根据所述电池的充电状态来变更所述电池向所述电动机供给的电压。
2.根据权利要求1所述的混合动力车辆的控制装置,其特征在于, 所述车辆进行变更,以使与向所述电动机供给电力的所述电池的充电量较小的情况相t匕,在所述电池的充电量较大的情况下,向所述电动机供给的电压相对变小。
3.根据权利要求1或2所述的混合动力车辆的控制装置,其特征在于, 所述车辆变更所述电压,并且也变更以限制了电动机负载的状态行驶的阈值温度。
4.根据权利要求3所述的混合动力车辆的控制装置,其特征在于, 所述车辆进行变更以使所述电压变小,并且进行变更以使所述阈值温度变高。
【文档编号】B60L11/18GK103842224SQ201180073733
【公开日】2014年6月4日 申请日期:2011年10月6日 优先权日:2011年10月6日
【发明者】泷泽敬次, 宫本知彦, 松坂周平 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1