气体流量控制器的制作方法

文档序号:111680阅读:313来源:国知局
专利名称:气体流量控制器的制作方法
本发明是关于专门用电器装置驱动的气体流量控制器,此流量控制器用于控制供给厨房机械、加热炉或热水供应炉的燃油气等可燃气的燃烧量。
根据燃烧对象的情况,气体流量控制器适用于要求控制气体的燃烧量的多种应用。近来,通过调节用电量来控制这种控制,很简单但又经常使用的控制器是由图1所示具有电磁阀组成的控制器,该控制器包含有若干个相互并联安装在通向燃烧器1的多个气体通道2上的电磁阀,以及若干个具有不同直径的孔口,而这些孔口都串联到对应的电磁阀上。当所有的电磁阀3打开,达到最大的气体燃烧量,而当仅仅具有最小直径的孔口4的电磁阀打开时,就达到最小的气体燃烧量。根据多个电磁阀的组合,气体燃烧量就可在最大和最小燃烧量之间阶跃地变化,很显然,当所有电磁阀关闭,燃烧也就停止。
图2所示为一可连续改变燃烧量的气体控制器之可供选择的实例。沿着进口6和出口7之间的气体通道5上有一个阀门口8和阀门9,该阀的端点由附有永久磁铁11的膜片10支撑着。由磁铁心12和激磁线圈13组成的电磁装置14面对永久磁铁安装,根据输入激磁线圈13的电流大小来调节进入气体通道5的气体流量,尤其当电流流过激磁线圈13就使得磁铁芯12的极性引起对永久磁铁111产生斥力,阀门9便从阀门口8移开以允许气体流出。出口7处的气体压力由斥力大小和膜片10的有效压力承受面所决定,这样根据输入激磁线圈13的电流大小便能控制位于气流下游端燃烧器上所施加的气体压力。与上述情况相反,如果一软的弹性件15加到阀门9的表面,当电流不输入激磁线圈13时,永久磁铁11就吸引磁铁芯12,气流就中断。(请参阅日本未经审查实用新型公开号为NO55-49137)。
图3至图10所示为另一个具有手动开关的气体控制器实例,它能多级调节气体燃烧量。在气体开关中,壳体18有一气体进口16和出口17,关闭件21可转动地安装,在它的侧壁有一气体通气口19与气体入口16相配合,关闭件21的轴向形成一导向孔20,与气体通气口19相连。在开关壳体18中形成了其通道端在下游与气体出口17相通的小缩减比的第一通道22、中缩减比的第二通道23和大缩比的第三通道24。通过在关闭件侧壁形成的气体通气口25和26,第一和第二通道22和23的端部在其上游向导向孔20打开,第三通道24的端部在其上游向开关壳体18底面的腔室27打开,此腔室与导向孔20相连,所以气体流量能分三级变化(请参阅日本未经审查实用新型公开号为NO59-21324)。
在上述实例中,如果控制轴28压下,而先导阀29打开,导向孔20通过在气流下游的侧壁上形成的气体通气口30和阀29与先导气体出口31相连。一个与控制轴28相配合的压电点火装置32和肉眼辨认转动位置的转动显示装置33都安装在控制轴28的基座上。
上述常规流量控制器发现并不满意,尤其图1所示实例需要相当多的电磁阀,结果造成控制器尺寸大,这就不适于装在其它应用装置上,深入一步,因为当全部电磁阀打开时,总电磁变大,所产生的热量影响到与之相连的装置而且还需要庞大和昂贵的供电线路。图2所示的控制器有一最大流量与最小流量比值(即缩减比)的限定。由于当阀门口8的一部分与阀门9接触时,阀门口8处的空隙变得很小,这样电流和输入气体压力之间变化关系的重复性变得不稳定,因此,对于需要可供选择的缩减比的实际应用,这种控制器就不适用了。由于永久磁铁和磁路的制造误差,对各个产品就会有不同的电流与气压之间的变化关系,因此在产品制造时就必须确定最大和最小燃烧量时的电流值,此外,当电流未输入时,依靠永久磁铁的吸力施加到阀门上的压力是微弱的,就不能取得可靠的气密性。
在图3至图10所示实例中,气体从关闭件21侧壁所形成的气体通气口19引入,通过内导向孔20既可导入关闭件21侧壁的通道22,23又可导入与关闭件21底腔27相通的通道24,这样气体可受到三种调节即大、中、小缩减比的调节,并从气体出口17输出。因此,如果气体需要多级调节,例如五级或六级调节,这就需要采用增大直径的大尺寸的关闭件21。由于此原因或其他原因,上例的控制器不适宜大量生产,因用这种控制器装在家用器具上外部尺寸太大。
在图6至图9中,上图表示图4中的关闭件21沿X-X剖面线所取的剖视图,中图表示图4中的关闭件21沿Y-Y剖面线所取的剖视图,下图表示图4中关闭件21沿Z-Z剖面线所取的剖视图。
本发明是针对解决上述常遇到的难题而提供一种能取得大的气体流量缩减比和高精度的气体流量且操作所需的电能很小这样一种流量控制器。
本发明的气体流量控制器包含有一个用于变换打开或关闭在气路上相互平行布置的多个通道的开关;一个具有与多个通道对应的多个孔口的多孔板;一个用于转动开关的马达驱动装置;一个具有安装在开关轴上的位置信号发生器和响应位置信号的位置判断电路、用于判断开关的目前位置的位置确定装置;以及一个响应目标信号和来自位置确定装置的目前位置信号以对马达驱动装置发送驱动信号的驱动控制装置。
