带有稳定温度重调的挤压机温度控制器的制作方法

文档序号:4444936阅读:207来源:国知局
专利名称:带有稳定温度重调的挤压机温度控制器的制作方法
技术领域
本发明涉及一种带有稳定温度重调的挤压机温度控制器,以及一种用于控制挤压设备中的熔化材料的温度的方法。具体地,本发明涉及挤压机温度控制器以及用于控制熔化压出物的温度的方法,其中当在挤压机系统的最大功率或接近最大功率情况下生成至热交换装置的控制输出驱动器信号时将控制告警延迟预定时间。
背景技术
塑料业或其它工业中常常使用挤压设备来持续熔化、混合、成形和固化塑料或其它材料以得到想要的形状。典型的挤压设备包括一个共轴地安装在一个加热的圆柱形筒内的螺旋件。该螺旋件在该筒内转动并且迫使诸如塑料等熔化材料通过该筒。熔化材料被强制通过该筒末端的一个模子或开口。挤压材料离开该加热筒时产生的温度下降使该材料固化成由该模子的形状所决定的模制形状。
必须控制挤压机筒内的挤压材料或塑料的温度以尽可能保持接近所需温度。可以操作挤压机筒以在三种状态中的一种或多种状态下控制筒内挤压材料的温度。挤压机筒可以(1)为材料增加热量,(2)从材料提取热量,或者(3)保持材料的热量。当挤压机运行在某速度下时出现保持挤压材料的温度的第三状态,该速度下当在该挤压机筒中处理该材料而由材料摩擦产生的热量近似等于该挤压机筒损失的热量。这种不增加或者不损失热量的状态称为“绝热”状态。
大多数挤压设备具有多个热交换区。可以独立地控制每个热交换区的温度,从而一个或多个热交换区加热待处理的材料而其余的热交换区处于绝热状态或者正在冷却挤压材料。通常把挤压机筒尾端附近的一个热交换区用于在把材料挤压通过模子之前冷却该挤压材料。该过程使挤压材料一旦在模子中就能迅速地凝固。一个挤压机筒典型地具有八个热交换区,不过区的数量可以改变。
挤压设备可以利用热交换元件控制它的挤压机筒的温度。挤压机筒由一个含有多个热交换元件的壳体所包围。热交换件可以是(1)加热器,诸如电阻加热器,其可提高挤压机筒温度,和(2)用于循环水或其它冷却剂的冷却管,用来降低挤压机筒温度。也可以使用替代的热交换元件。例如,冷却结构可以是一个带吹风机的有散热片的壳,其中该吹风机使空气经过这些散热片循环。
诸如热电偶等温度传感器设置在挤压机筒内,以便报告传感器位置处的温度。通常每个筒区设置二个热电偶,并且它们彼此电绝缘。第一个热电偶称为该对热电偶中的“A”热电偶并且位于挤压机筒的内表面。第二热电偶称为该对热电偶中的“B”热电偶并且位于加热器/冷却器壳体内。挤压机的每个区类似地设置一对热电偶A和B并且位于类似的位置。空气冷却式挤压机系统也具有位于壳内的B热电偶。
挤压机温度控制器接收来自温度传感器的信号。该挤压机温度控制器判定某给定热交换区的温度是否过高或过低。并且如果需要,通知适当的热交换件以便提高或者降低该控制器所调节的该特定区中的热量。
挤压机筒和各热交换件都是热交换器,从而造成挤压机温度控制器发出的提高或降低某区的温度的指令之间的延迟。例如,当挤压机温度控制器指示某加热元件停止加热时,该加热元件中储存的能量继续对挤压机筒的该区加热。该继续供热造成在该区中挤压机筒的温度继续提高。从挤压机温度控制器发出指令到热交换元件做出响应之间的滞后造成挤压机筒的温度在所需温度附近振荡。
授予Gardiner的美国3,866,669号专利以及授予Waterloo的美国3,751,014号专利都致力于解决挤压机筒温度振荡的问题。在Gardiner和Waterloo专利说明的系统中,第一温度探头或热电偶提供表示挤压材料温度的“深”温度测量。第二热电偶位于包围挤压机筒的壳体内以提供表示热交换件的温度的“浅”温度测量。组合来自这对热电偶的电信号从而提供平均值。挤压机温度控制器监视该平均值并且选择性地激励加热元件和冷却件以便把平均值保持在其一温度上,该温度近似等于代表挤压材料所需温度的设定点。
通过挤压机温度控制器响应温度的平均值而不是响应正受到处理的挤压材料的实际温度对热交换元件进行控制,减小了温度和/或控制了信号的振荡。这种温度振荡的一个例子发生在电阻加热元件加热以提高挤压机筒温度的操作状态期间。当激励该加热元件时,浅温度测量高于深温度测量。由于浅温度探头位于受激励的加热元件的附近,所以出现这种温度差。相应地,挤压机温度控制器的平均值也大于深温度测量或挤压材料的实际温度。当平均值达到温度设定点而挤压材料的实际温度仍低于所需温度。挤压机温度控制器在平均值达到该温度设定点后但在挤压材料达到所需温度之前激励该加热元件。该加热元件中储存的热量继续朝所需温度方向提高挤压材料的温度。在挤压材料正在降温的操作状态期间也会发生这样的温度振荡。
在挤压材料达到所需温度之前对热交换件去激励防止了挤压材料温度“超过”所需温度,这种超过会引起不希望的温度振荡。该优点是以降低对挤压材料温度的控制精度为代价达到的。更具体地,由于仅当平均温度值偏离所需温度时挤压机温度控制器才校正温度,所以即使当挤压材料的温度保持低于所需的升高温度或者高于所需的冷却温度时,挤压机温度控制器也可能不试图去调整温度。
