具有连续长度的交叉层叠纤网的制作方法

文档序号:4448007阅读:156来源:国知局
专利名称:具有连续长度的交叉层叠纤网的制作方法
本申请是1994年5月31日提交的名称为“由包围在基质中的彼此平行的纤维构成的复合纤网”的PCT/NL94/00123号发明专利申请的分案申请,原申请于1996年2月8日进入中国国家阶段,并获得中国专利申请号94193020.3。
本发明涉及复合纤网。就本发明的意义而言,复合纤网应理解为长度不确定的长条形扁平物体,它包括一个长条形复合层,该层由被基质包围着的彼此平行的纤维构成。
WO-A-91/12136披露了一种长条形双层复合结构,其中第一层由此沿结构长度方向排列,被基质包围的纤维构成,第二层由沿垂直于所说长度方向,被基质包围的纤维构成。这种其中各不同层中的纤维沿不同方向排列的双层结构在下文中称作交叉层叠纤网。纤维平行于纤网的长度方向的复合纤网在下文中称作平行纤网。在WO-A-91/12136中,第二层的制备方法如下通过从平行纤网上裁下一片长方形的纤网,该片的长度基本上同平行纤网的宽度相等,然后把所说的裁片逐片地铺在另一平行纤网上面,让裁片纤维与所说纤网的长度方向呈垂直地排列。此后,各复合层在加热和加压的作用下互相牢固地连接成一体。
要把上述裁片按连续工艺准确地呈要求的角度拼接而同时又不使相邻的裁片相互搭接(结果造成有许多加厚的部位)或者不使相邻裁片空出一个距离(或间隙)在技术上是非常困难的。况且由平行纤维构成的疏松复合层裁片也难以操作,因为它们很容易沿纤维方向撕裂。而当复合层很薄而且纤维含量又很高时尤其如此,例如用于防弹复合物所要求的情况。
因此除已经存在的平行纤网之外还需要一种复合纤网,其中复合层内的纤维与纤网的长度方向呈一个非零角度排列,这种复合纤网较少有甚至没有上面提到的生产多层复合结构(譬如交叉层叠纤网)过程中的不利之处和缺陷。
这一需要被按照本发明由一种复合纤网(3)满足,此纤网沿长度方向由拼接并连结在一起的纤网(零)件(7)组成。
该纤网件包括隔离层(8)和其上的由被包在基质(6)中的彼此平行的纤维(5)构成的复合层(4),每个纤网件的复合层的边界是两个彼此相对且都平行于纤维的横向侧面(边)(1)和(2)该纤网件在拼接时,每个纤网件的复合层的横向侧面(1)均面对并平行于与之相拼接的纤网件的复合层的横向侧面(2),而且纤网件内的纤维与复合纤网的长度方向呈一定角度α(α不为0°)。
而且,其中拼接纤网件的隔离层(8)彼此互相连结。
按照本发明的复合纤网(以下称作横向纤网)能借助简单的技术用于连续生产多层复合物。
此种横向纤网的进一步优点在于,通过隔离层的存在起支撑作用,复合层易于操作,没有复合层撕裂的危险。这就意味着复合层可以很薄,而且较少量的基质材料就足以把纤维粘合在复合层中,结果,复合层的纤维含量可以较大。这对于使多层防弹复合物获得高保护性能尤其是个优点。在此以及下文中,“横向纤网的隔离层”意在表达横向纤网的全部互连的纤网件隔离层。
横向纤网的另一个重要特征在于,除掉横向纤网的隔离层之后,被连结起来的纤网件的各复合层不存在搭接, 因而纤网件连接处没有局部增厚的部分。这样带来的好处是在多层复合物的生产当中较少出现问题。当被用于多层防弹复合物时这样带来的好处是沿多层复合物的表面保护性能不会有很大的变化,结果所说多层复合物在最低表面保护性能与单位表面积重量之间的比例比较高。
下面将结合附图中表示的数个实施方案的例子进一步解释本发明。


图1a表示一个纤网件的实施方案,其中隔离层突出于复合层的所有侧面以外,而且其中隔离层在一个横向侧面处的边缘平行于所说横向侧面。
图1b表示一个纤网件的实施例,其中隔离层的边缘与复合层侧边重合。
图1c表示一个纤网件的实施例,其中复合物层是平行四边形,复物合层各边之间的最小角度为α,且其中隔离层突出于一个横向侧面以外。