在本发明气体流量控制器的上述结构中,依靠马达驱动装置的驱动力来转动开关达到变换、打开或关闭这些多个通道依照开关停止位置,能选择气体流过的一组通道处于予先确定的状态。在通道上备有具有不同直径的多个孔口的多孔板。依照开关停止位置来确定穿孔板的一组所要求的孔口,就能使气流从最大的燃烧量到最小的燃烧量成阶跃变化。依靠孔径大小来确定缩减比,这样缩减比可以按要求来设计。深入一步,既然气体流量精度只取决于孔径,这就能达到高精度。在使开关停止时使用的位置确定装置一直用装在开关轴上的位置信号发生器来监视目前位置,而目前位置包括开关停下来时的位置和开关尚未停下时的中间位置。当由于燃烧量需要改变,目标位置也相应改变,在确定开关是顺时针或逆时针转动后,通过目前位置与目标位置的比较,驱动控制装置就向马达驱动装置发出一个驱动信号。当目标位置与目前位置重合在一起,驱动信号就终止以使开关停下。转动马达驱动装置只需很短时间,在此期间,气体燃烧量就改变了,结果,所产生的热量可忽略不计。在电源额定值内,电源工作很短时间,因而就能很容易实现采用体积小、重量轻的电源。很明显,马达驱动装置的工作时间比气体燃烧时间短得多。
图1表示一常规气体流量控制器的示意图。
图2表示另一常规气体流量控制器的剖面图;
图3表示一常规开关的局部剖视图;
图4是常规的关闭件的前视图;
图5为图4所示关闭件的纵向剖视图;
图6、7、8、9为图4所示关闭件的各个转角位置时的开关横向剖视图;
图10是根据先有技术表明气体流量变化的曲线图;
图11表示根据本发明气体控制器的第一个实施例主要部件的剖视图;
图12是气体控制器关闭件的透视图;
图13表示关闭件的孔与槽之间位置关系的展开图;
图14表示多孔板的平面图;
图15表示位置信号发生器的平面图;
图16表示绝对型编码器的滑动接触面的图案,图17表示位置信号发生器的另一个实例之特性曲线图;
图18表示位置信号发生器的另一个绝对型编码器之滑动接触面的图案;
图19表示根据本发明气体控制器的第二个实施例的主要部件剖视图;
图20(A)和图20(B)是关闭件的前视图和侧视图;
图21表示关闭件的孔、槽与在壳体上形成的通道之间位置关系展开图;
图22是多孔板的平面图;
图23(A)和图23(B)是联轴节轴的前视图和侧视图;
图24表示绝对型编码器的滑动接触面的图案;
图25(A)和图25(B)表示开关完全关闭位置时上游和下游端关闭件槽与通道之间的关系图;
图26表示根据本发明气体控制器的第三个实施例主要部件的剖视图;
图27是马达停止时的电流特性曲线图;
图28表示根据本发明气体控制器的第四个实施例主要部件的剖视图;
图29是用于说明气体控制器控制操作中的曲线图;
图30表示根据本发明气体控制器的第五个实施例主要部件的剖视图;
图31表示根据本发明气体控制器的第六个实施例主要部件的剖视图。
下面,参照附图来说明本发明的实施例。在图11中,位于气体通道34处的开关35是由绕其中心轴转动的关闭件36和关闭件36外的壳体37所构成。关闭件有一如图12所示的外观,在它的轴向形成了若干个孔38a、38b、38c、38d和38e而在它的园周方向形成不同长度的槽39b、39c、39d、和39e并分别与相应的孔相连通。孔38和槽39如图13展开图所示,它们之间以角度关系来配置。沿径向穿过壳体壁,在壳体上形成若干通道40a、40b、40c、40d和40e,各通道在高度方向都对应关闭件36的各个孔38,在通道的外端装上有各种不同孔径的孔口41a、41b、41c、41d和41e的多孔板42,各个孔口都对应各个通道40,在多孔板42的下游端,依靠管接头43把各通道联在一起通到燃烧器去(图上未示出)。图14是多孔板42的平面图。关闭件36的上端部分由图12所示D字形轴44组成,切口45就在轴44的端部而D字形轴44插入诸如图15所示编码器或电位器那样的位置信号发生器46转动部分中心所形成的D字形孔47。借助具有输出轴48的马达驱动装置49,该输出轴与切口45结合就能带动轴44旋转,马达驱动装置49通常由马达50和增加转矩的减速齿轮箱51组成。图15表明使用四位数编码器的位置信号发生器的一个实例。图16所示为编码器的滑动接触面的图案。用来转动轴44的编码器的转动部分有一径向延伸的滑动刷,滑动刷转动时要同时保持最内图环形接触面与其它4个外圈环形接触面46b之间的接触,最内圈环形面与各个外圈环形面之间的电接触在画有阴影线的部分是接通的,在其它部分是断开的。假定电接通状态用“1”表示而断开状态用“0”表示,依最里面到最外面的次序,电刷的角度分别用1111表示0°角,用1110表示0°~60°角的中间部分,用1101表示60°角,用1100表示60°~120°角的中间部分,用1011表示120°角,用1010表示120°~180°角的中间部分,用1001表示180°角,用1000表示180°~240°之间的中间部分,用0111表示240°角,用0110表示240°~300°角的中间部分,用0101表示300°角以及用0100表示300°~0°角之间的中间部分。随着关闭件36的转动,这些接通断开信号的组合就变化。假定图13所示关闭件展开图上所用的角度与图16所示编码器图案上所用的角度相重合,并且假定若干个在壳体37上形成的通道40所处的位置都位于0°角位置时,那么,信号1111表示开关35的停止位置,信号1101表明气体流过多孔板42所有的孔口41取得了最大的燃烧量,接着通过信号1011、1001到0111表示燃烧量逐渐减小,信号0101表明那时气体只流过孔41e取得最小的燃烧量。依靠由位置判断电路52和位置信号发生器46所组成的位置确定装置53就能判断出开关的位置,其中电路52接收来自信号发生器46的信号,把此信号与事先贮存的位数信号进行比较。根据燃烧对象的情况或起动,停止指令所确定的目标位置信号T1和来自位置确定装置53的目前位置信号T2都输入到驱动控制装置54。驱动控制装置54使马达50向可以获得目标位置信号T1的方向转动,一旦达到目标位置,马达50的电源就停止供电。