授予Faillace的美国31,903号再公告专利说明了一种预测挤压机筒中温度变化的挤压机温度控制器。该系统监视平均温度值以便判定何时该温度在规定的时间段内未明显改变或者判定何时系统已是稳定的。一旦系统变稳定,挤压机温度控制器检查由深温度测量表示的挤压材料实际温度并且比较该实际温度和所需温度。如果实际温度明显不同于所需温度,则挤压机温度控制器计算并改变温度设定点,从而使平均值显得需要温度调节。如果实际的挤压材料温度例如太低,Faillace的挤压机温度控制器把设定点提高到该所需温度之上。从而平均值低于该设定点,这使得挤压机温度控制器调整温度直至平均值近似地等于该温度设定点。
在挤压作业线的启动和停止期间挤压机螺旋件的转动速度或“螺旋速度”的改变是正常的。但是,螺旋转动速度的改变典型地引起热负载变化,这在挤压工艺中是很麻烦的。这种情况的一个例子发生在吹塑法工艺中,其中当模具中有模制件时该模制件卡在里面。检测卡着件的传感器迅速关闭挤压机系统以防止发生更多的卡塞并防止对制模系统的潜在损害。吹塑法工艺中正常操作期间挤压机系统以给定速度运行。
Faillace的再公告专利的挤压机温度控制器在吹塑法工艺中为每个热交换区决定重调(reset)值。该重调值与该热交换区的温度偏离成比例,其中该温度偏离与该热交换区的热负载成比例。Faillace的挤压机温度控制器逐一地为每个热交换区决定一个重调值。
当采用Faillace再公告专利的控制器的用于吹塑法工艺的挤压机系统由于卡塞而停止时,它通常在几分钟内再次启动。一个热交换区经控制必须变成稳定的最短时间或“最短重调稳定时间”大约为四分钟。一个热交换区从负载的阶跃改变,例如突然停止状态恢复的实际时间大约为10到12分钟。因而,Faillace温度控制器中的重调装置不能足够快地响应以补偿持续时间短于10到12分钟的负载阶跃改变。该情况的后果是,热交换区温度的偏离等于常规螺旋运行速度下的热负载和螺旋停止下的热负载的差。另外,假如挤压机系统在一段时间保持停止以便能启动重调,例如当清除卡住件并且挤压机系统回到正常的运转螺旋速度时,不正确的热交换区温度重调值造成温度偏离。该温度偏离持续到能在正常螺旋速度下决定重调值并且补偿该螺旋速度下的热负载。吹塑法工艺中的这种情况造成从挤压机系统输出的模制塑料特性上的明显变化。这些变化造成吹塑产品重量上的偏差。由于造成产品壁厚的不同,该偏差降低了最终产品的质量。这种质量偏差导致浪费、低效率和过度的花费。
授予Faillace的5,149,193号美国专利公开了一种挤压机温度控制器,一旦挤压机系统的螺旋速度变化,该控制器抢先(preempt)得到一热交热区的温度控制设定点。响应螺旋速度的变化,该挤压机温度控制器调整控制设定点,这使得该控制器能抢先进行挤压机筒温度以及筒内挤压材料温度的逆向改变。存储为各种螺旋速度事先计算出的控制设定点集合使该挤压机温度控制器能通过从存储器中检索与当前的或实际的螺旋速度对应的控制设定点而快速地确定适当的控制设定点。事先算出的各控制设定点能使挤压机系统避免挤压材料温度或筒温度波动中的明显改变,这二种温度波动通常伴随着搜索一个控制设定点以提供所需筒温。
Faillace的193号专利的改进型控制器允许为每种分布(profile)输入热交换区“重调值表”。一旦选择了分布号,也选择了对应的各重调值表。而且,这种控制器的自适应重调能力允许通过对可持续地或未预料地改变挤压机的螺旋速度的塑料挤压加工过程采用温度重调以进行深温度以及浅温度控制。该控制器在所有的螺旋运行速度下把筒温度控制典型地保持在华氏1度的温度稳定性范围内。该控制器的自适应重调能力改善了螺旋运行速度的持续变化或未预料变化期间挤压机系统的塑料制品输出。这种能力大大地缩短了出现螺旋速度改变后稳定热交换区温度控制的时间、改进了挤压加工线启动和停止期间的产品质量并且减少了废品。
当加热输出达到百分之百时,Faillace的193专利的挤压机温度控制器触发控制告警。该控制告警重置稳定定时器并且在三或四分钟的予定时间内不计算新的重调。这种特性不必要地限制了该挤压机系统在其加热能力为百分之百或接近百分之百情况下的运行。该控制器在挤压机筒温度稳定时不“学习”对各螺旋速度的新重调值,并且当检测到明显的加工变化时不清除已存储的螺旋速度。
工业上缺少一种用于挤压机系统的带有自适应重调能力的温度控制器并且缺少一种能让挤压机系统在或接近其最大加热功率情况下运行的双传感器温度控制器。此外,工业上缺少一种当挤压机筒温度稳定时学习对各螺旋速度的新重调值和/或当检测到明显的加工变化时清除已存储的螺旋速度的控制器。

发明内容
本发明是一种用于挤压机系统的挤压机温度控制器。本发明包括用于感测挤压机筒内挤压机螺旋件的实际螺旋速度的装置。该挤压机筒具有至少一个热交换装置。该挤压机温度控制器具有用于编索引(index)和存储多个螺旋速度的装置。该多个存储的螺旋速度中的每一个具有一个对应的温度重调值。该挤压机温度控制器具有一个用于进行比较和进行选择的装置。该用于比较和选择的装置把实际螺旋速度和每个已存储的螺旋速度进行比较并且选择已存储的螺旋速度中的一个。该选定的螺旋速度是该多个已存储螺旋速度中其值在算术上与实际螺旋速度最等值的一个成员。该用于比较和选择的装置检索与该选定的已存储螺旋速度对应的温度重调值。本发明包括一个用于生成至热交换装置的控制输出驱动器信号的装置。该控制输出驱动器信号响应由用于比较和选择的装置检索出的温度重调值。本发明还包括一个用于当该生成至热交热装置的控制输出驱动器信号的装置在最大功率下或最大功率附近工作时将控制告警延迟预定时间的装置。
