一种成形制备纤维树脂复合材料构件产品的方法与流程

文档序号:17645309发布日期:2019-05-11 00:57阅读:261来源:国知局
一种成形制备纤维树脂复合材料构件产品的方法与流程

本发明涉及金属板料热压固化成形制造技术领域,尤其涉及一种成形制备纤维树脂复合材料构件产品的方法。



背景技术:

纤维树脂复合材料构件的热压固化成形模具1包括模具型面10及用于支撑模具型面的模具框架支撑,其中模具型面对纤维树脂复合材料构件2的成形质量起决定性作用,纤维树脂复合材料构件的热压固化成形过程需要相应的成形模具通过模具型面给其赋予外形形状,成形模具的模具型面尺寸精度是纤维树脂复合材料构件形状尺寸精度的重要保障。现有的模具型面设计大多是直接将室温下的纤维树脂复合材料构件的目标型面作为成形模具的型面,而忽略了在纤维树脂复合材料构件热压固化成形温度下成形模具型面的热膨胀变形对纤维树脂复合材料构件尺寸精度的影响。参见图1,纤维树脂复合材料构件在热压固化成形时的型面是靠在该热压固化成形温度下热变形后的模具型面11保证的,随着纤维树脂复合材料构件尺寸的增大,在热压固化成形温度下的热变形后的模具型面11相比于室温时发生的热变形也较大,尤其是对于大型纤维树脂复合材料构件,如飞机壳体、机翼或其他部件,其长度可达几米甚至十几米,相应的模具在热压成形温度与常温之间的形变量是可观的,其对纤维树脂复合材料构件尺寸精度的影响不可忽略,因此,现有技术中需要一种考虑模具热变形的成形制备纤维树脂复合材料构件产品的方法,来解决制备大型的纤维树脂复合材料构件时,在模具的计算机设计过程中易产生的尺寸精度问题。

中国专利201810739174.8公开了一种用于蠕变时效成形的回弹补偿方法,其过程包括三步,分别为:

步骤s100:建立有限元仿真模型,进行构件蠕变时效成形后,得到蠕变构件;

步骤s200:令每次迭代补偿回弹后的构件外型面为pi(i=0,1,2,3......,0表示首次仿真得到的回弹型面),删除当前仿真使用的模具型面mi(i=0,1,2,3......,0表示首次仿真时输入的模具型面,即构件的目标型面),计算所述蠕变构件回弹后的回弹外型面pi上各节点到目标型面pgoal上各节点的垂直距离δzij,δzij表示第i次迭代后构件回弹型面上节点j到目标型面pgoal的垂直距离,取各节点中所述垂直距离δzij的垂直距离最大值max(δz),判断是否所述垂直距离最大值max(δz)≤工程误差,如果所述判断结果为是,则将所述构件回弹外型面pi对应的当前模具型面mi作为回弹补偿模具型面并进行步骤s300,如果所述判断结果为否则构建第i+1次仿真用的模具型面,并重复所述步骤s100~200,直至所述判断为是;

步骤s300:根据所述回弹补偿模具型面建立构件蠕变时效成形模具,对所述构件蠕变时效成形模具进行模具降温有限元仿真,得到回弹热膨胀模具型面,所述模具降温有限元仿真中设置初始温度为所述构件蠕变时效成形步骤中构件的成型温度并输入所述构件在所述蠕变时效成形步骤中的降温曲线。

但是,专利201810739174.8所公开的方法的不足在于:一个是步骤s100与步骤s200的重复迭代次数多,另一个是经过步骤s300后,后续的实体模具进行修模时的修模量会较大,增加工作量。具体地,对于上述第一个不足来说,如专利201810739174.8实施例中所述,对于整体尺寸为435.0mm长×293.7mm宽×17mm高的铝合金构件,其需要经过3次迭代才能得到符合误差要求的模具型面。由于迭代计算工作量大,比较耗时,且对于飞机壳体、飞机机翼这种长度尺寸至少在10米以上的大型铝合金构件,计算机每迭代计算一次至少需要等待一天时间,甚至更长时间,考虑构件回弹补偿的迭代计算,一般迭代次数在4~6次以上,这就会耗费模具设计人员大量宝贵时间,严重影响工作效率。