在上述气体控制器的结构中,仅仅依靠多孔板42上各个孔口41的孔径来确定在各个开关转动位置时气流的缩减比和精度,因此就能容易获得气体流量的大的缩减比和高的精度。如果气体流量不需改变,则只需驱动位置确定装置53,这样能耗就降低。具体地说,通过安装有图16所示图案的绝对型编码器,关闭件便能准确无误地停在所要求的位置上。结果,既使在关闭件36上的孔38与壳体37上的通道40在停下时会有些位移,也不必害怕可能会引起的燃烧量的降低。所以气流流过的通道40和孔38的直径余量做到尽量地小,结果就可以把关闭件36设计成较小的直径和长度,同时也就减小了马达驱动装置49的输出转矩。
图17所示为本发明所用位置信号发生器的另一个实例。该例中,所用的电位器所给出的电阻值正比于转动角,因此就能指示出关闭件36的目前位置。用此法,好处就在于联到位置信号发生器46和位置判断电路52的信号线的数目可减少。
如图11所示在多个通道40下游处采用了一个单通道。然而只有一个穿过多孔板的孔口41e的通道可不依附于其他通道而独立安置用于副燃烧器。
迄今在上述实施例中所说明的气体流量控制器具有能达到大缩减比的效果,同时保持气体流量精度和低的能耗以及下列效果(1)由位置信号发生器和位置判断电路组成的位置确定装置的结构做到当需要时可在任何时候都能达到关闭件的目前位置,因此,作为对付瞬间电源故障的措施,不需要备用电源或电容器,这不同于采用增值型编码器依靠加或减对应于与参考位置的偏离量的脉冲数来估计目前位置的情况。深入一步,在长时间电源故障恢复以后,不需要采用使编码器回到参考位置的操作程序,这样便简化了驱动控制装置。
(2)位置信号发生器的结构做到能检测到开关的停止位置和中间位置,所以,由于马达驱动装置的惯性当开关超越停止位置,位置信号发生器立刻检测到开关已超越停止位置,并把开关朝相反方向驱动,结果,就能得到对气体流量变化快的响应速度。
(3)既然气体流量控制器是由其关闭件可转动的开关所构成,这就能取得开关在停止位置的高可靠性。
图18所示为位置信号发生器46的又一个实例,其中采用了绝对型编码器,它可获得以相对于转动角的二进制位数编码(格雷码)信号的形式分别指定开关的停止位置和中间位置的若干个输出信号。用于使轴44转动的编码器的转动部分有一沿径向延伸的滑动刷,该滑动刷转动时要同时保持最内圈环形接触面与其它4个外圈环形接触面之间的接触。最内圈环形面与各个外圈环形面之间的电接触在画有阴影线的部分是接通的,在其它部分是断开的。联到最内圈共同接触面的接线柱用标号55来表示,其它联到外圈接触面的接线柱以从里到外的次序分别用标号56a,56b,56c,和56d来表示,而如图18所示的角度区域分别用下述标号A、B、C、D、E、F、G、H、I、J、K、和L来表示。共同接线柱和各个外圈接线柱之间取得的信号的变化如表1所示,其中假定电接通状态用“1”表示,断开状态用“0”表示。
表1
如表1所示,当区域改变时,绝对型编码器的输出信号通过变化一个位数而改变它的内容,这样就得到二进制位数编码(格雷码)信号。随着关闭件的转动,这些四位数的信号组合就改变。假定图13所示的关闭件展开图所用的角度刚好与图18所示的编码器图案所用的角度重合,这时壳体37上形成的若干通道40所处的位置定义为0°角位置,于是,信号1111表示开关35的停止位置,信号0101表示气体流过多孔板42所有孔41且燃烧量为最大,接着通过信号1001,0000,1100表明燃烧量逐渐减小,信号0110表示那时气体只流过孔41e且得最小的燃烧量。依靠由位置判断电路52和位置信号发生器所构成的位置确定装置53来判断开关的位置,其中电路52接收来自信号发生器46的信号,并把此信号与予先贮存的位数信号进行比较。根据燃烧对象的情况或起动、停止的指令所确定的目标位置信号T1和来自位置确定装置53的目前位置信号T2都输入到驱动控制装置54,驱动控制装置54使马达50朝可以获得目标位置信号T1的方向转动。一旦达到目标位置,马达50的电源就停止供电。
在上述气体控制器的结构中,只依靠多孔板上各个孔口的孔径确定开关在每个转动位置时气体流量的缩减比和精度,因此就能容易获得气体流量大的缩减比和高的精度。要是气流毋须更动,那么只需驱动位置确定装置53,这样能耗就降低。具体地说,通过安装图18所示图案的绝对型编码器,关闭件便能准确无误地停在所要求的位置上。结果,即使在关闭件36上的孔38以及壳体37上的通道40在停下时会有些位移,也不必害怕这会引起燃烧量的降低。所以气流流过的通道40和孔38的直径余量做到尽量地小,结果就能把关闭件36设计成较小的直径和长度,同时也就减小了马达驱动装置49的输出转矩。
如图11所示,在多个通道40的下游处采用了一个单独通道,然而只有一个通过多孔板上孔口41e的通道可不依附于其它通道而独立安置用于副燃烧器。
迄今在上述实施例中所说明的气体流量控制器具有能达到大缩减比的效果,同时保持气体流量的高的精度和低的能耗以及下列效果(1)位置信号发出器发出二进制位数编码输出信号(格雷码信号),因此当位置信号在停止位置与靠近停止位置的其他位置之间变化时的任何颤动会减小到一位数的变化。这样,来自位置信号发生器的信号成为变化前和变化后二个信号中的一个,而毋须害怕位置判断电路所判断开关的位置会太偏离正确位置。对气体流量控制器这点特别重要,因为能避免由于过量气体供应所引起的过热,一旦气体被截止,就能避免释放出气体的危险。
(2)位置信号发生器的结构做到能检测到开关的停止位置和中间位置,所以,由于马达驱动装置的惯性当开关超越停止位置时,位置信号发生器立刻检测到开关已超越停止位置,并把开关朝相反方向驱动,结果,就能得到对气体流量变化快的响应速度。