图1d表示沿图1c中纤网件的I-I线的剖面。
图2a表示一个平行纤网,备有一个隔离层,纤网件便是呈与隔离层成45°的角度裁断的。
图2b表示横向纤网的一个实施例,其中纤维的走向与纤网的长度方向呈45°角。
图2c表示横向纤网的一个实施例,其中纤维的走向与纤网的长度方向呈直角。
图2d表示沿图2c的复合纤网的I-I线的剖面。
图3a、3b、3c和3d表示数种将纤网件拼接和连结的合适方案。
图3a表示的纤网件中隔离层的边缘与复合层的横侧面重合,拼接时复合层之间留有一个小小的间隙。纤网件是用胶粘带沿横向纤网的幅宽连结起来的。
图3b表示的纤网件中隔离层从复合层的一个横侧面伸出,拼接时复合层之间留有小小的间隙。纤网件是靠一个纤网件隔离层的伸出部与另一纤网件隔离层之间的粘合剂连结起来的。
图3c表示的纤网件中隔离层从复合层的一个横侧面伸出并且与另一横侧面重合,各纤网件是以一块纤网件的复合层搭在另一纤网件的复合层上面的方式而接起来的。各纤网件是用胶粘带沿横向纤网的幅宽连结起来的。
图3d表示的纤网件中隔离层从复合层的一个横侧面伸出,各纤网件是以一个纤网件的复合层搭在另一纤网件的复合层上面的方式连接起来的。各纤网件是靠一个纤网件的隔离层的伸出部与另一纤网件的隔离层之间的粘合剂连结起来的。
图3e表示在图3d的横向纤网上又铺上第二层,将纤网件连接起来。
图3f表示把图3e的结构中的隔离层去掉以后的结果。
图4示意地表示把纤网件连接起来的方法的一个实施方案。
纤网件7包括隔离层8和在其上的被基质6包围的彼此平行的纤维5组成的复合层4,每个纤网件的复合层均以两个横向侧面1和2为边界,两侧面彼此相对并平行于纤维(见图1a~1d)。
复合层中的纤维彼此平行地排列,使得可以把复合层沿平行于纤维的方向撕下来而不会从该复合层拉出大量的纤维。此纤维优选基本上沿一条直线排列。
复合层的侧面10及11(以下称它为纵向侧面)可以呈任意走向(图1a)。实际上,这些纵向侧面优选沿直线并且互相平行地走向。因而每个纤网件的复合层优选呈平行四边形,其横向侧边(面)与纵向侧边(面)之间的最小夹角为α(图1bα=90°,图1cα=45°)。这样做的优点是纤网件的纵向侧面10和11形成的横向纤网的边缘12和13各成一直线且平行地走向,既使α角不是90°也是如此(图2b)。
隔离层8起着支撑复合层并赋予横向纤网足够的抗张强度的作用。隔离层对复合层的粘合力必须恰好起到在横向纤网处理期间保持其成一体的作用,然而该粘合力又必须很弱,以便在连结各纤网件的第二层被加到横向纤网的复合层上之后易于从所说复合层上取下来。适合用于隔离层的材料例如塑料,例如尼龙、聚酯或聚氯乙烯。优选使用蜡纸或牛皮纸,而且面朝复合层的隔离层表面敷有不粘层(例如硅氧烷)。
纤网件中的隔离层可以突出于复合层的所有侧面以外。但是,为了让各纤网件互相靠紧,隔离层的边缘优选平行于横向侧面1(图1a)。至于纵向侧面10和11,实际上隔离层的边缘通常与复合层的边缘重合,因为纤网件优选从一条平行纤网14上裁下来(见图2a)。最好每个纤网件的隔离层9的边缘都与复合层的横向侧面1重合,见图1b、1c和1d。正如下面将要解释的,这样做的好处是能生产出不仅不会重叠而且也不留间隙的复合层。关于横向侧面2,隔离层的边缘优选与所说横向侧面2平行。隔离层的边缘可以同纤网件的复合层的横侧面2重合(图1b)也可以伸出于后者之外(图1c)。究竟是否让隔离层突出于横侧面1和2之外要依预计的纤网件拼接并结合成横向纤网的方式而定,此点下面还将详述。
如同图2b、2c和2d所示,横向纤网3是通过把纤网件7沿着长度方向拼接并结合而组成的。该横向纤网由至少2个纤网件组成。纤网件数目的上限、从而横向纤网的长度,是根据实际要求(例如操作难易及其重量等因素)决定的。当用于连续加工时,优选制成很长的横向纤网。实际操作时,把此种长的横向纤网打成卷。
