供休息及睡眠的微环境系统的制作方法

文档序号:17495199发布日期:2019-04-23 21:13阅读:269来源:国知局
供休息及睡眠的微环境系统的制作方法

本发明涉及供休息及睡眠的人体微环境系统,属人体微环境技术领域。



背景技术:

人体在卧床休息尤其是睡眠期间,植物神经通常以副交感神经兴奋为主;心率及呼吸变缓、骨骼肌松弛、代谢率下降、体温下降、支气管收缩管径变小、心脏冠状动脉供血减少、皮肤微循环血量减少、呼吸道粘液分泌减少、气管及支气管上皮纤毛摆动减弱,免疫力及综合抵抗力下降。

人体在卧床状态下的微环境通常只是室内、室外环境在接近人体体表区域的过渡,开放状态下人体对微环境的影响非常微弱,而外部环境对人体微环境的影响极大。

睡眠时人体的头面部通常裸露,其对环境空气因素极为敏感,气流温度过高过低均会干扰皮肤热平衡影响细胞代谢;空气含水量过大则会影响不显汗发生,含水量过小则导致呼吸道及面部皮肤不同程度的脱水。

睡眠时其他易于裸露的部位,如被服部分脱离后暴露的肩部、背部、腹部、膝关节、踝关节等均会因环境温度较低而不同程度受到影响,不仅是局部皮肤、筋膜、肌肉,内脏也会因外部低温而发生功能紊乱,如腹部受凉导致的腹泻等。

另外,承载头颈部的枕体以及床垫其形状、硬度以及温度会显著影响睡眠;被服因与人体皮肤持续接触而参与皮肤热平衡以及被服对皮肤的压力均可影响睡眠;较强光线、噪音以及较少的空气负离子、不佳气味均可显著降低睡眠质量。

而从睡眠中醒来也需要环境同步发生变化,类似人类历史漫长岁月中的黎明光线唤醒或伴有类似鸡鸣的声音唤醒。

人体呼吸系统是对空气环境完全开放的系统,环境空气中的致病因子诸如花粉、尘螨、霉菌、空气中的各种颗粒物、甲醛等有害气体在呼吸系统自身防御最为脆弱的睡眠期间会对人体造成较清醒时更为严重的伤害;哮喘、copd、呼吸暂停、心肌缺血等疾患更易于在睡眠中发作。

即使在全屋净化的环境中,个体化的睡眠还需要环境气体状况在睡眠过程中不断调整,全屋的空气参数调节难以及时满足睡眠者需求。

人类的体力恢复、成长发育、精神休养、免疫力调节、疾病康复严重依赖睡眠质量,而个体化的睡眠呼吸及躯体微环境是保证良好睡眠的关键。

当然,人体即便不在休息及睡眠状态也需要一个良好的微环境。

cn102859288b公开一种思路,通过向呼吸微环境提供温度略低于外部环境的干净的呼吸气流而阻止外部环境空气的混入,以此保证微环境的稳定,但人在睡眠中会不自觉的翻转,如无系统的约束外部气流极易将呼吸微环境污染。

cn105617564a提出将干净的呼吸气流从人呼吸道开口的两个相对的方向释放,从而保证微环境的稳定,但此两股气流对撞后会有多个逃逸方向且与人呼出气流碰撞后易于将呼出的二氧化碳等混入湍流,且向上开放的空间虽远离了幽闭恐惧也使外部空气易于混入。

cn101033882a强调睡眠时影响人体温度的空调器的目标温度应个体化设定,以适应人体在不同睡眠阶段的环境温度需求,其无任何缓冲地直接将空调温度与人体温度对接,难以满足睡眠期间对人体微环境的要求。



技术实现要素:

本发明为了解决上述问题,提供了一种供休息及睡眠的人体微环境系统。

本发明的目的是这样实现的:

人体微环境通常是空间非限定的开放式的微环境,由外部环境与人体表面自然过渡形成,包括人体周边空气以及躺卧状态和人体接触的枕体、床垫等;尤其是人体周边空气与外部环境空气全面直接连通,无清晰的立体边界。而本发明的装置内部环境即为部分或完全空间限定的人体微环境,具有清晰的边界;所述部分限定是指如装置仅容纳头颈部或其他身体局部时,所述完全限定是指装置容纳整个人体,限定后的微环境不与人体直接接触的区域包绕人体周边数厘米至数十厘米不等,局部也可达百厘米左右。

本发明所述的休息及睡眠时的人体微环境是指在此状态下的将人体局部或全部包覆的微小环境;除必须与人体接触的微环境物体表面如枕体、床垫等,其他人体微环境的构成部分与人体表面留有距离;人体微环境可以是仅将头部有距离的包覆,从而对呼吸有显著影响称为呼吸微环境,呼吸微环境也包括与头颈及胸肩等部位接触的枕体,枕体上的加温、体位调节、生理监测等功能模块也属于呼吸微环境的构成部分;仅包覆呼吸微环境外的躯体如部分胸部、腹部四肢则为躯体微环境;而将整个人体有距离的包覆,则为完整的人体微环境;本发明中所指人体微环境由呼吸微环境及躯体微环境两部分构成,本文中因语境不同所称的微环境、微环境系统、睡眠微环境、睡眠微环境系统均指人体微环境;人体微环境的构成装置则称微环境系统简称系统;人体微环境外的则为外部环境;人体微环境保护人体一定程度的免除外部环境的不利影响,尤其是空气中颗粒物、有害气体、噪音、光线、电磁波等;当设置空间较大时,人体在微环境系统内可以进行如转头、翻身、抬腿等一定幅度的自由的肢体活动;人体通过人体微环境系统与外部环境相关联,仅就睡眠而言人体可位于睡眠人体微环境内而不直接面对外部环境。

不同个体对睡眠微环境相关调节参数需求不同,同一个体在不同生理心理状态下的微环境需求不同,同一个体在一次睡眠的不同时间阶段对微环境的要求不同,如不同睡眠深度均会对吸入气体的氧气含量、温湿度有相应的不同需求;包括中医子午流注等在内的时间医学、时间药理学相关原理和事实在睡眠过程中充分体现,如多种疾病具有易发睡眠时间阶段等;空气中的微小颗粒物会对呼吸、心血管等各生理系统造成伤害;大量文献表面:将吸入人体的颗粒物降至尽可能最低,不仅阻隔了多种疾病的发生且可显著延长人的寿命。

一种供休息及睡眠的人体微环境系统,包括空气调节装置、呼吸装置、系统控制单元,其中的呼吸装置设有一个沿与水平面垂直或倾斜方向分布的具有内腔的输气单元;空气调节装置输出的可吸入气体对外密闭的进入输气单元内腔,可吸入气体从输气单元内侧面上遍布气孔的可吸入气体输出区域流出,输气单元内侧面的可吸入气体输出区域周边设有气流不经过呼吸道开口和或使用者身体表面的隔离气体输出区域。

隔离气体输出区域可以完全沿可吸入气体输出区域周边分布,也可仅在顶部分布,其流出的气流不会流经呼吸道开口区域,而将外部气流更好的隔离。

优选的,隔离气体流速大于可吸入气体;也可湿度和或温度与可吸入气体不同,也可改变气体比例如提升氮气含量以实现更好的隔离效果。

空气调节装置通过过滤、加湿、除湿等功能而将外部环境气体处理成适合人体个体化需求的可吸入气体;系统控制单元由核心处理器、硬盘、内存等电子模块构成。

进一步的,输气单元两侧连有沿与水平面垂直或倾斜方向分布的侧向隔离单元,将可吸入气体与外部空气至少部分阻隔;使用者呼吸道开口区域位于因此形成的呼吸装置内腔中的两个侧向隔离单元之间;侧向隔离单元上缘高于呼吸道开口最高点。