图19至图23所示为气体流量控制器第二个实施例。第二实施例的位置信号发生器采用了绝对型编码器,它能获取分别分配到停止位置和中间位置的若干个输出信号。此实施例的位置信号发生器的要点在于只有完全关闭位置前后的中间区域被各个分割,从位置信号发生器来的输出信号被分配到这些分割区域。第一实施例中图11到图16所示分割区的相似部件用相同的标号表示,详细说明此处从略。
在位置信号发生器46中,具有图24所示图案的绝对型编码器的转动部分有一径向延伸的滑动刷,滑动刷转动时要同时保持最内圈共同环形接触面与其它四个外圈环形接触面之间的接触。在图24中,最内圈环形面与各个外圈环形面之间的电接触在画有阴影线的部分是接通的,在其它部分是断开的。接到最内圈共同接触环的接线柱用标号58表示,其它接到外圈接触环的接线柱分别用标号57a、57b、57c和57d来表示。在图24所示的各个角度位置,由接触面接通位数和断开位数所组成四位数码输出信号在表格2中详细列出,其中假定电接通状态用“1”表示,电断开状态用“0”表示。
表2
标号(a)到(b)表示在表格2和图24中的角度,相当于图21所示的标号(a)到(g)的角度。假定关闭件位于图21所示的角度(a)位置而同时位置信号发生器46的滑动刷在区域A,那么就获得1111信号。当滑动刷逆时针转动,转到区域D之中,那么气体仅流过孔口59f到副燃烧器。在这种情况下,获得了1101信号。下一步滑动刷转到F区域,气体流过所有的孔口59a、59b、59c、59d、59e和59f而进入最大燃烧量状态,同时获得0001信号。滑动刷进一步转动,多孔板上孔口的组合就会改变,并转到角度(g)时,在获取信号0010同时进入了最小燃烧量状态。孔口的布置为59a、59b、59c、59d、59e和59f通过在壳体上的通道63a、63b、63c、63d、63e和63f到孔61a、61b、61c、61d、61e和61f或关闭件上的槽62a、62b、62c、62d、62e、和62f,以上布置与图11所示的布置相似。
不同的输出信号分别分配给图24所示在角θ1处分开的区域C和区域B。如果关闭件从角(b)顺时针方向转动以减小图25(A)所示槽62f和通道63f之间的重叠区,那么角θ1即为副燃烧器的熄火角。类似地,如果关闭件从角(g)逆时针方向转动,区域P和区域O即被副燃烧器或主燃烧器的熄火角θ2所分隔。因而,随着关闭件从角(g)转向非燃烧状态,就获得了二个不同的输出信号。
在关闭件各个位置的输出信号形式与燃烧量之间的关系是事先贮存在驱动控制装置54内的。根据燃烧对象的情况或起动、停止的指令所确定的目标位置信号和来自位置确定装置46的目前位置信号相互进行比较后来带动马达驱动装置49以便朝能取得目标位置信号的方向转动马达。当到达目标位置,供给马达的电源也就停止供电。
图23(A)和图23(B)表明一个带有凸出部分66的连轴节轴64,该凸出部分66就插入到关闭件36端头的切口65内,而连轴节轴的相反一端有一凹槽67,马达驱动装置50的输出轴48就插入此凹槽67内,凸出部分66和凹槽67相互都垂直安置。
气体燃烧装置的工作可靠性是至关重要的,尤其在开关完全关闭位置处要灵巧,例如随着气体流动的开始点火装置就同时起动,或者说当燃烧装置一熄火,关闭件必须完全停止气体流动。按照本发明的结构,在完全关闭位置前后,分别提供二个不同位置信号,正好在燃烧器熄火前的位置时也分成二个不同信号。因此,如果关闭件从区域D错误地以顺时针方向转动而不是逆时针方向转动,于是代表区域C的信号和代表区域D的信号也输出以检测错误的转动。这样,能二次检测到错误的操作因而能改正关闭件的转动使之朝正确方向转动而不须对燃烧器熄火。这也可运用于关闭件从区域N错误地转向完全关闭位置的情况,这种重复检查关闭的操作有效地改善了可靠性。
迄今上述实施例所说明的气体流量控制器具有能达到大缩减比的效果而同时保持气流的精度和减少能源消耗以及以下的效果1)因为在完全关闭位置前后分别能获得不同信号,因此能够有利于避免错误的熄火操作。而且如果当关闭件朝着打开位置转动时起动点火装置或其它相连的装置,就能进行检查。因此,防止逸出原气体的功能的可靠性得以改善,而该功能对于安全操作燃烧器是至关重要的。
在图26和27中示出了本发明的气体流量控制器的第三个实施例。该气体流量控制器包括一个响应开关的目标位置信号和来自开关位置确定装置53的信号的操作控制装置71;一个响应操作控制装置71而给马达驱动装置49输入驱动信号的驱动控制装置54,以及一个定时装置70,当电机驱动装置40被驱动使马达回转时,该定时装置70输出一个驱动停止信号并在一预定的时间间隔之后输出一个反向信号。
参照图26,如果在马达驱动装置49工作期间示出一个反方向的目标位置,则通过起动停止控制装置68使电机50立刻停止。但在瞬时停止信号输出后使电机50完全停下还需要一定的时间。如图27所示,使电机停下来所需要的时间ta是指从(时间T=to)输出一个瞬时停止信号到马达停止时刻(即时刻T=t1)的时间,如图27中的电机电流曲线图所描述的那样。定时装置70的时间定得比时间ta要长。当电机反向转动时,从起动/停止控制装置68中输出一个停止信号。此后,在经过一预定的时间间隔后,从起动/停止控制装置68中输出一个反向信号。
至此在上面实施例中所描述的气体流量控制器具有能够在保持气体流量精度和减少能量消耗的同时达到高的缩减比的效果以及下面的一些效果(1)由于使电机瞬时反向转动的反向信号是在停止信号输出之后的一预定时间间隔后输出的,从而避免了在瞬时反向转动时所造成的过量的电机电流,由此提高了电机的耐久性。