拼接纤网件时,让每个纤网件的复合层的横侧面1与紧邻纤网件的复合层的横侧面2相面对而且基本上平行。这就是说,所有纤网件中的纤维都彼此平行地排列。拼接纤网件时,各纤网件中的纤维均与该横向纤网的长度方向呈一个非零的α角排列。由于拼起来的纤网件的隔离层被连接在横向纤网当中,故拼成的纤网件之间被互连构成一条自成一体的横向纤网。任何适合的连结手段均可用于此目的。合适的连结手段例如有胶水、单面或双面胶粘带或者钩环。图2b和2c表示的是横向纤网的两个实施例。图3a~3d给出了拼接和连结方法的细节。
每个纤网件的复合层的横侧面1可以相对于与之连接的纤网件的复合层的横侧面2呈搭接(图3c和3d)、对齐或留有间隙(图3a和3b)地摆放。前面已经提到而且下面还将解释,本发明的一项重要特征在于,连结各纤网件的第二层加上之后,以及把横向纤网的隔离层撤去之后,可以获得不带搭接头的复合层,即使横向纤网中各纤网件的复合层是部分搭接地放置的也是如此。这一点图示于图3e和3f中。复合层的搭接部分15被限制在搭接纤网件的隔离层与同它相连结的搭接纤网件的隔离层之间。当在图3d的横向纤网的复合层上加上牢固连结的层17(图3e)之后,此第二层能接过原隔离层的支撑作用,于是就可以把隔离层从横向纤网上撤去(图3f)。“牢固连结”一词是指复合层和第二层17之间的粘合力比复合层与隔离层之间的粘合力强,故而可以撤去隔离层而不会使复合层从第二层脱开。被限制在两连接的纤网件的隔离层之间的搭接部分15可以随同横向纤网的隔离层一起被撤除(图3f)。于是获得的复合层便不再有搭头。如果隔离层在横侧面1处有突出部分时,情况也是如此。但是,这就会造成在获得的复合层中沿此分离层的突出部分的表面出现一个间隙。当然,优选在两复合层之间不仅没有搭头,同时也没有间隙。此种产品当用于多层防弹复合物时的优点是沿整个多层复合物表面的保护能力基本上保持一致。在最优选的横向纤网实施方案中,每个纤网件的隔离层的边缘9因而要与横侧面1重合(图1b和1c),而且每个纤网件的复合层的横侧面1与同其相连结的纤网件的复合层的横侧面2搭接(图3c和3d)或者至少紧靠。用这样构成的横向纤网就可以获得既无搭接又无间隙的复合层(图3f)。由于在具体操作时实际上不可能将复合层精确地摆放拼接起来,故最好在连接各纤网件时让复合层部分地互相搭接。搭接的程度优选尽可能小以便减少材料的损失量。
在连结纤网件7时可以将胶粘带19沿横向纤网的幅宽贴到背朝复合层的互连纤网件的隔离层的一侧(底面)(图3a和3c)。纤网件之间还可以用两个或两个以上贴在隔离层底面的长条形胶粘带连结,此时胶粘带的长度方向与横向纤网的长度方向平行。隔离层的边伸出横侧面2的纤网件(见图1c)也可以用贴在隔离层的所说伸出部分18与搭接纤网件的隔离层之间的粘合剂16连结(图3b和3d)。如果纤网件的复合层搭接摆放(见图3d),该粘合剂还可以施加于被限制的的复合层搭接部分15,于是该搭接部分更容易随相连结的隔离层一起被撤去。最好是用一种胶粘带19将纤网件结合起来,象图3a和3c那样。这样做的有利之处在于胶粘带贴上去较简单且较迅速,而且得到的结合也更结实。
横向纤网的所有纤网件中的复合层的厚度最好是一样的。复合层厚度的上限是由下述要求决定的,即必须能沿平行于纤维方向较容易地撕离复合层。由于实际生产时长的横向纤网通常是打成卷的,故复合层的厚度还受到它应具有充分的可变形性的要求的限制。该上限尤其取决于选用的基质材料和纤维含量。基于上述种种原因,复合层的厚度优选小于2mm,更优选小于1mm,最优选小于0.5mm。复合层中的纤维含量可以为10~95%(重量)。复合层的厚度和纤维含量是考虑到适应横向纤网的最终用途的设计性能而选定的。例如,当用于多层防弹复合物时,为达到高保护能力,优选使用大量纤维含量高的甚薄复合层。此种情况下的复合层的厚度优选小于500μm,更优选小于100μm,最优选小于50μm。此种情况下的纤维含量优选为40~95%(重量),最优选为70~95%(重量)。