本系统的呼吸装置使用时放置于床面或床垫之上,底部对外隔离,两个侧向隔离单元阻止外部气体从两侧混入呼吸道开口区域;输气单元输出的可吸入气体以多股流向呼吸道开口区域,可以是水平导向的层流也可是与水平面呈一定角度的流动。

优选的,在可吸入气体输出区域处的内腔设置多孔的均流部件,可吸入气体先经过均流部件后再从可吸入气体输出区域流出;可以是纤维织物通气海绵如聚氨酯海绵、多孔陶瓷、金属网状物等以使从外部空气调节装置输送来的气流均匀的流出;当然,可吸入气体输出区域设置密集的微小孔洞也可起到均流部件的作用,如直径在1-5毫米而间距小于2毫米的密集孔洞,或每平方厘米多于50个孔洞;输出区域划分成多个的分流的设计也可有助于均流;输气单元内侧面上至少一部分为可吸入气体输出区域,也可全部为可吸入气体输出区域;所述可吸入气体是指经过调节后的使用者在躺卧状态下可能被吸入人体的气体,包括但不限于净化、湿化、除湿、雾化、温化、降温、增氧、增加负离子、增加氢气含量、添加芳香物质等单一或复合处理后的气体;躺卧状态包括仰卧、侧卧、俯卧状态;可吸入气体输出区域的面积优选大于使用者呼吸道开口区域的面积;使用者呼吸道开口区域是指包含口和或鼻的区域,也涵盖躺卧状态下的口和或鼻的可能移动的区域,比如左侧卧位、右侧卧位及仰卧位切换时口和或鼻可能所处的区域,即范围扩大的一个区域;侧向隔离单元优选的至少高于使用者躺卧状态下的呼吸道开口的高度以确保更好地隔离外部气流的效果;使用者呼吸道开口区域位于由输气单元、两个侧向隔离单元围合而成的呼吸装置内腔之内;所述侧向隔离单元上缘高于呼吸道开口最高点是指以仰卧状态下的身体所处最低平面为基准,侧向隔离单元上缘与身体最低平面的垂直距离大于口鼻开口最高点与该身体最低平面的垂直距离。

每一侧的侧向隔离单元也可设置成输气单元功能,可吸入气体从其内表面流出。

为满足不同体型使用者及使用时调整的需求,侧向隔离单元设有选择但不限于中空部分充盈流体、多部件套叠、可形变材料、多部件重合方式的可延展结构,使侧向隔离单元局部或整体可向前和或向上延展。

中空的波纹管或压缩管状或手风琴状的侧向隔离单元,其内充盈气体或液体后向前和或向上延展;侧向隔离单元也可由套叠或重合的部件组成,改变套叠或重合程度从而实现延展效果;这种延展可以是直线延展也可是曲线延展,可以是整个隔离单元发生延展也可以是局部如起始部分、末端部分、中间部分之一部分或多部分发生延展;所述向前是指垂直远离输气单元且朝向躺卧状态下的使用者下肢的方向,包括外斜及内斜的斜向朝前的方向;所述向上是指垂直远离躺卧状态下的床面或枕体的方向,包括外斜及内斜的斜向朝上的方向;侧向隔离单元的可延展结构用于调整呼吸装置内腔大小,以及适应不同体型的使用者;即使对于同一使用者,两侧的侧向隔离单元高度可以随体位变化而变化,如左侧卧位时呼吸道开口位于左侧,左侧的侧向隔离单元高度可以高于右侧,此时右侧的外部气流难以干扰左侧的可吸入气体;为节能考虑,气体输出可分区设置,左侧卧位时可减少可吸入气体输出区域右侧的气流量。

为适应睡眠中的肩部活动,如选择尺寸较小的侧向隔离单元其前部极易紧邻使用者肩部,肩部宽阔的使用者可将此活动部分向外移动以避免碰撞肩部;侧向隔离单元前部设有便于调节呼吸装置内腔大小的可相对侧向隔离单元主体部分进行外展及内收移动的活动部分;活动部分与主体之间可以是旋转轴的结构,也可以选用膜片状的弹性材料从而易于形变。

