能量转换设备以及供热系统的制作方法

文档序号:33114668发布日期:2023-02-01 02:41阅读:102来源:国知局
能量转换设备以及供热系统的制作方法

1.本实用新型涉及锅炉设备技术领域,特别涉及一种能量转换设备以及供热系统。


背景技术:

2.诸如锅炉等种能量转换设备,工作原理为向其输入的能量可以是燃料的化学能、电能,进而可以输出具有一定热能的蒸汽、高温水或有机热载体。
3.锅炉中产生的热水或蒸汽可直接为工业生产和人民生活提供所需热能,也可通过蒸汽动力装置转换为机械能,或再通过发电机将机械能转换为电能。
4.热媒是供热系统中热的载体。供热系统的热媒,应根据安全、卫生、经济、建筑性质和地区供热条件等因素综合考虑决定。一般来说,热媒主要选择为热水或蒸汽。
5.提供热水的锅炉称为热水锅炉,主要可以用于生活,也可以应用于工业生产。提供蒸汽的锅炉称为蒸汽锅炉,常简称为锅炉,多用于火电站、船舶、机车和工矿企业。
6.但是,现有的锅炉在工作功率变化时,由于内部热媒换热不充分,锅炉内部的压力超出限定,导致部分热媒加热形成的蒸汽,会通过锅炉的排气阀溢出以保证锅炉内的压力处于安全范围之内。如是则会导致锅炉内的热媒减少。为此,现有的锅炉产品中,通常需要额外配备循环水回收系统,导致锅炉的功能性较差,且体积较为庞大。


技术实现要素:

7.有鉴于此,本实用新型的目的是提供一种能量转换设备以及供热系统,能够利用流动于换热组件内的热网水补充能量转换设备工作时损失的热媒,简化能量转换设备的运作方式。
8.为达到上述目的,本实用新型采用的技术方案是:提供一种能量转换设备。该能量转换设备包括:壳体组件、换热组件、管路组件以及补水组件。壳体组件,设有电极筒、存储筒以及排气阀;存储筒用于存储并向电极筒补充热媒;电极筒用于加热所容纳热媒形成换热蒸汽;排气阀用于排出部分换热蒸汽以调节壳体组件内的压力;换热组件,设于壳体组件,流动于换热组件的热网水与换热蒸汽进行换热;管路组件,连接电极筒与存储筒,以使热媒在二者之间流动;补水组件,与存储筒、换热组件连接,部分热网水自换热组件流经补水组件,通入壳体组件,用于补充自排气阀排出的换热蒸汽。
9.在本实用新型的一实施例中,管路组件包括第一补水管路和第二补水管路;补水组件包括过滤件;第一补水管路连接换热组件以及过滤件,第二补水管路连接过滤件与存储筒。
10.在本实用新型的一实施例中,管路组件还包括第一补水开关件和第二补水开关件,分别设于第一补水管路和第二补水管路;能量转换设备还包括液位监测件,设于壳体组件;第一补水开关件、第二补水开关件以及液位监测件分别与外部控制设备连接;当液位监测件检测到壳体组件内热媒的液位小于或等于第一液位值时,控制设备控制第一补水开关件与第二补水开关件导通;当液位监测件检测到壳体组件内热媒的液位大于或等于第二液
位值时,控制设备控制第一补水开关件与第二补水开关件关断;其中,第一液位值小于第二液位值。
11.在本实用新型的一实施例中,补水组件还包括加热件,加热件设于过滤件与第二补水管路之间,用于加热经过滤件过滤的热网水形成采暖蒸汽,采暖蒸汽经第二补水管路通入存储筒,流至换热组件,冷凝形成热媒。
12.在本实用新型的一实施例中,能量转换设备包括设于壳体组件的压力监测件,压力监测件与外部控制设备连接,用于将监测压力反馈至控制设备;管路组件包括第一热媒管路以及第二热媒管路,均连接电极筒与存储筒;第一热媒管路与第二热媒管路分别设有第一热媒开关件与第二热媒开关件;第一热媒开关件与第二热媒开关件分别与控制设备连接,分别用于控制是否允许热媒自存储筒流向电极筒,以及控制是否允许热媒自电极筒流向存储筒;当监测压力大于或等于第一预设值时,控制设备控制第一热媒开关件关断第一热媒管路;当监测压力小于或等于第二预设值时,控制设备控制第一热媒开关件导通第一热媒管路。
13.在本实用新型的一实施例中,排气阀与控制设备连接;当监测压力大于或等于第三预设值时,控制设备控制排气阀导通以允许壳体组件内的气体溢出;当监测压力小于或等于第一预设值时,控制设备控制排气阀关断。