“纤维”一词意指细长的元件,其纵向尺寸大于宽度和厚度的横向尺寸。纤维一词特别包涵单丝、复丝纱、带状物、纤网、线、短纤纱以及其他具有规则或不规则断面的细长物体。
原则上所用天然及合成纤维都可以当做纤维使用。例如,可以使用金属纤维、半金属纤维、无机纤维、有机纤维或它们的混合物。选择纤维的材质和性能时要考虑到最终用途中要求的性能。尤其当用于防弹物体时,重要的是纤维应具有高抗张强度 高抗张模量以及高能量吸收。纤维优选具有至少1.2GPa的抗张强度以及至少40GPa的抗张模量。
合适的高抗张强度的无机纤维例如有玻璃纤维、碳纤维和陶瓷纤维。合适的高抗张强度的有机纤维例如有聚芳酰胺纤维、液晶聚合物纤维以及高度取向的聚合物纤维,例如聚烯烃、聚乙烯醇和聚丙烯腈纤维,它们是用例如凝胶纺丝法制备的。
有关能用于横向纤网的纤维的广泛枚举和描述可参见WO-A-91/12136(第6页第23行到第12页第8行)。
优选使用高度取向的聚烯烃纤维。这类纤维的优点是不仅抗张强度高而且比重低,所以特别适合用于防弹物体。
聚烯烃中尤其合适的是乙烯或丙烯的均聚物和共聚物。使用的聚烯烃中还可以含少量的一种或多种其他聚合物,尤其是其他链烯-1聚合物。
若选用线形聚乙烯(PE)做为聚烯烃,则得到良好的结果。
本文的线形聚乙烯指的是每100个碳原子中侧链不足1的聚乙烯,且优选每300个碳原子不足1个侧链的聚乙烯,而且还可以含有至多5%(摩尔)一种或多种其他能与之共聚的链烯,例如丙烯、丁烯、戊烯、4-甲基戊烯、辛烯。
优选使用由凝胶纺丝法制备的聚烯烃长丝制成的聚烯烃纤维[例如如GB-A-2042414和GB-A-2051667中所述。该方法基本上由下列步骤组成制备一种高特性粘度的聚烯烃的溶液,在高于溶解温度的温度下将溶液纺成长丝,将丝束冷却到低于凝胶化的温度,以便发生胶凝,然后在除去溶剂之前、当中或之后将丝束拉伸。
单丝的断面形状可以通过选择喷丝板孔的形状来选定。
基质一词指的是一种部分或完全包围着纤维并保持纤维定位于复合层中的物质。优选使用一种聚合物材料。基质的聚合物材料可以是热固性材料或热塑性材料或者二者的混合物。基质的伸长优选大于纤维的伸长。基质的伸长优选为3~500%。合适的热固性和热塑性基质材料列举于例如WO-A-91/12136(第15页第26行至第21页第23行)。在热固性聚合物中,优先选择乙烯基酯类、不饱和聚酯、环氧化合物及苯酚树脂作为基质材料。在热塑性聚合物中,优先选择聚氨酯、乙烯基聚合物、聚丙烯酸类、聚烯烃或者热塑性弹性体嵌段共聚物(例如聚异丙烯-聚乙烯-丁烯-聚苯乙烯或聚苯乙烯-聚异戊二烯-聚苯乙烯嵌段共聚物)作为基质材料。
优选使用的基质材料是可变形的而且使得用它生产出的横向纤网或多层纤网能够变形,例如便于将纤网打成卷或模塑成模塑零件。若复合物的设计最终用途要求基质必须具有高刚性因而不应再是可变形时,优选使用的基质材料是一种预浸渍材料。预浸渍材料是一种浸渍剂,经过后处理能转化成预期的基质材料。为此目的优选使用热固性材料。
本发明还涉及一种生产横向纤网的方法。该方法包括将两个或更多个纤网件7连接起来,这种纤网件具有隔离层8和层8上的由包围在基质6中的彼此平行的纤维5组成的复合层4,其中复合层有两个相对布置且平行于纤维的横侧面1和2。此纤网件连接起来后,纤维方向与纤网的长度方向间夹一个非零的α角,每个纤网件的复合层的横侧面1同与之相连的纤网件的复合层的横侧面2互相平行。然后把各连接起来的纤网件的隔离层8互相结合起来。
优选使用这样的纤网件,其中隔离层9的边缘与复合层的横侧面1重合(如图1b和图1c所示),而且这些纤网件在摆放时搭在或至少紧靠在与之相连接的纤网件的复合层的横侧面2上。最优选是,在这种情况下把横侧面1搭接摆放(如图3c和3d所示),因为要真正做到把复合层准确拼齐又不冒出现间隙的风险是非常困难的。如上面所述,横向纤网内的复合层的搭接部分15在加上连接各纤网件的第二层并且把隔离层从横向纤网撤除之后无论如何是要被除去的。