纤维树脂复合材料大型构件的热压成型与铝合金大型构件的热压成型存在相似相通之处,专利201810739174.8所公开的方法对于纤维树脂复合材料大型构件的模具设计和成形制备构件产品来说,依然同样存在上述缺陷。

因此,现有技术中仍然需要一种适用于大型构件的成形制备纤维树脂复合材料构件产品的方法,其实体模具的实体修模量应当小、且其计算机设计模具过程当中的迭代计算量也应当小,以减少模具设计人员的等待时间,提高工作效率。



技术实现要素:

本发明目的在于提供一种成形制备纤维树脂复合材料构件产品的方法,以解决背景技术中提出的问题。

一种成形制备纤维树脂复合材料构件产品的方法,包括先设计出成形模具,再以所述成形模具成形制备复合材料构件产品;且设计出成形模具的过程具体包括先计算机模拟以设计出模具型面,再在根据该模具型面形成实体模具后先后进行复合材料实体热压固化成形和实体修模而设计出所述成形模具,所述方法具体包括以下步骤:

1)以纤维树脂复合材料构件目标型面s0为模具原始型面b0,二者凹凸匹配,并根据b0设计对应的三维模具模型,在有限元分析软件中对型面为b0的模具进行从高温冷却至室温的降温模拟,得到降温后的模具,并提取降温后的模具的型面b1,其中,所述高温温度值等于所述纤维树脂复合材料构件对应的热压固化成形保温阶段的温度值;

2)以所述降温后模具的型面b1作为初始型面,生成三维模具,在三维模具与纤维树脂复合材料构件原材料的基础上建立热压固化成形仿真模型,在型面为b1的模具的基础上对纤维树脂复合材料构件原材料进行第一次热压固化成形模拟,得到纤维树脂复合材料构件初始热压固化成形型面s1,计算纤维树脂复合材料构件初始热压固化成形型面s1各点与纤维树脂复合材料构件目标型面s0各点的初始成形误差u1,判断各点的初始成形误差u1是否均小于或等于工程误差允许的范围ε,若是,则以纤维树脂复合材料构件初始热压固化成形型面s1所对应的模具型面b1作为最终计算机设计所要得到的模具目标型面,进入步骤5,若否,进入步骤3;

3)在有限元软件中,根据si与s0间的误差大小,对纤维树脂复合材料构件热压固化成形型面si所对应的模具型面bi进行第i次回弹补偿计算,得到回弹补偿后的模具型面bi+1作为第i+1次热压固化成形的模具型面,进入步骤4,所述i=(1,2,3……n);

4)根据模具型面bi+1生成三维模具模型,在三维模具模型与纤维树脂复合材料构件原材料的基础上建立热压固化成形仿真模型,在型面为bi+1的模具的基础上对纤维树脂复合材料构件原材料进行热压固化成形模拟,得到纤维树脂复合材料构件热压固化成形型面si+1,计算纤维树脂复合材料构件热压固化成形型面si+1各点与纤维树脂复合材料构件目标型面s0各点的成形误差ui+1,判断各点的成形误差ui+1是否均小于或等于工程误差允许的范围ε,若是,则以纤维树脂复合材料构件热压固化成形型面si+1所对应的模具型面bi+1作为最终计算机设计所要得到的模具目标型面,进入步骤5,若否,则令i=i+1,返回步骤3;

5)用模具材料将所述模具目标型面制备成实体模具型面,对实体模具型面装设模具框架支撑,形成实体模具,将用于成形制备纤维树脂复合材料构件的原材料放置于实体模具上进行热压固化成形,得到实体纤维树脂复合材料构件,根据实体纤维树脂复合材料构件的型面与纤维树脂复合材料构件目标型面s0之间的偏差,对实体模具进行至少一次实体修模,得到符合误差要求的实体模具,进入步骤6。

6)用步骤5经实体修模后得到的实体模具对纤维树脂复合材料原材料进行实体热压固化成形过程,实体热压固化成形过程中的条件与参数设置成与步骤1~4中的热压固化仿真模型一致,得到实体纤维树脂复合材料构件产品。

所述实体修模为采用打磨和/或堆焊的方式对实体模具的型面进行修补。

所述步骤5的实体修模次数为1~2次;

当实体修模次数为1次时,所述步骤5具体包括如下分步骤5-a~5-b:

5-a)用模具材料将所述模具目标型面制备成实体模具型面,对实体模具型面装设模具框架支撑形成实体模具t0,将纤维树脂复合材料构件原材料放置于实体模具t0上进行热压固化成形,得到实体纤维树脂复合材料构件g0,进入步骤5-b;

5-b)根据实体纤维树脂复合材料构件g0的型面与纤维树脂复合材料构件目标型面s0之间的偏差,对实体模具t0的型面进行第1次实体修模,得到实体模具t1,以t1为最终所要得到的实体模具;

当实体修模次数为2次时,所述步骤5具体包括如下分步骤5-c~5-e;

5-c)用模具材料将所述模具目标型面制备成实体模具型面,对实体模具型面装设模具框架支撑形成实体模具t0,将纤维树脂复合材料原材料放置于实体模具t0上进行热压固化成形,得到实体纤维树脂复合材料构件g0,进入步骤5-d;

5-d)根据实体纤维树脂复合材料构件g0的型面与纤维树脂复合材料构件目标型面s0之间的偏差,对实体模具t0的型面进行第1次实体修模,得到实体模具t1,将纤维树脂复合材料构件原材料放置于实体模具t1上进行热压固化成形,得到实体纤维树脂复合材料构件g1;

5-e)根据实体纤维树脂复合材料构件g1的型面与纤维树脂复合材料构件目标型面s0之间的偏差,对实体模具t1的型面进行第2次实体修模,得到实体模具t2,以t2为最终所要得到的实体模具。

所述步骤6的实体热压固化成形过程具体包括步骤6-a所述内容:

6-a)将纤维树脂预浸料铺设在实体模具的型面上,再安装真空袋进行抽真空,再将实体模具与纤维树脂预浸料转移至热压罐中,进行升温升压、保温保压、降温降压过程后卸载,完成纤维树脂预浸料的实体热压固化成形过程,最终得到实体纤维树脂复合材料构件产品。

所述三维模具的生成在catia、proe或solidworks等三维造型软件中完成。

所述降温模拟、热压固化成形模拟及回弹补偿计算在abaqus、ansys或msc等有限元分析软件中完成。

所述纤维树脂复合材料为碳纤维/环氧树脂复合材料,所述模具的材质可为碳钢或其他金属结构材料或其他非金属结构材料。

本发明至少具有以下有益效果:

本发明的成形制备纤维树脂复合材料构件产品的方法,在计算机设计模具型面的过程中,以模具降温型面b1作为迭代计算的初始值,模具降温型面b1比模具原始型面b0(即构件目标型面s0的凹凸匹配面)更接近模具目标型面,相比于直接以构件目标型面s0作为迭代计算初始值的方式,本发明可减少约50%的迭代次数,大大的提高了求解效率,节约了模具设计人员的宝贵时间,尤其是对于大型构件,这一优势更加明显,再将计算机设计出的合格模具制备成实体模具,对实体模具进行1~2次实体修模(基本上只需要1次实体修模)后即可得到符合要求的实体模具,再用实体模具对纤维树脂复合材料原材料进行实体热压固化成形,即可得到所需的实体纤维树脂复合材料构件产品。

本发明基于数学最优化基本思想,要想减少迭代次数,最好的方法之一就是能提供一个离最优解较近的迭代初始值,合理的迭代初始值对于迭代的效率是非常有效的。本发明的方法中,有限元降温求解到模具型面b1的过程就是提供合理迭代初始值的过程,后续的成形回弹迭代补偿过程就是求优过程。本发明先在纤维树脂复合材料构件成形和回弹补偿的迭代过程之前确定一个离最优解更接近的初始值,然后再将初始值进行迭代,从而达到减少迭代次数的目的。

除了上面所描述的目的、特征和优点之外,本发明还有其它的目的、特征和优点。下面将参照图,对本发明作进一步详细的说明。

附图说明

构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:

图1(包括图1a与图1b)是模具升温后的热变形示意图;

图2是本发明优选实施例的成形制备纤维树脂复合材料构件产品的方法的步骤逻辑框图。

图中:1-模具,10-模具型面,11-热变形后的模具型面,2-纤维树脂复合材料构件。

具体实施方式

以下结合附图对本发明的实施例进行详细说明,但是本发明可以根据权利要求限定和覆盖的多种不同方式实施。

参见图2的成形制备纤维树脂复合材料构件的方法,包括以下步骤:

1)以纤维树脂复合材料构件目标型面s0为模具原始型面b0,二者凹凸匹配,并根据b0设计对应的三维模具模型,在有限元分析软件中对型面为b0的模具进行从高温冷却至室温的降温模拟,得到降温后的模具,并提取降温后的模具的型面b1,其中,所述高温温度值等于所述纤维树脂复合材料构件对应的热压固化成形保温阶段的温度值;

2)以所述降温后模具的型面b1作为初始型面,生成三维模具,在三维模具与纤维树脂复合材料构件原材料的基础上建立热压固化成形仿真模型,在型面为b1的模具的基础上对纤维树脂复合材料构件原材料进行第一次热压固化成形模拟,得到纤维树脂复合材料构件初始热压固化成形型面s1,计算纤维树脂复合材料构件初始热压固化成形型面s1各点与纤维树脂复合材料构件目标型面s0各点的初始成形误差u1,判断各点的初始成形误差u1是否均小于或等于工程误差允许的范围ε,若是,则以纤维树脂复合材料构件初始热压固化成形型面s1所对应的模具型面b1作为最终计算机设计所要得到的模具目标型面,进入步骤5,若否,进入步骤3;

3)在有限元软件中,根据si与s0间的误差大小,对纤维树脂复合材料构件热压固化成形型面si所对应的模具型面bi进行第i次回弹补偿计算(即根据卸压后纤维树脂复合材料构件发生回弹的变形量,对模具型面bi进行修补),得到bi+1作为第i+1次热压固化成形的模具型面,进入步骤4,所述i=(1,2,3……n);

4)根据模具型面bi+1生成三维模具模型,在三维模具模型与纤维树脂复合材料构件原材料的基础上建立热压固化成形仿真模型,在型面为bi+1的模具的基础上对纤维树脂复合材料构件原材料进行热压固化成形模拟,得到纤维树脂复合材料构件热压固化成形型面si+1,计算纤维树脂复合材料构件热压固化成形型面si+1与纤维树脂复合材料构件目标型面s0各点各点的成形误差ui+1,判断各点的成形误差ui+1是否均小于或等于工程误差允许的范围ε,若是,则以纤维树脂复合材料构件热压固化成形型面si+1所对应的模具型面bi+1作为最终计算机设计所要得到的模具目标型面,进入步骤5,若否,则令i=i+1,返回步骤3。

5)用模具材料将所述模具目标型面制备成实体模具型面,对实体模具型面装设模具框架支撑,形成实体模具,将纤维树脂复合材料构件原材料放置于实体模具上进行热压成形,得到实体纤维树脂复合材料构件,根据实体纤维树脂复合材料构件的型面与纤维树脂复合材料构件目标型面s0之间的偏差,对实体模具进行至少一次实体修模,得到符合误差要求的实体模具,进入步骤6。

由于计算机在设计模具型面时,各种参数与条件都设置得较理想化,计算机得到的目标模具型面与实体模具型面之间也是存在一定的误差可能性的,再一方面将模具材料制备成实体模具,也是存在一定的制造误差的,因而需要至少一次实体修模过程,以中和上述误差。

6)用步骤5经实体修模后得到的实体模具对纤维树脂复合材料构件原材进行实体热压固化成形过程,实体热压固化成形过程中的条件与参数设置成与步骤1~4中的热压固化成形仿真模型一致,得到实体纤维树脂复合材料构件产品。

所述实体修模为采用打磨和/或堆焊的方式对实体模具的型面进行修补。

所述步骤5的实体修模次数为1次或者2次;

当实体修模次数设为1次时,所述步骤5具体包括如下分步骤5-a~5-b:

5-a)用模具材料将所述模具目标型面制备成实体模具型面,对实体模具型面装设模具框架支撑形成实体模具t0,将纤维树脂复合材料构件原材料放置于实体模具t0上进行热压固化成形,得到实体纤维树脂复合材料构件g0,进入步骤5-b;

5-b)根据实体纤维树脂复合材料构件g0的型面与纤维树脂复合材料构件目标型面s0之间的偏差,对实体模具t0的型面进行第1次实体修模,得到实体模具t1,以t1为最终所要得到的实体模具;