本发明包括一种用于控制挤压机筒的温度的方法。该方法包括感测挤压机筒中的挤压机螺旋件的实际螺旋速度。该挤压机筒具有至少一个热交换装置。该方法还包括对多个螺旋速度编索引并进行存储。每个存储的螺旋速度对应于一个温度重调值。把实际的螺旋速度和每个存储的螺旋速度进行比较。接着选出已存储的螺旋速度中的一个,该选定的螺旋速度是该多个已存储螺旋速度中其值在算术上和实际螺旋速度最等值的一个成员。该选择步骤检索与该选定的已存储螺旋速度对应的温度重调值。产生至热交换装置的控制输出驱动器信号。该控制输出驱动器信号响应该检索到的温度重调值。本发明还包括当在最大功率或接近最大功率情况下生成至热交换装置的控制输出驱动器信号时将控制告警延迟预定的时间。


图1是包括本发明的挤压筒温度控制器的挤压机筒的剖面图;图2是在各种热负载条件下该挤压机温度控制器优选实施例的运行事件图;图3是一种挤压机温度控制器的方块图,该温度控制器包括一个依据本发明的带有一个将控制告警延迟预定时间的装置的自适应重调控制器。
具体实施例方式
本发明包括一种用于热交换装置的挤压机温度控制器,其中热交换装置用于控制至少一个挤压机筒区的温度。本发明包括用于感测或者确定实际螺旋速度的装置。该挤压机温度控制器具有用于对多个螺旋速度编索引并且进行存储的装置。每个螺旋速度与多个存储的温度重调值中的单个成员对应,本发明包括一个用于比较并从多个存储的螺旋速度中进行选择的装置。该用于比较和选择的装置把实际螺旋速度和多个存储的螺旋速度中的每一个进行比较并从这些存储的螺旋速度中选择一个默认螺旋速度。和其它任何被比较的存储的螺旋速度相比,该默认螺旋速度与实际螺旋速度的偏离较小。本发明还包括一个用于生成至热交换装置的控制输出驱动器信号的装置。该控制输出驱动器信号是从与该默认螺旋速度对应的存储的温度重调值导出的。本发明还包括一个用于当该生成至热交换装置的控制输出驱动器信号的装置运行在最大功率下或最大功率附近时将控制告警延迟预定时间的装置。
出于本发明的目的,术语“重调值”对应于螺旋速度而不是筒温。为稳定的螺旋速度确定重调值并且和一个温度设定点相关地存储在挤压机温度控制器中。在本发明的理想的实施例中不人工地输入重调值。重调值或者为零或者是一个解出值(resolved value)。典型地,根据正常运行期间挤压机系统的热力负载为每个挤压机筒区解出一个重调值。
本发明包括用于确定实际螺旋速度的装置。用于确定实际螺旋速度的装置可以是一个用于感测挤压机螺旋件单位时间内的转数的电子或机电装置。适当的用于确定实际螺旋速度的装置包括商业上可买到的数字编码器或转速计,它们适合于为挤压机温度控制器提供实际螺旋速度输入信号。
该挤压机温度控制器包括一个用于存储多个螺旋速度的装置。该存储装置必定存储螺旋速度,其中每个存储的螺旋速度对应于每一螺旋速度下用于各个挤压机筒区的一个特定的或实际的温度重调值。各个螺旋速度以及它们各自对应的实际温度重调值是通过一个重调值信号输入装置输入的,该重调值信号输入装置用于输入代表每个存储的螺旋速度下各个挤压机筒区所需的实际温度重调值的温度重调值输入信号。该用于存储的装置最好是一个电子存储装置。适用的存储装置在技术上是周知的并且适合于由本发明领域的普通技术人员在本发明中采用。
该挤压机温度控制器包括用于对该多个存储的螺旋速度进行比较和从中选择的装置。该用于比较和选择的装置把实际螺旋速度和这些存储的螺旋速度中的每个成员进行比较。该用于比较和选择的装置选择与该实际螺旋速度最接近的已存储螺旋速度。如果某热交换区的实际温度和该选定的存储的螺旋速度的实际温度重调值之间的差是明显的,则该挤压机温度控制器默认或者选择该选定的存储的螺旋速度。该挤压机温度控制器利用与该默认的或选定的螺旋速度对应的实际温度重调值为每个挤压机筒区得到一个新的温度“个体重调值”。
本发明还包括一个用于生成至热交换装置的控制输出驱动器信号的装置。该用于生成控制输出驱动器信号的装置包括一个用于把控制输出驱动器信号发送到挤压机系统的挤压机筒内的每个热交换区的装置。该用于生成控制输出驱动器信号的装置响应和默认的螺旋速度对应的存储的温度重调值输出信号。该生成控制输出驱动器信号的装置包括一个用于响应对每个热交换区的修正重调值改变控制输出驱动器信号的装置。该控制输出驱动器信号控制或者操作每个热交换区的热交换装置。用于生成控制输出驱动器信号的装置典型地被编程用于改变至热交换装置的控制输出驱动器信号,以使影响挤压材料温度的热交换区实际温度不会在挤压机螺旋件改变速度时发生变化。各种其它因素,例如压力、挤压机筒内挤压材料的摩擦力和受挤压材料的类型都影响挤压材料的实际温度。
本发明最理想的实施例包括具有和至少一个其它用于连续地监视、比较和调整挤压机系统运行温度的挤压机温度控制器一起使用的本发明的自适应重调温度控制器的挤压机系统。当挤压机螺旋件以恒定速度运行时,该其它连续地监视、比较并调整挤压机系统运行温度的挤压机温度控制器工作良好。本发明和这种挤压机温度控制器的结合提供一种具有一旦改变速度时能存储和检索重调值的附加能力的挤压机系统。包含本发明的自适应重调温度控制器的挤压机温度控制器运行灵活性的提高通过减少在运行期间改变螺旋速度时产生的废挤压材料量提供了经济上的优势。具有持续的或未预计的螺旋速度改变的加工过程尤能体现这种“双挤压机温度控制器”的这些经济优势。本发明的用于延迟挤压机温度控制器的控制告警的装置通过允许挤压机系统利用其设计功率在最大功率条件下或最大功率附近运行热交换装置也改进了操作灵活性。