纤网件7优选通过从平行纤网14上切下一个平行四边形来制备,纤网14具有隔离层8,裁切方向与平行纤网中纤维方向成α角(如图2a所示)。如果平行纤网中的隔离层8伸出复合层的横侧面1之外,则优选在将平行纤网裁切成纤网件之前把伸出部分除掉,以便能获得如图1b和1c所示的纤网件。该裁切边形成了每块纤网件的复合层的纵向侧面10和11(图2b)。沿纤维方向切去的长度也就是横侧面1和2的长度,等于设计的横向纤网的宽度除以α角的正弦。优选选择切去的长度,使横向纤网的宽度等于平行纤网的宽度。这样做的优点是同一平行纤网可以同按本发明的横向纤网结合起来构成一种交叉层叠纤网。
将纤网件按照纤维方向与长度方向成α角连接起来的方式优选适合于横向纤网的自动化连续生产。
在按照本发明方法的一个优选实施方案中,将纤网件按照纤维方向与输送带的长度方向平行的方式放到第一输送带上,在第一输送带的末端令纤网件旋转,然后将该纤网件同前面的纤网件连接并结合并将其卸至与第一输送带布置在一条直线上的第二输送带。旋转的角度为α,或者180°±α,具体依各输送带的布置以及待连接纤网件的旋转点而定。
图4是另一最优选实施方案的示意性说明,按该方法的实施方案,将纤网件7按照纤维方向平行于输送带的长度方向置于第一输送带20上,在第一输送带的末端21处让每个纤网件与前一个纤网件连接并结合,然后将其卸到第二输送带22上去,第二输送带与第一输送带呈一个夹角α布置。这种方法的优点是从设计角度考虑实施这种方法的装置较简单,而且,在第一输送带上时待连结的纤网件已处于准备连接的正确位置,结果可以达到更准确的结合。角度α优选为90°。这样的好处是连接装置设计起来较简单。横向纤网优选在第二输送带的末端打成卷。
输送带一词涵盖所有适合连续地供应纤维件或卸掉横向纤网的输送带。
纤网件借助于结合手段例如粘合剂层或胶粘带而结合起来。结合手段可以加在第一输送带的末端21(图4)处,或者预先在把纤网件放到第一输送带(20)上去的过程当中加入。优选把粘合手段预先加到每个纤网件的复合层的横侧面2处的隔离层上。随后,把待连接的纤网件放到前一纤网件的带粘合剂的部分上并施加压力。
此种横向纤网尤其使得用简单方法和易得的非专门化设备生产多层复合物(例如既无搭头又无间隙的交叉层叠纤网)成为可能。
本发明还涉及一种交叉层叠纤网,其中在复合层里没有搭接或间隙的区域。“无搭接或间隙区域”一词是指层内每一点的纤维含量基本相同。由于不存在搭头和间隙,由此生产出的交叉层叠纤网和多层复合物沿整个表面具有基本一致的防弹性能, 因而最低表面保护能力和单位面积重量间的比例较高。最低表面保护能力是重要的,因为它决定了可以保证的最低限度的保护能力。进一步的优点是由于不存在局部增厚区域,用这种交叉层叠纤网生产多层复合物比较简单。例如,当码放交叉层叠纤网时,不需要措施来防止搭头造成的增厚部位在每种情况下都结束在叠层中的相同位量。不存在增厚部位就意味着当把交叉层叠复合物的叠层压缩成多层复合物时,复合物表面所有地方受到的压力相同。
在交叉层叠纤网中,优选第一层中的纤维与第二层中的纤维成90°角。这种交叉层叠的复合物具有较好的防弹性能。如有必要,交叉层叠纤网的两复合层可以由一个中间层分开。所说中间层优选由聚合物材料制成。该层可以作为例如附加的基质材料或者粘合剂层。
第一及第二复合层中的纤维和/或基质材料可以是不相同的。在一个实施方案的交叉层叠纤网中,其中一层中的基质材料可以具有或者通过后处理获得比另一复合层中的基质材料高的模量。这种情况下的基质材料优选在一层中是热塑性材料而在另一层中则是热固性材料。包含一层或多层这种交叉层叠纤网的防弹物体既具有良好的结构刚性又具有良好的防弹性能。