14.在本实用新型的一实施例中,壳体组件包括连接壳体,连接壳体设于换热组件与电极筒之间;连接壳体设有回流孔;管路组件包括连通管路,连接电极筒与回流孔;使换热蒸汽换热而冷凝形成的热媒,通过连通管路流入电极筒。
15.在本实用新型的一实施例中,能量转换设备还包括电参数检测组件,用于检测接地电阻和/或对地电压。
16.在本实用新型的一实施例中,电极筒设有若干电极,用于与外部电源连接。
17.为达到上述目的,本实用新型采用的又一技术方案是:提供一种供热系统。该供热系统包括供热设备以及如上述任一项实施例中的能量转换设备;能量转换设备与供热设备以及控制设备分别连接,热网水自能量转换设备流入供热设备。
18.与现有技术相比,本实用新型换热组件内流动着用于与换热蒸汽进行换热的热网水,通过补水组件将部分热网水补充进存储筒内,以补充能量转换设备因内部压力较大而溢出的换热蒸汽,实现热媒在能量转换设备内部循环使用而无需额外的循环系统/设备,能够丰富能量转换设备的功能性,简化能量转换设备的结构。并且,由于溢出能量转换设备的换热蒸汽较少,需要自换热组件内补充进存储筒的热网水也较少,对供热系统的供热效果影响微弱,还能够简化能量设备的运作方式,无需专人对剩余热媒量进行监测以及补充热媒。
附图说明
19.为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
20.图1是本实用新型供热系统一实施例的结构示意图;
21.图2是本实用新型能量转换设备以及供热设备一实施例的结构示意图;
22.图3是本实用新型能量转换设备一实施例的结构示意图;
23.图4是图3所示能量转换设备相关方向的结构示意图;
24.图5是本实用新型电极筒以及电极一实施例的结构示意图。
具体实施方式
25.下面将通过具体实施方式对本实用新型的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
26.自推进清洁能源供热改造计划以来,连续出台诸如“煤改气”、“煤改电”等政策,鼓励有条件地区采用天然气、电能等清洁能源替代燃煤锅炉供热。尤其是三北地区(东北、华北、西北)风电、光电消纳困难,弃光、弃风现象严重,在东北、华北、西北等地均有供热电价政策支持电供热。电极锅炉因具有效率高、噪声小、环保、占地面积小、启动速度快、可在低负荷下长期作用等优势,在供热行业等领域得到了广泛的应用。
27.为解决现有技术中相变电极锅炉使用过程中需要不断补充热媒的技术问题,本实用新型提供一种能量转换设备以及供热系统。该能量转换设备包括壳体组件、换热组件、管路组件以及补水组件。壳体组件设有电极筒、存储筒以及排气阀;排气阀用于排出部分换热蒸汽以调节壳体组件内的压力;换热组件设于壳体组件,流动于换热组件的热网水与换热蒸汽进行换热;管路组件连接电极筒与存储筒,以使热媒在二者之间流动;补水组件与存储筒、换热组件连接,热网水自换热组件流经补水组件,通入换热组件的壳程,用于补充自排气阀排出的换热蒸汽。以下对本实用新型进行详细阐述。
28.请参阅图1和图2,图1是本实用新型供热系统一实施例的结构示意图,图2是本实用新型能量转换设备以及供热设备一实施例的结构示意图。
29.在一实施例中,供热系统包括供热设备10、能量转换设备20以及控制设备30。供热设备10与能量转换设备20连接。经过与换热蒸汽进行换热的热网水,能够自能量转换设备20流向供热设备10,以实现供热设备10进行供热。控制设备30能够控制能量转换设备20的工作。控制设备30与能量转换设备20连接,二者可以通过通信连接、电连接等方式进行连接,在此不做限定。其中,控制设备30可以是控制柜机、诸如手机等移动终端等,在此不做限定。
30.其中,供热设备10可以是暖气排、地暖等,在此不做限定。
31.以下本实用新型中的能量转换设备进行举例阐述。需要说明的是,本实用新型能量转换设备并不局限应用于供热系统,还可以应用于工业生产等,在此就不再赘述。
32.请参阅图3,图3是本实用新型能量转换设备一实施例的结构示意图。
33.在一实施例中,能量转换设备包括壳体组件21、换热组件22、管路组件23以及补水组件24。