即使在持续的或者未预计的螺旋速度转换期间,本发明的优选实施例双挤压机温度控制器也对挤压机筒的各区保持稳定和准确的温度控制。本发明的优选实施例是对授予Faillace的美国5,149,193号专利中所说明的挤压机温度控制器以及方法的改进,该专利在此引用作为参考资料。由于技术术语使用标准、对挤压机进行了概括说明以及说明了具有自适应重调的挤压机温度控制器,所以在此引用Facillace公开的内容。
包含着依据本发明的挤压机温度控制器的挤压机系统具有一个带有一根轴及至少一个沿着该轴的热交换热区的筒。该挤压机系统具有一个在该筒内的螺旋件以及一个包围该筒的壳体。一个“热交换区”是其中可以通过一个热交换装置控制温度的筒的一部分以及壳体的对应的部分。为每个热交换区提供一个热交换装置。热交换装置包括用于在各个热交区中交换热的热量交换件。该热交换件具有热交换件电源装置。
依据本发明的挤压机系统具有一个用于确定实际螺旋速度的装置。该用于确定实际螺旋速度的装置包括一个用于感测实际螺旋速度的装置以及一个用于为挤压机温度控制器生成实际螺旋速度输入信号的装置。该挤压机系统具有一个温度重调值信号输入装置,用于输入代表多个选定的、已存储螺旋速度中的每个成员的所需筒温度重调值的温度重调值信号。该挤压机系统具有一个用于独立地存储每个温度重调值信号的存储装置。该挤压机系统还具有一个用于比较和选择的装置,该装置比较实际螺旋速度和多个存储的螺旋速度中的每一个并且从该多个存储的螺旋速度中选择一个默认的螺旋速度。和被比较的存储螺旋速度中的其它任何一个成员相比,该默认螺旋速度与该实际螺旋速度的偏差更小。该默认螺旋速度的选定确定了由本发明的挤压机温度控制器检索的温度重调值信号。
该挤压机系统还具有用于生成控制输出驱动器信号的装置。如前所述,该用于生成的装置响应存储的温度重调值信号。该用于生成的装置最好是一个“输出驱动器”并且响应该默认螺旋速度的存储的温度重调值。该用于生成的装置包括用于为每个热交换区改变控制输出驱动器信号的装置。当因为实际螺旋速度和选定的螺旋速度之间存在显著的偏差而激励用于比较和选择的装置时,激励该用于改变的装置。该温度重调值控制设定点控制用于各个热交换区的热交换电源装置以便在每个热交换区中达到某个温度。
图1示出具有二个依据本发明的自适应重调温度控制器22的挤压机系统1的筒部分。挤压机系统1包括一个安装在挤压机筒12内的驱动或挤压机螺旋件10。该挤压机螺旋件10的转动迫使熔化的挤压材料,例如塑料沿着挤压机筒12的轴移动。挤压机筒12包括至少一个并最好是多个热交换区14。每个热交换区14包含一个用来加热或者冷却挤压机筒12的热交换件15。该热交换件15例如包括用于提高热交换区14温度的电阻加热元件18,并且包括管道20,其用于循环为了降低热交换区14的温度而围绕热交换区14的水或其它冷却剂。数字编码器16确定实际螺旋速度并向自适应重调温度控制器22提供螺旋速度输入信号17。具有用来输入控制信号的键盘以及显示器的控制台在技术上是公知的,并且可以按前面提到的Faillace的再公告专利中所说明的那样设置这样的控制台。
最好每个自适应重调温度控制器22专用于一个热交换件15。单个热交换区14的热交换件15由自适应重调温度控制器22响应在该热交换区14中得到的一对温度测量来调节。深温度传感器或“A”热电偶22位于挤压机筒12的内表面附近,并且最好和衬里3接触以提供表示挤压机筒12的圆柱体内深处温度的深温度信号Td。浅温度传感器或“B”热电偶26位于热交换件15中以提供表示作为热能源或冷却源的热交换件15的温度的浅温度信号Ts。
图2提供在本发明挤压机系统1的运行过程中所存在的各种参数之间的图形关系。该“事件(event)”图说明各种热负载条件下双传感器温度控制器的作用。该双传感器温度控制器具有本发明的“自适应重调功能”。图2所示的挤压机系统1的操作用于热交换区14处于加热负载状态或对挤压材料增加热量的状态。挤压机系统1还可以用于冷却负载状态或冷却通过挤压机筒12的挤压材料。
图2表示一个曲线图,其中各个X轴表示从时刻to开始的时间。X轴或“时间线”上面的三条曲线表示浅的或“B”热电偶的温度、控制设定点值以及深的或“A”热电偶的温度。X轴或时间线下面的十二条曲线表示其它y轴值的同时存在的函数。这些其它的y轴值是(1)控制和误差“E”;(2)误差“A”或设定点温度和深或“A”热电偶温度之间的差;(3)实际螺旋速度“Sd”;(4)加热器接通时间百分比;(5)重调;(6)重调允许;(7)实际告警,其中实际误差例如大于华氏0.10°(摄氏0.06°)(以下分别用符号“°F”或“℃”表示华氏和摄氏温度);(8)控制告警,其中在一明显的持续时间(典型地为60秒)内(K1A-K2B)/(K1+K2)>比例区(对于加热典型地为6°F);(9)重调限制;(10)重调达到稳定的时间;(11)螺旋速度变化;(12)螺旋速度稳定;以及(13)重调触发事件。
当在时刻t0首先激励挤压机系统1或“加电”时,温度设定点控制器把控制设定点Tcp置为等于由操作员选择的热交换区设定点的希望温度。平均误差控制器认定(assert)加热或冷却热交换区所需要的热交换控制信号“H”和“C”。热交换控制信号“H”激励热交换件15以便升高或者降低热交换区14中的温度。在图2中时刻t0和t4之间示出的情形中(1)电阻加热元件18施加热量,和(2)深温度信号Td和浅温度信号Ts迅速上升。