(2)可以减小反向转动时施加于减速齿轮系的冲击负荷,从而提高了减速齿轮系的可靠性和耐久性。
在图28和29中示出了本发明的气体流量控制器的第四个实施例。该气体流量控制器包含一个响应开关的目标位置信号T1和来自位置确定装置53的目前位置信号T2的操作控制装置71;一个响应来自操作控制装置71的信号、通过马达驱动装置49调节马达速度的速度控制装置69;以及一个通过马达驱动装置49起动和停止电机的起动/停止控制装置68。
参照图28,位置确定装置53由位置判断电路52和位置信号发生器46组成。在位置确定装置53中的电路52接收一个来自信号发生器46的信号并将该信号与事先存贮的二进制位数编码信号进行比较,由此对开关位置进行判断。一个依据燃烧对象的情况或依据起动或停止指令所确定的目标位置信号T1和一个来自位置确定装置53的目前位置信号T2都输入操作控制装置71。起动/停止控制装置68接收一个来自操作控制装置71的信号,以控制电机50的起动、停止和转动方向。速度控制装置69改变供给电机的功率以调节电机的转动速度。
下面将描述对电机50的控制操作。该描述是针对关闭件从图16中所示的图案中的0度角(编码1111)转到120度角(编码1011)的情况进行的。当发出将关闭件从0度角移至120度角的指令后,该包含了顺时针转动(从图16中看时)和最大供给电压的信息的指令被输入到起动/停止控制装置68和速度控制装置69中。如图29所示在时间T=Tos后立即供给一个最大功率给马达50,因此无论马达50开始通电时的负荷有多大都保证了快速起动响应。马达在最大功率下驱动的最短驱动时间由操作控制装置71预先确定。从位置信号发生器46测出的编码信号随着马达50的转动而变化。当关闭件达到图16中的60度角和120度角之间的中间位置(编码1100)时,在高速控制装置69的控制下,对马达50的功率供给在图29中所示的时刻T=t1s时被减低了,从而降低了马达50的转动速度。当在这降低的速度下转动的马达50使关闭件到达120度角(编码1011)时,由起动/停止控制装置68终止对马达50的供电,同时缩短马达接线端之间的距离以对马达进行制动并使电机50在图29中所示的时刻T=t2s处立刻停下来。由于电机的转速被减低,因此能够在角度稍微超过时使电机停下。这样,在由数码1011所确定的角度范围内确定停止位置是可能的,因此保证了稳定的和精确的气体流量。
至此在上面的实施例中所描述的气体流量控制器具有能够在保持气体流量的精度和降低能量消耗的同时达到高的缩减比的效果,以及下面的一些效果。
(1)一旦在紧接着目标位置之前接收到一个使马达瞬时停止在目标位置处的编码信号时,电机的速度即被减低。因此,可以获得确定开关的关闭件精度的某个最佳位置,由此保证了高精度地控制气体流量。
(2)由于在马达开始通电时在一预定时间间隔内对马达供给最大功率,因此即使在高负荷下开始给马达通电也能够保证足够的转距和转速。
(3)位置信号发生器设计得能检测出开关的各种停止位置和各种中间位置。因此,即使关闭件由于马达驱动装置的惯性而超过停止位置,也可以立刻将其检测出来并使马达反向转动。结果,随着气体流量的改变而能获得快的响应速度。
在图30中示出了本发明的气体流量控制器的第五个实施例。该气体流量控制器包括一个输出对应于开关位置的位置信号发生器46;一个响应来自位置信号发生器的信号、用于确定开关位置的位置确定装置53;一个存贮位置信号出现次序、根据目标位置信号T1和来自位置确定装置53信号T2来判断位置信号是否正确的操作控制装置71;以及一个响应来自操作控制装置71的信号、用于控制马达驱动装置49的驱动控制装置54。
参照图30,位置确定装置53利用安装在开关轴上的位置信号发生器46始终监测着目前位置,该目前位置包括将使开关停止的位置和不使开关停止的其它中间位置。当由于燃烧量需要改变而要改变目标位置时,在通过将目前位置与目标位置进行比较以确定是顺时针还是反时针转动开关后,操作控制装置71发出一个驱动信号经过驱动控制装置54送入马达驱动装置49。开关的位置始终由接收来自位置信号发生器46的信号的位置确定装置53监测。当开关到达目标位置时,马达驱动装置49就被停止。这样,气体流量被逐级地改变。由于操作控制装置71存贮位置信号出现的次序,因此,操作控制装置71可以根据目前位置信号、目标位置信号和转动方向来估计下一个信号,由此确定从位置确定装置53连续采样的信号是否是正确的。如果信号不正确,就起动马达驱动装置49使马达速度降低或使马达停止。然后,再次校检该信号看是否是正确地检测了一个不正常状况。
利用位置信号发生器检测不正常状况的过程还将更详细地描述。该描述是针对关闭件在图16中所示的图形中从0度角(编码1111)转到120度角(编码1011)的情况进行。当发出将关闭件从0度角移至120度角的指令后,该包含了顺时针转动(当从图16中看时)和最大输入电压的指令被输送到起动/停止控制装置68和速度控制装置69中。图16的图线中所示的位置信号出现的次序存贮在操作控制装置71中,使得能够根据目标位置、目前位置和旋转方向估计下一个要检测的编码信号。在马达开始通电时的目前编码是1111,估计的下一个编码是1110。因此,如果在马达开始通电时位置信号发生器46发出的信号编码既不是1111也不是1110,就可以认为存在一个不正常状况。如果检测到一个不正常的信号,操作控制装置71就发出一个速度降低信号给速度控制装置69来降低马达50的速度以再次检查信号编码。