交叉层叠纤网例如可以按下述方法连续制造在一层横向纤网3上铺上另一层横向纤网或平行纤网14(如图2a所示),让复合层彼此面对,然后将复合层牢固地结合。两复合层的牢固结合可以通过已知的方法进行,例如放在热压釜中或者靠压力和/或热的作用,例如采用压延技术或其他已知的层合技术。复合层还可以借助两复合层间的粘合层牢固地结合。
最好按下述方法生产交叉层叠纤网,该方法包括——在一横向纤网的复合层上面铺一层平行纤维并涂一定量的基质材料,使平行纤维的方向与纤网的长度方向平行;——将纤维和基质材料成形为复合层,成形的该复合层与复合纤网的复合层牢固地结合;——除去横向纤网的隔离层。
该方法的优点是铺第二复合 层时不需要隔离层。这意味着降低了生产成本。对于优选使用大量的极薄层的防弹复合物而言,这一点尤其具有优越性。另一个优点是第二复合层的成形和将其牢固结合在横向纤网的复合层上是结合在一个步骤中进行的。
平行纤维层可以按下述方法加上将许多根纤维自丝框导引通过一台精梳机,结果纤维被导引成一个平面内的平行丝,然后被铺在横向纤网上。在这种情况下,可以使用预先包覆上一定量基质材料的纤维。优选使用未包覆的纤维,然后再将基质材料加上。可以这样进行,例如在纤维的上和/或下面敷上一层或多层基质材料膜,或最优选的是在将纤维导引成一个平面内的平行丝后再包覆上一定量的含有基质材料的液态物质。这样做的优点是在复合层之间的粘合要快得多且好得多。该液体物质可以是例如基质材料的溶液、悬浮液或熔体,或者是一种预浸渍材料。如果使用基质材料的溶液或悬浮液,则成形为复合层的过程还包括溶剂或分散介质的蒸发。最优选使用基质材料的水悬浮液。水悬浮液的粘度低。其好处是纤维能更充分地被浸渍。另一个好处是悬浮介质—水是无毒的,因此可以露天蒸发。然后把加上去的层用已知的方法成形为复合层并使两复合层牢固地结合。优选在高温下进行结合,此时基质材料能流动于纤维之间并能粘着在横向纤网的复合层上。温度优选高于基质材料的软化或熔融温度同时又低于纤维的熔融温度。随后把敷上去的层压到横向纤网的复合层上。各复合层牢固结合之后,可以把隔离层从横向纤网上除去。
在上面描述的方法中,可以在同一工艺步骤里同时在第二复合层上铺上另一层并与之牢固地结合。例如,从一条横向纤网以及作为附加层的交叉层叠纤网出发,可以一步生产出4层的交叉层叠复合物。
可以将按本发明的横向纤网和交叉层叠纤网用于多层复合物中。多层复合物可以按下述方法从两层或更多层横向纤网、平行纤网或交叉层叠纤网出发连续地制造将上述材料彼此层叠,优选从卷材上退卷下来,带或不带将它们隔离的粘合层,然后将叠合物用已知的方法牢固地结合,例如通过压力和/或热的作用。此种多层复合物的优点是其中没有搭头或间隙,结果此种多层复合物尤其适合用于防弹物体。
权利要求
1.具有连续长度的交叉层叠纤网,包括由包围在基质中的基本上互相平行的纤维构成的第一和第二复合层,其中第一复合层中的纤维与第二复合层中的纤维成一个非零的α角,其特征在于复合层没有搭接或间隙区域。
2.包括权利要求1的交叉层叠纤网的多层复合物。
3.防弹制品,包括权利要求2的多层复合物。
全文摘要
具有连续长度的交叉层叠纤网、包括它的多层复合物及由这样的复合物制得的防弹制品。所述交叉层叠纤网包括由包围在基质中的基本上互相平行的纤维构成的第一和第二复合层,其中第一复合层中的纤维与第二复合层中的纤维成一个非零的α角,其特征在于复合层没有搭接或间隙区域。
文档编号B29C70/20GK1335226SQ0110345
公开日2002年2月13日 申请日期1994年5月31日 优先权日1993年6月23日
发明者E·H·M·霍根布, E·H·M·范戈普, M·C·A·范登阿克 申请人:Dsm有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1