自适应重调温度控制器22继续认定热交换控制信号“H”直至控制和误差“E”信号大致达到零的时刻t2。在时刻t2热交换控制信号“H”停止,而浅温度信号Ts停止上升并且随着电阻加热元件冷却开始下降。热交换件15中储存的剩余热量继续加热挤压机筒12。深温度信号Td在深、浅温度达到稳定的时刻t3之前继续升高。
图2说明挤压机系统1在时刻t4是稳定的并具有大于0.1°F(0.06℃)的实际误差“A”信号。实际误差灵敏度值可以由挤压机温度控制器的制造者或编程人员选定。实际误差灵敏度典型地在0.05°F和1°F(约为0.03℃和0.6℃)之间。图2示出本发明优选实施例的自适应重调温度控制器22的操作,其中可以出现“常规重调”功能或者出现由于螺旋速度改变的引起的“自适应重调”。在常规重调时温度控制器中出现用实线表示的图2中的各曲线,在自适应重调时温度控制器中出现用虚线表示的各曲线。
设定点TD可以由操作员输入。该设定点TD表示挤压机筒区的希望温度。由自适应重调温度控制器22决定的第一常规重调在图2中于时刻t4出现。常规重调温度控制器为控制设定点Tcp决定一个新值,该新值提高热交换件15的加热器接通时间百分比。
由于螺旋速度的改变,深或“A”热电偶的曲线在时刻t7和时刻t10之间下降,本发明的该优选实施例为操作员选择的三或四分钟的重调稳定时间增加四分钟的附加延迟。从而,时刻t7和时刻t10相隔七或八分钟。螺旋速度的增加造成热负载或要求增加由热交换件15施加的热量。在该情况下通常深或“A”热电偶的温度下降,直到时刻t10出现常规重调。
重调曲线示出用于控制挤压机系统的常规重调和自适应重量调。第一次有效的“常规”重调位于时刻t4。用于重调值的实线示出其它二次常规重调,其中第一次在时刻t10发生而第二次在时刻t15发生。用于重调函数的虚线表示出现由本发明的自适应重调控制器(后面说明)提供的“自适应重调”。该曲线示出二次自适应重调,第一次出现在时刻t7而第二次出现在t12。
本发明的自适应重调控制器预测(anticipate)由虚线表示的重调在时刻t7处的重调值。该重调值的预测改变时刻t7处用虚线表示的该值的控制设定点。控制设定点中的改变在时刻t7处激励用虚线表示的该重调值的“加热器接通时间百分比”。对该加热器接通百分比的激励保持了热交换区14中的用虚线表示的深或“A”热电偶温度恒定。保持该温度有效地消除了实际误差“A”的变化。实际误差“A”是小于深Td值的设定点值。
自适应重调为预测需要改变控制设定点提供所需的和预料不到的结果,从而有效地抑制深或“A”热电偶温度的波动。自适应重调控制器预测并且改变送至挤压机系统的热交换件的能量。执行该改变是为了补偿因挤压机系统的螺旋速度的稳定改变而产生的热力负载改变。
在加工塑料材料的挤压机系统中,只要该挤压机系统在运行或者带有负载,加热器在至少具有某加热器接通时间百分比情况下运行。在带有负载时保持挤压机系统内的恒温表示该挤压机系统不能得到理论上的“无限增益”或零平均误差。因此,例如在300°F(约150℃)运行的挤压机系统具有一个补偿温度,该补偿温度至少提供某加热器接通时间百分比以便维持该300°F(约150℃)的温度。理论上完美的挤压机系统在其处于稳定负载状态时具有零平均误差并且在300°F(约为150℃)时该加热器具有零接通时间百分比。从而,控制和误差“E”直接和挤压机系统上的负载成比例。
加热器接通时间面分比是从控制和误差导出的。除非挤压机系统具有零负载,否则在挤压机系统的实际运行中控制和误差“E”决不会为零。控制和误差“E”是从二个误差“A”和“B”导出的。这二个误差“A”和“B”是从控制设定点值导出的。误差“A”是小于深Td值的控制设定点Tcp值。误差“B”是小于浅温度Ts值的控制设定点Tcp值。
本发明的自适应重调控制器38为控制和误差“E”启动一新值,如从时刻t7和从时刻t12开始的虚线曲线所表示。控制和误差“E”中的该调整是由螺旋速度的稳定改变来激励的。控制和误差“E”的调整避免了用虚线表示的该值的实际误差“A”的曲线或值的改变。实际误差“A”值不改变则表示深或“A”热电偶的温度未改变。
本发明的挤压机温度控制器最好提供保护性逻辑控制功能以使挤压机系统在重调后稳定。这些控制功能使挤压机系统在足够时间,例如三分钟内稳定到希望的温度偏差如0.1°F(0.06℃)范围内。如果该自适应重调温度控制器向该双传感器温度控制器发送存储的重调值,则本发明的改进型控制器强加四分钟或类似时间的附加延迟。这些控制功能防止出现不需要的和不希望的重调。这种控制功能的一个例子是通过重调稳定时间提供的。另一个控制功能允许挤压机系统在到达运行速度之前不必激励新重调值地“跃升(ramp up)”速度。该挤压机系统可以包括其它控制功能,用以在发生会损害挤压机系统的运行条件下停止其运行。这些包括控制告警和标志的功能在Faillace的再公告专利中说明并且在图2中示出。
图3示出依据本发明的自适应重调温度控制器22的优选实施例。本发明的自适应重调温度控制器22是对现有技术中已知的并在前面为Faillace的再公告专利以及他的193专利所说明的挤压机温度控制器的改进。一旦螺旋速度改变,自适应重调控制器38就调整重调值Rn以及控制设定点Tcp。这种对螺旋速度的调整先于一旦螺旋速度改变时筒温的明显改变。该自适应重调控制器38可以和单个传感器挤压机温度控制器一起使用。