如果该不正常的信号是由暂时的干扰或噪音引起的,则在大多数情况下,该不正常的信号在上述检查过程中将变成一个正常的信号。如果被确定为一个正常的信号,则马达50恢复到正常的速度。如果在上述检查过程中被确定为一个不正常的信号,操作控制装置71则发出一个停止信号给起动/停止控制装置68使马达50停止。然后,对该信号的编码再进行检查,如果该信号是一个不正常的信号,则将开/闭阀34关闭使气体供给停止,并用例如电气信号器(buzzer)(未示出)指示出不正常的状况。位置信号发生器46发出的信号是在降低马达速度时进行检查的。其原因是由于当电机高速转动时,诸如编码器或电位器等这样的位置信号发生器46可能产生干扰,因此就需要在电机以低速转动或停止后进行这种检查,以便消除由暂时的干扰或噪音所造成的错误检查结果。
如果没有检测出不正常信号,正常的工作过程继续进行,则由位置信号发生器46检测的信号编码随着马达50的转动而变化。当关闭件到达图16中的60度角与120度角之间的中间位置(编码1100)时,在速度控制装置69的控制下减小对马达50的功率供给,从而降低马达50的转速。当以这种低速转动的马达50使关闭件达到120度角(编码1011)时,通过起动/停止控制装置68终止对马达50的功率供给,同时缩短马达50接线端之间的距离以对马达进行制动并使马达50立刻停止。由于马达的转速被降低,因此能够在角度稍微超过的情况下使马达立刻停下来。这样,在由编码1011所确定的角度范围内确定位置是可能的,从而保证了稳定的和精确的气体流量。
至此在上面的实施例中所述的气体流量控制器具有能够在保持气体流量精度和降低能量消耗的同时达到高的缩减比的效果,以及下面的一些效果(1)来自位置信号发生器的信号的次序被存贮起来,以便根据目标位置、目前位置和转动方向估计下一个信号。估计的信号用于检查来自位置信号发生器的信号是否正确。因此,可以检测出不正常的信号以避免错误的工作过程而保证高的可靠性。
(2)为了再次检查被检测的来自位置信号发生器的不正常的信号,马达被减速或停止。因此,可以避免由暂时的干扰或噪音所造成的错误工作过程。
图31示出了本发明的气体流量控制器的第六个实施例。该气体流量控制器包括一个响应来自位置信号发生器46的开关的目前位置信号T2和用于选择关闭件的转动方向的目标位置信号T1的方向选择装置72;以及一个发出代表着由方向选择装置72所选择的方向的驱动信号给马达驱动装置49的驱动控制装置54。方向选择装置72中有一个判断装置73。如果目标位置信号指出开关的完全关闭位置,判断装置73则选择了一个方向使开关能经过最短的距离返回到完全关闭位置。如果目标位置信号指示的不是完全关闭位置,判断装置73则选择一个方向使开关不经过完全关闭位置。
参照图31,位置信号发生器46始终监测着包括将使开关停止的位置和不使开关停止的其它中间位置的目前位置。当由于燃烧量需要改变而要改变目标位置时,方向选择装置72将参考目前位置确定是顺时针还是反时针转动开关。然后,驱动控制装置54起动马达驱动装置49使马达转动。当开关达到目标位置后,马达驱动装置49被停止。在这种情况下,如果目标位置是完全关闭位置,则由方向选择装置72选择最短距离的方向,如果不是完全关闭位置,则选择开关不经过完全关闭位置的方向。如前所述,对马达驱动装置49的驱动只要用很短的时间,在这段时之内将使燃烧量改变。结果,可以忽略产生的热量并且在电源的额定负荷内只工作一段短的时间。因此,可以容易地使用体积小重量轻的电源。显然,马达驱动装置的工作时间要大大地短于燃烧时间。
位置信号发生器46的输出信号图案与关闭件在每一个位置的燃烧量之间的变化关系预先存贮的方向选择装置72中。根据燃烧对象的情况或起动或停止指令来确定的目标位置信号与目前位置信号相互之间进行比较,以便为马达驱动装置49选择转动方向。在这种情况下,方向选择装置72的判断装置73以下述方式工作如果开关从完全关闭位置开始转动,当从图24中看时,马达是反时针方向转动的,以便先点燃副燃烧器。如果使开关转到关闭位置,那么马达是在开关能经过最短距离到达角(a)位置的方向上转动。根据判断结果,方向选择装置72的极性改变装置74使驱动控制装置54改变马达的电源的极性。操作驱动控制装置54使马达电流接通和关闭或使马达的转动停止。
为了避免气体燃烧装置的爆燃,采用一个着火顺序,首先点燃副燃烧器,然后再点燃主燃烧器。通过转动本发明中的关闭件37可以容易地实现这个顺序。如果为了点燃燃烧器,关闭件错误地从角(a)(图24)处顺时针转动,在区域P和O的位置信号能够被立刻检测出来,因此可以通过错误操作本身将错误检测出来。
由于一当接收到停止指令时,开关就在从目前位置到关闭位置的最短距离的方向上被转动,因此能够有利地缩短开关的滑动距离,从而有助于改善具有一定寿命的开关的耐用性。
如至止所描述的,这个实施例的气体流量控制器能够达到前面所述的相同的效果,以及下面的一些效果。
(1)由于关闭件在经过最短的距离达到完全关闭气体供给的关闭位置方向上转动,因此可以缩短从开始需要停止气体供给到使燃烧器熄火之间的时间。这就避免了对只有小热容量的物体的过量加热。尤其是可以避免可能由于过分加热而引起的饮具中的食物的溢出。
(2)在气体流量控制器的结构中,开关的关闭件是转动的,因此,与电磁阀相比,其阻止气体流动的可靠性是极高的。
(3)即使代表着不使关闭件停止位置的那些中间位置信号也可以由位置信号发生器获得。因此,如果关闭件正在由方向选择装置指示的方向上转动时,可以迅速地对其位置信号进行检查,由此改善了工作的可靠性。