34.壳体组件21设有存储筒211、电极筒212以及排气阀213。存储筒211用于存储热媒以及向电极筒212补充热媒;其中,热媒可以水与电解液的混合物等,在此不做限定。电极筒212用于加热所容纳热媒形成换热蒸汽。随着电极筒212内对热媒进行加热形成换热蒸汽,
壳体组件21内的压力可能会随之增高,为此排气阀213能够排出部分换热蒸汽以调节壳体组件21内的压力,以提高能量转换设备的安全性。
35.换热组件22设于壳体组件21,其内部具有流动的热网水,热网水能够与换热蒸汽进行换热。换言之,经电极筒212加热形成的换热蒸汽温度高于热网水,能够将热量传导至热网水,使得热网水升温,从而当热网水流入供热设备10(如图1所示)时,供热设备10能够向所处环境释放热量。
36.管路组件23于电极筒212与存储筒211分别连接,以使热媒在二者之间流动,从而调节制热量。也就是说,热媒能够自存储筒211经过管路组件23流向电极筒212,以提高能量转换设备的制热量。热媒还能够自电极筒212经过管路组件23流向存储筒211,以降低能量转换设备的制热量。
37.补水组件24与存储筒211、换热组件22分别连接。部分热网水自换热组件22流经补水组件24,通入壳体组件21,能够补充自排气阀213排出的换热蒸汽,降低能量转换设备出现热媒不足的风险,实现热媒在能量转换设备内部循环使用,还能够减少通过额外的补充热媒系统进行补充热媒的繁冗操作,简化能量设备的运作方式,还能够丰富能量转换设备的功能性,简化能量转换设备的结构。
38.由此可见,本实施例中,通过补水组件24将部分热网水补充进存储筒211内,以补充能量转换设备因内部压力较大而溢出的换热蒸汽,能够简化能量设备的运作方式。溢出能量转换设备的换热蒸汽较少,需要自换热组件22内补充进存储筒211的热网水也较少,对供热系统的供热效果影响微弱。
39.请继续参阅图3。在一实施例中,管路组件23包括第一补水管路231和第二补水管路232。补水组件24包括过滤件241。
40.第一补水管路231连接换热组件22以及过滤件241,第二补水管路232连接过滤件241与存储筒211。热网水经第一补水管路231自换热组件22流向过滤件241,过滤件241能够对热网水进行过滤,过滤后的热网水经第二补水管路232流向存储筒211,可以与存储筒211内充当热媒,降低能量转换设备内热媒总量不足的风险。
41.进一步地,管路组件23还包括第一补水开关件和第二补水开关件(图未示),分别设于第一补水管路和第二补水管路。能量转换设备还包括液位监测件(图未示),液位监测件设于壳体组件21。也就是说,液位监测件可以设于存储筒211内和/或电极筒212内。
42.第一补水开关件、第二补水开关件以及液位监测件分别与外部的控制设备30(如图1所示)连接。液位监测件能够监测壳体组件21内热媒的余量,并反馈至控制设备30,控制设备30基于所接收的热媒余量信息控制第一补水开关件与第二补水开关件导通与否。
43.当液位监测件检测到壳体组件21内热媒的液位小于或等于第一液位值时,控制设备控制第一补水开关件与第二补水开关件导通,以允许热网水补入壳体组件21。当液位监测件检测到壳体组件内热媒的液位大于或等于第二液位值时,控制设备控制第一补水开关件与第二补水开关件关断,无需将热网水补入壳体组件21。其中,第一液位值小于第二液位值。
44.例如,第一液位值可以是1000mm,第二液位值可以是1600mm,在实际应用中可根据壳体组件的容积和高度进行调整,在此不做限定。
45.在一替代实施例中,还可以预先计算自排气阀213溢出的热媒的溢出速率,控制热
网水持续以相同速率补入壳体组件,在此不做限定。
46.请继续参阅图3。在一实施例中,补水组件24还包括加热件242,加热件242设于过滤件241与第二补水管路232之间。加热件242能够加热经过滤件241过滤的热网水形成采暖蒸汽,采暖蒸汽经第二补水管路232通入存储筒211,冷凝形成热媒,以对热网水进行进一步提纯。在热网水形成采暖蒸汽时,混杂于热网水中的杂质沉淀于底部,采暖蒸汽向上扩散而进行存储筒211,相当于对热网水进行进一步过滤。