螺旋速度传感器或转速计16向自适应重调控制器38提供表示挤压机螺旋件10的当前或实际速度的模拟螺旋速度信号Sa。该图的实施例示出挤压机螺旋件驱动装置9。一定标(scaling)缓冲器110接收该模拟螺旋速度信号Sa并生成对应的螺旋速度Sc。该对应的螺旋速度信号Sc被定标在一模数转换器(A/D)112的输入范围内。该模数转换器112把该对应的螺旋速度信号Sc转换成代表该螺旋速度的数字螺旋速度信号Sd。可以使用带有定时器计数器的替代数字速度输入装置。所产生的螺旋速度信号发送到时钟、逻辑、编索引及重调存储装置114。
图3示出可选用的速度传感器或数字编码器16a。来自数字编码器16a的速度输入由定时计数器116处理。所产生的数字螺旋速度信号Sd发送到时钟、逻辑、编索引及重调存储装置114。
自适应重调控制器38为任何给定的运行螺旋速度选择一个重调值。一旦决定该重调值Rn,就把它存储在时钟、逻辑、编索引及重调存储装置114中由数字螺旋速度信号Sd决定的地址中。该时钟、逻辑、编索引及重调存储装置114向第一与门39提供包含速度稳定信号和速度改变信号的逻辑控制信号。开关48使重调值可被存储和被检索。该开关48是操作员可选择的并向第一与门39提供自适应重调允许信号。第一与门39的信号发送到或门46。该或门46向重调开关41a和41b提供信号。
时钟、逻辑、编索引及重调存储装置以及其它构建本发明的优选实施例所需的子部件是通过商业上可买到的电子部件提供的。电子部件编程技术领域中的熟练人员足以对时钟、逻辑、编索引及重调存储装置编程,以便通过电子或其它逻辑电路按照本发明的需要提供(1)一个用于对多个螺旋速度编索引并且存储的装置,以及(2)一个用于比较、计时和选择的装置。通过正确编程的商用微处理器可提供适用的时钟、逻辑、编索引和重调存储装置。该逻辑电路需要判定存在或者不存在各种各样的比较参数和计时参数,例如满足“速度稳定”条件的参数。
该改进型自适应重调温度控制器22的时钟、逻辑、编索引及重调存储装置114具有多个螺旋速度存储单元。该优选实施例至少具有11个螺旋速度存储单元。该优选实施例的逻辑电路还包括当检测出明显的加工改变时清除已存储的值的编程。
本发明优选实施例的自适应重调制器39包括一个可选用的逻辑电路210。该逻辑电路210是商业上可买到的,并且可以独立于时钟、逻辑、编索引及重调存储装置114或者集成在该时间、逻辑、编索引及重调存储装置114中。逻辑电路210被编程为当温度稳定时“学习”螺旋速度的重调值。因而,逻辑电路210允许自适应重调温度控制器22增加或者清理未由双传感器温度控制器触发的重调值。电子部件编程技术领域中的熟练人员足以对逻辑电路210编程以实现该功能。
本发明的该优选实施例中的自适应重调温度控制器22具有一个例如Faillace的193专利中的挤压机温度控制器的双传感器温度控制器121。该双传感器温度控制器121监视包括重调允许信号、重调限制排除信号、实际告警信号、稳定达到时间信号和控制告警“不”信号在内的各种逻辑控制信号。重调允许信号和重调限制“不”信号提供给第二与门47。该第二与门47向第一与门39以及第三与门45提供一个信号。实际告警信号、稳定达到时间信号和控制告警排除信号提供给第三与门45。该第三与门45的信号还发送到或门46。
本发明的双传感器温度控制器121部分地通过对第三与门45编程的准则提供改进的温度控制。用于本发明的该优选实施例的该准则定义正负0.1°F(0.06℃)的实际告警。该用于实际告警的准则使实际温度更准确地和热交换区的温度设定点相符。当自适应重调温度控制器22以最大功率或接近该最大功率生成至热交换装置的控制输出驱动器信号达到一分钟时,用于本发明的该优选实施例的该准则允许控制告警触发某一重调值。该准则允许挤压机系统以其最大功率或接近该最大功率运行。
或门46通过冲息(one-shot)多谐振荡器信令部件50向重调开关41a和41b提供单个事件触发信号。如果自适应重调控制器38向双传感器温度控制器121施加某存储的重调值,则延迟定时器220延迟新重调值的触发。该延迟定时器220将用于触发来自双传感器温度控制器121的重调值的准则延迟选定的时间。在本发明的该优选实施例中选定的延迟时间是四分钟。延迟定时器220防止发生实际温度中的振荡。
如图所示,重调开关41a和41b把实际误差“A”信号输入到时钟、逻辑、编索引及重调存储装置114中,并且该重调开关具有一个重调值存储装置52。重调值存储装置52向逻辑电路210发信号。双传感器温度控制器121在其稳定时提供重调值Rn。当重调开关41a和41b接收到重调触发时,把实际误差“A”提供给自适应重调控制器38。
在以下三种情况之一中产生重调触发。第一种情况是“自适应重调”,并且当(1)改变后的或新的螺旋速度稳定后,(2)存在速度改变,(3)重调被允许,以及(4)自适应重调被允许时出现这种情况。第二种情况是“稳定的自适应重调”,并且当(1)螺旋速度是稳定的,(2)在选定时间(最好为一分钟)内保持稳定的速度变化,(3)该设备未达到重调限制并且未在选定时间(最好为一分钟)内保持该重调限制,(4)重调被允许,以及(5)自适应重调被允许时出现该种情况。第三种情况是“常规重调”,并且当(1)重调被允许,(2)该设备未达到重调限制并且未在选定时间(最好为一分钟)内保持该重调限制,(3)存在实际告警,(4)该设备未达到温度限制,(5)达到稳定时间,以及(6)不存在控制告警时出现这种情况。