下面将描述图11至图16中所示的本发明的第一个实施例的另一个要点,特别是开关35。
开关35包括一个关闭件36,在该关闭件36的周壁上有多个孔38和槽39,通过转动关闭件36,这些孔38和槽39使多个通道40变换、打开和关闭。这些通道40与关闭件36的孔38和槽39相对应,还有一些与这些通道40相对应的孔口41,其中相对于前一个槽每个槽39的周向长度设置得比离开关闭件36的轴44较远的位置上的槽39的周向长度要长。
采用这个实施例的上述结构,通过关闭件36的转动,使多个通道40变换、打开和关闭。由气体流过的一组通道40可以根据关闭件36的停止位置设置在预先确定的位置上。在每个通道40处设有一个不同直径的孔。这样,通过根据关闭件的停止位置选择一组气体流过的所要求的孔口41,就能够从最大燃烧量到最小燃烧量逐渐地改变气体流量。由于缩减比是依据孔口的直径确定的,因此,可以按照希望那样来设计高的缩减比。由于气体流量精度也仅仅取决于孔口的直径,因此也可以保证高的气体流量精度。由于气体流过关闭件壁上的孔38和槽39到达孔口41,气体流量逐渐变化(例如变化五级或六级)的结构得以容易地实现。由于采用了结构简单的通道,因此可以容易地尺寸紧凑地对气体流量控制器进行成批生产。此外,相对于前一个槽39,关闭件36的每个槽39的周向长度设置得比处于距关闭件36的轴44较远位置的槽39的周向长度要长。因此,在对关闭件36的外周壁进行切削加工时(此时关闭件36的轴44用夹具夹紧并使其旋转,而且切削刀具切削关闭件36的外周壁),将不可能造成所谓的“振刀”现象,即造成不规则的波纹切削表面,因为在关闭件36的轴44的附近,关闭件36的挠曲强度很高,而在这些位置上只有那些周向长度较短的槽。因此,可以保证关闭件36的例如圆度、直度和表面粗糙度的稳定的加工精度。根据采用在靠近轴44处加工周向长度较长的关闭件的试验,在切削加工过程中出现了振刀现象,从而不能保证关闭件的圆度、直度和表面粗糙度的稳定的加工精度。用这样的关闭件组装的开关被往复转动以对其进行耐久性试验。根据试验结果,在还没有达到目标转数的很少的一些转数之后就出现了以下的一些问题,即,由于缺乏润滑脂,开关壳体和关闭件之间出现部分接触,开关壳体和关闭件之间的滑动表面上发现了部分磨损伤痕,以及发生泄漏等。对于这种情况,采用本实施例的结构的关闭件能够顺利地达到目标转数。
如上所述,该实施例的气体流量控制器能够达到以下的效果(1)通过关闭件的转动而对多个通道进行变换、打开和关闭的全部孔和槽都制作在关闭件的周壁上。这些孔和槽能够全部地或单独地与孔口相联通。因此,有利于获得具有高精度的气体流量并容易地且尺寸紧凑地进行成批生产的气体流量控制器。
(2)由于关闭件的每个槽的周向长度在靠近轴的位置设置得较短,因此,关闭件的例如圆度、直度和表面粗糙度的稳定加工精度以及突出的工作耐久性得以保证。
下面将对图19至24中示出的本发明的第二个实施例的另一个要点进行描述,尤其是开关35。
开关35包括关闭件36,在关闭件36的周壁上有一些孔61和槽62,当转动关闭件时用于变换、打开和关闭多个通道40;具有与关闭件36的孔61和槽62相对应的多个通道40的开关壳体37;以及对应于多个通道40而作的一些孔口41;其中导向孔36a位于关闭件36内并在其轴向方向上,关闭件36的底部是开着的,相对着多个孔口59中的直径最大的孔口59a的关闭件36的通道61a设置在锥形关闭件36的直径大于对应于其它孔口的其它通道的位置处的直径的地方。
采用本实施例的上述结构,通过转动关闭件36,使多个通道60变换、打开和关闭。根据关闭件36的停止位置可以将气体流过的一组通道60确定在预先确定的位置上。每个通道处都设有一个不同直径的孔口59。这样,根据关闭件的停止位置,通过按要求选择一组气体流过的孔口59,就可从最大燃烧量到最小燃烧量逐级地改变气体流量。由于缩减比是根据孔口的直径确定的,因此可以按照人们的希望设计高的缩减比。同样也可以保证高精度的气体流动,因为它仅仅取决于孔口的直径。由于气体从关闭件内沿着其轴向制作的并且其底部为开着的导向孔36a进入,然而流过关闭件36的孔61和槽62到达孔口59,因此容易实现气体流量逐级变化(例如五级或六级)的结构。此外,由于与具有最大直径的孔口59a相对应的通道布置在锥形关闭件36具有较大直径的位置上,因此在小尺寸的关闭件36中能够获得横截面积相对大的通道。这样,即使使用小尺寸的关闭件,也能保证通道中压力损失很低。
如上所述,本实施例的气体流量控制器能够达到以下的效果(1)对应于具有最大直径的孔口的关闭件的通道布置在锥形关闭件的直径大于对应于其它孔口的其它孔道处的直径的位置上。因此,即使采用能够多级改变气体流量的结构,也可以获得具有大流通面积的通道的和在通道中低压力损失的,并且是紧凑的气体流量控制器。
(2)由于对应于具有最大直径的孔口的通道布置在关闭件具有较大直径的位置处,因此,通过以等分的角度转动关闭件对气体流量进行多级改变的设计方案可以很容易地实现。
(3)由于所有的孔口可以制作在一块单独的板上,从而能够容易地实现气体原料的大量生产和改变。
权利要求
1.一种气体控制器包括一个用于变换、打开和关闭多个通道的开关,一个具有与所述多个通道相对应的多个孔口的多孔板,一个用于驱动以使所述开关转动的马达驱动装置,一个具有一个安装在所述开关的轴上的位置信号发生器和一个响应来自所述位置信号发生器的信号以判断所述开关的位置的位置确定装置,以及一个响应目标位置信号和来自所述位置确定装置的目前位置信号以对所述马达驱动装置发送驱动信号的驱动控制装置。