47.并且,受能力转换设备内压力变化的影响,将热网水直接注入存储筒211内时,可能存在存储筒211内压力较大而无法将热网水补充进存储筒211内的情况。而加热热网水所形成的采暖蒸汽,相对热网水更易于进入存储筒211内。
48.具体地,热网水可以直接补充进存储筒211,由存储筒211补充热媒至电极筒212;亦或是,进入存储筒211的采暖蒸汽发生对流,进一步上升至换热组件22,经换热组件22回流至电极筒212,具体回流方式与热媒蒸汽回流至电极筒212的方式相同,将在后文进行详细阐述。
49.请继续参阅图1和图3。在一实施例中,能量转换设备包括压力监测件26,压力监测件26设于壳体组件21,能够监测壳体组件21内部的压力,进而监测能量转换设备内部的压力。压力监测件26与控制设备30连接,以将监测压力反馈至控制设备30。
50.管路组件23包括第一热媒管路233以及第二热媒管路234,均连接电极筒212与存储筒211。第一热媒管路233能够将热媒自电极筒212内导流至存储筒211,第二热媒管路234能够将热媒自存储筒211内倒流至电极筒212。
51.第一热媒管路233与第二热媒管路234分别设有第一热媒开关件2331与第二热媒开关件2341。第一热媒开关件2331与第二热媒开关件2341分别与控制设备30连接,控制设备30控制第一热媒开关件2331导通与否以控制是否允许热媒自存储筒211流向电极筒212,以及控制设备30控制第二热媒开关件2341导通与否以控制是否允许热媒自电极筒212流向存储筒211。
52.可选地,第一热媒管路233可以与连通管路235连通,这意味着存储筒211的热媒流经第一热媒管路233,通过第一热媒开关件2331泵入连通管路235内,进而流入电极筒212,简化能量转换设备的管路结构。
53.再进一步地,液位监测件设于电极筒212内,以在能量转换设备启动时,控制设备30控制第一热媒开关件2331导通,存储筒211内的热媒补充进电极筒212内。
54.在能量转换设备以稳定功率运行时,壳体组件内的液位基本保持不变,存储筒211可以无需向电极筒212内补充热媒,第一热媒开关件2331保持关断,即第一热媒管路保持关断,以阻止热媒自存储筒211流向电极筒212。
55.如上文所提及的,在改变能量转换设备的制热量时,通常是改变电极筒212内热媒的余量。热媒流入电极筒212时能够提高制热量;热媒自电极筒212流出时能够降低制热量。
56.考虑到目前现有的能量转换设备在提高制热量(诸如加热功率等)时,负荷变化引起能量转换设备内部气体剧烈波动。能量转换设备内部压力快速升高,达到排气阀213限定压力时,排气阀213开启排出换热蒸汽,导致能量转换设备内部热媒损失。此时,通常需要额外补入大量热媒,影响设备长期稳定运行。
57.为此,本实施例中,当压力监测件26监测到压力大于或等于第一预设值时,控制设
备30控制第一热媒开关件2331关断第一热媒管路233。当监测压力小于或等于第二预设值时,控制设备30控制第一热媒开关件2331导通第一热媒管路233。
58.如是,能够保持能量转换设备在运行过程中压力保持微正压状态,即微大于标准大气压,以使能量转换设备内热媒的温度微高于标准大气高,例如水的温度可超过100℃,同时微正压状态有利于保障能量转换设备的安全性。
59.其中,第一预设值大于或等于第二预设值,二者具体差值可根据实际应用场景进行限定。
60.举例而言,第一预设值和第二预设值可以是表压,也可以是绝对压力,在此不做限定。表压指总绝对压力超过周围大气压力之数或液体中某一点高出大气压力的那部分压力。
61.以第一预设值和第二预设值为表压为例,第一预设值可以是45kpa(即绝对压力为146.32545kpa),第二预设值可以是20kpa(即绝对压力为121.32545kpa)。上述数值为举例说明,并非对本实用新型中第一预设值与第二预设值的具体数据进行限定。也就是说,在向电极筒212内补充热媒时,能够结合压力信息对是否补充热媒进行控制,当监测压力超出安全范围时,则暂缓补充热媒,当压力恢复至安全范围时,则恢复补充热媒。若监测压力始终小于或等于第一预设值时,结合液位监测件所监测的液位信息,控制设备控制第一热媒开关件2331以预设液位提升速率补充热媒,直至达到能量转换设备的目标功率/壳体组件的目标液位。