本发明该优选实施例的双传感器温度控制器121具有第一比较器40、第二比较器42、第三比较器43、第四比较器44和第五比较器51。第一比较器代数地相加设定点值和深温度Td值以得到提供给重调开关41a的实际误差“A”。
当由时钟、逻辑、编索引和重调存储装置114认定重调值时,第二比较器或控制设定点控制器42在“重调触发”时刻调整控制设定点Tcp。在“通电”时控制设定点设成相等的设定点。控制设定点控制器42认定该控制设定点Tcp并把该信号提供给第三比较器43和第四比较器44。该双传感器温度控制器121通过第三比较器43进行代数相加以便计算误差“A”信号。第三比较器43把误差“A”信号施加到第五比较器51。第四比较器44把控制设定点Tcp和浅温度Ts比较并得出误差“B”信号。该误差“B”也提供给第五比较器51。
自适应重调控制器38把表示控制设定点的调整程度的重调值Rv提供给控制设定点控制器42。该控制设定点控制器42利用一个算术模块根据下式(1)把重调值Rv的幅值定标成定标后的重调值Rn(1)Rn=rg×Rv其中rg是一个固定的重调增益。典型地,重调增益rg值设定为“1”。把该新的或定标的重调值Rn提供给控制设定点控制器42。接着该控制设定点控制器42对定标后的重调值Rn和控制设定点Tcp进行代数相加以便在重调触发时刻根据下式(2)更新控制设定点T’cp(2) T’cp=Rn+Tcp一旦自适应重调温度控制器22解出定标后的重调值Rn,双传感器温度控制器121在实际误差小于0.1°F(0.06℃)的情况下保持稳定。但是,挤压机系统热负载中的明显改变造成热交换区深温度Td的改变。当双传感器温度控制器121试图校正热交换区深温度Td的改变时,该双传感器温度控制器121变得不稳定。该自适应重调温度控制器22包括一个双传感器温度控制器121,后者生成用于加热或冷却的控制输出驱动器“H”信号或“C”信号,以便选择性地激励热交换元件15。第三和第四比较器43和44各自生成分别表示控制设定点Tcp与温度信号Td和Ts之差的误差信号“A”和“B”。第四比较器51中的一个算术模块根据下式(3)计算控制和误差E(3)---E=K1A+K2BK1+K2]]>其中K1和K2是常数,选择用来为每个误差信号“A”和“B”提供适当的加权。响应该控制和误差“E”,热交换驱动器或控制器36调整控制输出驱动器信号“H”和“C”以便选择性地激励电阻加热元件18或液体冷却系统(未示出),直至控制和误差“E”为最小,其中该液体冷却系统提供流过热交换件15的管道20的冷却剂。
用于自适应重调温度控制器22的逻辑路径使时钟、逻辑、编索引及重调存储装置114监视数字速度信号Sd以确定何时发生螺旋速度的改变。当数字速度信号Sd改变时,该时钟、逻辑、编索引及重调存储装置114选择所存储的重调值并对双传感器温度控制器121发信号。接着该双传感器温度控制器121利用上述式2再计算控制设定点Tcp。
与门39判定何时双传感器温度控制器121稳定到该新重调值。一旦该双传感器温度控制器121达到稳定,与门39接收前面定义的各重调准则信号。重调值Rv存储在时钟、逻辑、编索引及重调存储装置114的表中与由数字速度信号Sd指示的当前螺旋运行速度对应的一条目(entry)上。
所发明的图3的挤压机温度控制器把带有温度重调的深、浅温度控制应用到持续的热负载改变过程中。本发明提供一种预测由于螺旋速度改变而造成的热负载改变的方法。本发明根据具体的挤压机运行速度或“自适应重调”在实际感测出热负载改变之前对每个热交换区14施加一个温度重调值。自适应重调在所有常规的螺旋运行速度下为每个热交换区14确定或者“学习”一个重调值。当改变挤压机的螺旋速度时,自适应重调施加或者“调用”最近的温度重调值,该最近的温度重调值是通过每个热交换区在该给定螺旋速度下的先前的重调计算为每个热交换区14学习到的。在挤压机系统的运行期间通过比较和选择装置提供该功能,并且在系统运行期间,(1)使稳定的运行温度重调值和每个运行螺旋速度相对应,以及(2)把实际螺旋速度和对应的温度重调值输入到用于存储的装置中。
本发明的挤压机温度控制器通过标准的模拟输入感测螺旋速度并且把该螺旋速度当成索引或指针应用到学习到的重调值表。当螺旋速度改变并稳定到新的螺旋速度后,可以为每个热交换区调用这些存储的重调值。在本优选实施例中每个热交换区使用一个具有100个地址的表,该表表示可用螺旋速度的百分之一到百分之百的重调值。学习到的重调值是像在Faillace的193专利的挤压机温度控制器中那样得到的。但是,学习到的重调值存储在非易失性重调值存储表,例如一个EEPROM存储器装置内当计算重调值时专用于螺旋速度的单元中。
当挤压机系统的新螺旋速度改变和稳定,并且满足温度重调准则时,为该新的螺旋速度计算新的温度重调值并且将其存储在重调值表中表示该螺旋速度的相应地址上。在以总螺旋速度的百分之一的分辨率下当遇到每个新的运行速度时重复该自适应重调序列。