2.如权利要求
1所述的气体控制器,其中所述位置信号发生器由绝对型编码器构成,所述编码器采用多种组合的二进制位数编码信号指定多个开关停止位置和中间位置。
3.如权利要求
1所述的气体控制器,其中所述位置信号发生器由绝对型编码器构成,由所述编码器输出的用于指定多个开关停止位置和中间位置的信号是相应于转动角度的二进制位数编码(格雷码)信号。
4.如权利要求
1所述的气体控制器,其中所述位置信号发生器由绝对型编码器组成,由所述编码器的输出信号指定多个开关停止位置和中间位置,且其中只有开关的完全关闭位置前后的那些中间位置进行了划分以对应不同的输出信号。
5.如权利要求
4所述的气体控制器,其中在所述位置信号发生器中,在所述开关的完全关闭位置前后的中间位置处的划分点设定在当所述开关朝着完全关闭位置转动而气体通道刚要关闭之前的位置上。
6.如权利要求
1所述的气体控制器,包括一个响应所述开关的目标位置信号和来自所述位置确定装置的信号的操作控制装置,一个响应来自所述操作控制装置的信号用于对所述马达驱动装置发送信号的驱动控制装置,和一个用于当所述马达驱动装置置于反向转动时,输出一个驱动停止信号,而经过一预定时间间隔之后,又输出一个反向信号的定时装置。
7.如权利要求
1所述的气体控制器,包括一个响应所述开关的目标位置信号和来自所述位置确定装置的信号的操作控制装置,一个响应来自所述操作控制装置的信号,用于调节由所述马达驱动装置所确定的速度的速度控制装置,和一个用于起动和停止所述马达驱动装置的运转的起动/停止控制装置。
8.如权利要求
7所述的气体控制器,其中所述位置信号发生器贮存目标位置信号前后的估计的信号,由此当检测所述估计的信号时,所述速度控制装置使所述马达驱动装置在降低的速度下运转,而当检测到所述目标位置信号时,所述起动/停止控制装置使所述马达驱动装置的运转停止。
9.如权利要求
8所述的气体控制器,其中在开始驱动所述马达驱动装置时,在一预定时间间隔内输入最大的功率,而不管此时的位置信号如何。
10.如权利要求
1所述的气体控制器,包括一个输出对应于所述开关的位置的信号的位置信号发生器,一个响应所述位置信号用于判断开关的位置的位置判断装置,一个贮存位置信号出现的次序和根据目标位置信号和来自所述位置判断装置的信号来判断位置信号是否正确的操作控制装置,和一个响应来自所述操作控制装置的信号、用于控制所述马达驱动装置的驱动控制装置。
11.如权利要求
10所述的气体控制器,其中所述驱动控制装置包括一个用于起动和停止所述马达驱动装置的运转的起动/停止控制装置,当检测到不正常的位置信号时,所述驱动控制装置使所述马达驱动装置停止并检查开关的位置。
12.如权利要求
10所述的气体控制器,其中所述驱动控制装置包括一个用于起动和停止所述马达驱动装置的运转的起动/停止控制装置和一个用于使所述马达驱动装置的运转减低速度的速度控制装置,由此当检测到不正常的位置信号时,使所述马达驱动装置的运转速度降低以再次检查位置信号。
13.如权利要求
1所述的气体控制器,包括一个响应来自所述开关位置信号发生器的目前位置信号和目标位置信号、用于选择所述开关的转动方向的方向选择装置,和一个给所述马达驱动装置发送代表着由所述方向选择装置选择的方向的驱动信号的驱动控制装置。
14.如权利要求
13所述的气体控制器,其中所述方向选择装置包括一个判断装置,由此当所述目标位置信号指示出所述开关的完全关闭位置时,所述判断装置就选择一个从目前位置到所述完全关闭位置的距离最短的方向,而当所述目标位置信号指示的不是所述完全关闭位置时,则由所述判断装置选择一个所述开关不经过所述完全关闭位置的方向。
15.如权利要求
1所述的气体控制器,其中所述开关包括一个关闭件,所述关闭件的周壁上有多个孔和槽,当关闭件转动时,所述多个孔和槽使多个通道变换、打开和关闭,所述开关还包括一个具有与所述孔和槽相对应的所述多个通道的开关壳体,和与所述多个通道相对应的多个孔口,相对于前一个槽,其中每个槽的周向长度设置得比处于离所述关闭件的轴较远位置上的另一个槽的周向长度要长。
16.如权利要求
1所述的气体控制器,其中所述开关包括一个关闭件,所述关闭件的周壁上有多个孔和槽,当关闭件转动时,所述多个孔和槽使多个通道变换、打开和关闭,所述开关还包括一个具有与所述孔和槽相对应的所述多个通道的开关壳体,和与所述多个通道相对应的多个孔口,其中在所述关闭件内部沿关闭件的轴向方向上开有一个导向孔,所述关闭件的底部是开着的,与所述多个孔口中具有最大直径的孔口相对应的所述关闭件的通道布置在所述锥形关闭件比在与其它孔口对应的其它通道位置处具有大直径的位置处。
专利摘要
在调节气体燃烧装置的气体燃烧量时所采用的一种气体流量控制器。该气体流量控制器的结构中,用马达转动位于开关内部的关闭件。在该关闭件的轴线方向上设置有多个孔,在关闭件外壁周向设置有与孔一一对应的多个槽。该开关用于变换、打开和关闭多个孔口通道。根据来自辨别开关位置的位置确定装置信号来驱动马达。该气体流量控制器的优点在于能够保证高的气体流量精度、高的缩减比和低的能量消耗。
文档编号G05D7/06GK87103348SQ87103348
公开日1987年12月9日 申请日期1987年5月7日
发明者白井滋, 山本芳雄, 长冈行夫 申请人:松下电器产业株式会社导出引文BiBTeX, EndNote, RefMan
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1