当实体修模次数为2次时,所述步骤5具体包括如下分步骤5-c~5-e;

5-c)用模具材料将所述模具目标型面制备成实体模具型面,对实体模具型面装设模具框架支撑形成实体模具t0,将纤维树脂复合材料原材料放置于实体模具t0上进行热压固化成形,得到实体纤维树脂复合材料构件g0,进入步骤5-d;

5-d)根据实体纤维树脂复合材料构件g0的型面与纤维树脂复合材料构件目标型面s0之间的偏差,对实体模具t0的型面进行第1次实体修模,得到实体模具t1,将纤维树脂复合材料构件原材料放置于实体模具t1上进行热压成形,得到实体纤维树脂复合材料构件g1;

5-e)根据实体纤维树脂复合材料构件g1的型面与纤维树脂复合材料构件目标型面s0之间的偏差,对实体模具t1的型面进行第2次实体修模,得到实体模具t2,以t2为最终所要得到的实体模具。

本实施例中,所述纤维树脂复合材料为碳纤维/环氧树脂复合材料,所述纤维树脂复合材料构件原材料为碳纤维/环氧树脂预浸料。

所述步骤6的实体热压固化成形过程具体包括步骤6-a所述内容:

6-a)将碳纤维/环氧树脂预浸料铺设在实体模具的型面上,再安装真空袋进行抽真空,再将实体模具与碳纤维/环氧树脂预浸料转移至热压罐中,进行升温升压、保温保压、降温降压过程后卸载,完成碳纤维/环氧树脂预浸料的实体热压固化成形过程,最终得到实体碳纤维/环氧树脂复合材料构件产品。

本发明的方法一般只需要进行一次实体修模即可得到符合要求的实体模具,当然,为了进一步提高精度,所述步骤5的实体修模次数也可设置为2次,并且,可将单次实体修模量设置为总修模量的1/2(如总的实体修模量为2mm,则单次修模量为1mm),总修模量通过第一次成形后的实体纤维树脂复合材料构件与目标纤维树脂复合材料构件之间的偏差结合经验确定,由于手动修模对于修模量较难达到精确把控,实体修模分成2次,降低单次实体修模的修模量,有利于控制实体模具的尺寸精准度。

本发明的具体实施过程大致如下:

在拿到纤维树脂复合材料构件产品设计的纤维树脂复合材料构件目标型面s0之后,先设计一款与之完全凹凸匹配(型面的曲率以及尺寸相等)的模具原始型面b0。

在有限元软件中,把该模具原始型面b0,设置为是成形保温的高温(例如180℃或200℃)时对应的模具型面,利用有限元分析软件模拟出它冷却至室温时的模具降温型面b1的情况。

计算机模拟在该模具降温型面b1上放上纤维树脂复合材料原材料,并对纤维树脂复合材料原材料进行热压固化成形,此时所得的第一纤维树脂复合材料构件的初始热压固化成形型面s1尺寸一般必然不符合设计的纤维树脂复合材料构件目标型面s0的误差要求,将s1与s0做数据对比。

根据将s1与s0做数据对比对比后的偏差情况进行第一次计算机模拟的修模(即本发明所述纤维树脂复合材料构件回弹补偿过程),修模后得到模具型面b2,之后进行第二次模拟纤维树脂复合材料构件热压固化过程得到第二纤维树脂复合材料构件的热压固化成形型面s2,将s2与s0做数据对比,如此重复,直至生产出合格纤维树脂复合材料构件。即最终经过n次修模后和在第n+1次纤维树脂复合材料构件模拟成形过程后生产的纤维树脂复合材料构件sn+1的尺寸与s0相比的误差在允许范围之内,则停止迭代,相应的模具bn+1即为计算机设计出的合格模具,再将计算机设计出的合格模具制备成实体模具,对实体模具进行1次或2次实体修模后得到符合误差要求的实体模具。最后将纤维树脂复合材料原材料放置于实体模具上进行实体热压固化成形,得到实体纤维树脂复合材料构件产品。

由于具体的降温模拟、热压固化成形模拟、纤维树脂复合材料构件回弹补偿计算方法、实体热压固化成形过程均为现有技术,因此本发明中没有再详细描述。

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1