依据本发明,在挤压机系统的运行中,当第一次遇到未对初始螺旋速度确定实际重调值的新螺旋运行速度时,利用直线逼近法在已确定的二个最接近的螺旋速度重调值之间为该螺旋速度计算近似的重调值。把该新的运行螺旋速度的该近似的重调值存储到重调值表中。但是,如果该新的螺旋速度保持足够长时间从而可根据常规重调准则计算出一个新的重调值,则用该新螺旋速度的实际重调值替代该近似的重调值。
本发明的挤压机温度控制器对挤压机系统提供与Faillace‘193专利的挤压机系统相同的优点。本发明的挤压机温度控制器还提供温度控制更准确以及优化挤压机的设计能力的附加优点。并且通过实际告警准则、在稳定状态下学习重调值、使用延迟电路防止重调值信号和实际温度中的振荡和/或上面公开的其它特性来提供精确的温度。通过允许在挤压机系统运行于其最大功率或最大功率附近期间建立允许附加重调值的控制告警准则,提供挤压机系统设计能力的优化。
权利要求
1.一种挤压机温度控制器,包括用于感测挤压机筒中挤压机螺旋件的实际螺旋速度的装置,所述挤压机筒具有至少一个热交换装置;用于对多个螺旋速度编索引并存储的装置,每个所述存储的螺旋速度和一个温度重调值相对应;用于比较和选择的装置,所述用于比较和选择的装置(i)把所述实际螺旋速度和每个所述存储的螺旋速度比较,并且(ii)选择所述存储的螺旋速度中的一个,所述选定的螺旋速度是所述多个存储的螺旋速度中一个其值在算术上和所述实际螺旋速度最等值的成员,所述用于比较和选择的装置检索和所述选定的存储螺旋速度对应的所述温度重调值;以及用于生成至所述热交换装置的控制输出驱动器信号的装置,所述控制输出驱动器信号响应来自所述用于比较和选择的装置的所述检索到的温度重调值;以及用于当所述用于生成至所述热交换装置的控制输出驱动器信号的装置在最大功率或最大功率附近运行时将控制告警延迟预定时间的装置。
2.如权利要求1所述的挤压机温度控制器,其中所述用于延迟控制告警的装置当自适应重调控制器向双传感器温度控制器施加一存储的重调值时延迟触发新的重调值。
3.如权利要求2所述的挤压机温度控制器,其中所述用于延迟所述控制告警的装置将用于触发来自所述双传感器温度控制器的所述新重调值的准则延迟第一选定时间。
4.如权利要求3所述的挤压机温度控制器,其中所述用于延迟的选定时间为四分钟。
5.如权利要求3所述的挤压机温度控制器,其中所述延迟定时器防止实际温度的振荡。
6.如权利要求1所述的挤压机温度控制器,还包括一个逻辑电路,当所述挤压机筒中的温度已稳定一预定时间时所述逻辑电路学习所述实际螺旋速度的新重调值。
7.如权利要求6所述的挤压机温度控制器,其中所述逻辑电路具有当(a)所述实际螺旋速度是稳定的,(b)在第二选定时间中保持稳定的速度变化,(c)所述自适应重调控制器未达到重调限制并且未在第三选定时间内保持所述重调限制,(d)重调被允许,以及(e)自适应重调被允许时用于建立稳定的自适应重调的装置。
8.如权利要求7所述的挤压机温度控制器,其中所述第二选定时间和所述第三选定时间各为一分钟。
9.如权利要求4所述的挤压机温度控制器,还包括一个逻辑电路,当所述挤压机筒中的温度已稳定一预定时间时所述逻辑电路学习所述实际螺旋速度的新重调值。
10.如权利要求1所述的挤压机温度控制器,其中所述用于比较和选择的装置在挤压机系统的运行期间(a)使稳定运行温度重调值和各个所述实际螺旋速度相对应,以及(b)把所述实际螺旋速度和所述对应的温度重调值一起输入到所述用于编索引和存储的装置中。
11.如权利要求1所述的挤压机温度控制器,还包括一个温度控制器,所述温度控制器包括(a)第一比较器,所述第一比较器比较设定点信号和挤压机筒深温度信号,所述第一比较器向所述用于比较和选择的装置提供实际误差信号;(b)第二比较器,所述第二比较器是一个用于对存储的控制设定点信号和所述温度重调值进行代数相加的控制设定点控制器,所述第二比较器提供一控制设定点信号;(c)第三比较器,所述第三比较器比较挤压机筒深温度信号和所述控制设定点信号,所述第三比较器提供第一误差信号;(d)第四比较器,所述第四比较器比较挤压机筒浅温度信号和所述控制设定点信号,所述第四比较器提供第二误差信号;以及(e)第五比较器,所述第五比较器比较所述第一误差信号和所述第二误差信号并向所述用于生成至所述热交换装置的所述控制输出驱动器信号的装置提供控制和误差信号。
全文摘要
本发明是一种用于挤压机筒的挤压机温度控制器。该挤压机温度控制器包括用于确定实际螺旋速度的装置,并具有用于存储多个螺旋速度的装置。这些存储的螺旋速度中的每个成员具有一个对应的存储的温度重调值。该挤压机温度控制器具有用于比较和选择的装置,其把实际螺旋速度和多个存储的螺旋速度中的每个进行比较并且选择一个默认螺旋速度。和任何其它被比较的存储螺旋速度相比,该默该螺旋速度与实际螺旋速度的偏差更小。该控制器还包括一个用于生成至热交换装置的控制输出驱动器信号的装置。该控制输出驱动器信号是和该默认螺旋速度对应的存储的温度重调值。本发明还包括一个用于当该生成至热交换装置的控制输出驱动器信号的装置在最大功率或其附近运行时将控制告警延迟预定时间的装置。本发明还包括一种用于控制挤压机筒温度的方法。
文档编号B29C47/82GK1416388SQ01804806
公开日2003年5月7日 申请日期2001年2月8日 优先权日2000年2月9日
发明者萨乌柳斯·托马斯·埃瓦 申请人:戴维斯-标准公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1