62.进一步地,排气阀213也可以与控制设备30连接。当监测压力大于或等于第三预设值时,控制设备控制排气阀213导通以允许壳体组件21内的气体溢出,以使得能量转换设备内的压力处于安全范围之内;当监测压力小于或等于第一预设值时,控制设备控制排气阀213关断。以第三预设值为表压为例,第三预设值可以是50kpa(即绝对压力为151.32545kpa)。
63.请结合参阅图3和图4,图4是图3所示能量转换设备相关方向的结构示意图。
64.在一实施例中,电极筒212的开口方向a与存储筒211的开口方向b相同。
65.如是,可以将电极筒212与存储筒211并列设置,以缩小能量转换设备的高度,提高能量转换设备的紧凑性。并且,当能量转换设备的高度降低后,有利于丰富能量转换设备的应用场景。
66.进一步地,电极筒212与存储筒211的相对方向c可以与换热组件22的延伸方向d平行,还可以垂直于换热组件22与存储筒211、电极筒212的相对方向e,进一步提高能量转换设备的紧凑性。
67.请继续参阅图3。在一实施例中,壳体组件21包括连接壳体214,连接壳体214设于换热组件22与电极筒212之间。连接壳体214设有回流孔2141。管路组件23包括连通管路235,连接电极筒212与回流孔2141。
68.换热蒸汽与换热组件22的热网水进行换热后,会因为热量传导至热网水而冷凝形成的热媒,热媒受重力作用滴落至连接壳体214,经回流孔2141流入连通管路235,基于液位差原理,通过连通管路235流回电极筒212,用于后续加热再次形成换热蒸汽,实现热媒的循环利用。
69.请继续参阅图3。在一实施例中,能量转换设备还包括电参数检测组件27,电参数
检测组件27设于壳体组件21的金属部分,能够检测接地电阻和/或对地电压,以判断能量转换设备是否出现异常,提高能量转换设备的可靠性。
70.请继续参阅图3。在一实施例中,电极筒212设有若干电极2121,若干电极2121绕电极筒212开口的圆周方向均匀分布,用于与外部电源连接。
71.以三相负载为例,电极筒212内电极2121的数量可以为三个,即三相电极2121。各电极2121绕电极筒212圆周方向均匀分布,即各电极2121之间间隔120
°
。外部电源的三相电分别与三相电极2121连接,热媒可作为负载电阻。
72.亦或是,请参阅图5,图5是本实用新型电极筒以及电极一实施例的结构示意图。图5中举例展示了电极筒212内电极2121的数量为六个,即三相六级的实施方式。各电极2121绕电极筒212圆周方向均匀分布,即各电极2121之间间隔60
°
。其中,x1、x2、x3分别用于表示不同相电极,同相电极连接同一相电路,不同相电极互成120
°
。在三相负载平衡的情况下电极筒212表面筒体电流约为0,实现电极筒212可靠接地。三相电极2121与电极筒212均可以采用ptfe(poly tetra fluoroethylene,聚四氟乙烯)材料进行绝缘。
73.综上,本实用新型能量转换设备中具有能够替代反渗透纯水补水装置的蒸汽冷凝补水组件。具有低电流密度、高绝缘强度的电极筒结构。本实用新型还具有稳定的压力以及水温的控制策略,减少因水位波动引起的功率不稳定。能量转换设备可以整体采用不锈钢等材质,有利于延长能量转换设备具有耐腐蚀性良好的优势,进而有利于延长能量转换设备的使用期限。
74.对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本实用新型。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本实用新型的精神或范围的情况下在其他实施例中实现。因此,本实用新型将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1