为便于使用者对外观察或减少幽闭感,侧向隔离单元上开设有透明窗体或透明度可调节的窗体。

透明窗体可采用玻璃、透明树脂制成;也可选用液晶光电玻璃,将液晶膜复合在两层玻璃之间,液晶分子在通电状态下直线排列而透明,断电时则呈散射状态而不透明。

为提升使用者体表温度,如感冒时的鼻部,肩关节炎症时的肩部,以及血液循环较差的使用者,侧向隔离单元或输气单元上设有与使用者目标身体部位相对应的非接触加温单元,如红外线发射单元。

为避免气流直吹头顶而可能带来的不适及气流扰乱,输气单元内侧面与躺卧状态下使用者头顶相对的一部分区域为非输气区域或弱输气区域;弱输气可以通过小流量的独立供气或出气孔更为细小而实现。

与使用者头顶相对的输气单元内侧面的一部分区域,此部分发出的气流会被头顶遮挡而不能直接流向呼吸道开口,且会扰乱其他部分流向呼吸道开口区域的气流,此区域最好为非输气区域或弱输气区域;所述非输气区域是指,在该区域内不设气孔或气孔被覆盖;所述弱输气区域是指该区域设有气孔但其出气量小于其他同等面积下输气区域的出气量;弱输气区域的设计是为了避免此处完全无气流而对周边气流的影响,尤其是头部位置不断变化而使头顶与此区域的间距同步变化时。

一种方案是,输气单元内侧面与躺卧状态下使用者头顶之间设有头顶填充部件或板条状的气流阻隔部件;完全填充或阻隔均可避免气流直吹头顶,且在需要散热时可将气流阻隔部件去除。

负离子有空气维生素之称,但其寿命极短尤其在有较多颗粒物的空气中,十秒左右即被中和无法进入呼吸道及血液循环而发挥相关作用;本系统的呼吸装置内腔是净化、湿润气体充斥的空间,任何位置设置负离子发生单元均有很好效果;一种设计是,左侧及右侧之每一侧设有至少一个释放方向朝向使用者呼吸道开口区域的负离子发生单元,可吸入负离子浓度轻松达到每立方厘米百万个以上,从而将空气负离子作用发挥至最大。

优选的,在呼吸装置的输气单元内侧面区域,高于使用者呼吸道开口区域的位置设有至少一个负离子发生单元;左右两个侧向隔离单元内侧面区域至少设有一个负离子发生单元,则可让使用者在各种体位时均能吸到足量负离子。

为了进一步优化呼吸微环境,还包括枕体,枕体上表面有向内的可承载头部的凹陷、颈部突出、侧向限位突出体之一种或多种头部限位结构;限位结构,在不影响转头、翻身前提下,将头部限定在呼吸装置内腔的气流中心位置,确保使用者吸入的气体质量。

枕体也可为中空的部件与空气调节装置连接从而具备气体输送功能,可吸入气体从其外表面流出,对向处于侧卧位或俯卧位的使用者呼吸道开口区域。

为了提供进一步满足个体化需求的呼吸微环境,枕体内设有体位调节、接触式加热、接触式降温或风扇降温、睡眠唤醒、人体生理参数监测之一种或多种功能模块。

其中针对患有睡眠呼吸暂停病症的使用者,当监测到呼吸音增强、呼吸间隔过长、血氧饱和度降低等信息时枕体上的体位调节功能启动,通过振动、气囊充盈、动力部件推拉、电刺激等方式将其从睡眠中唤醒;较轻的情况下仅靠体位调节即可消除呼吸暂停;当然也可辅以声音、光线刺激。

系统程序设置的自动体位调节可根据配套的压力传感器监测到的信息调节体位避免肌肉关节疲劳;当监测到局部皮肤温度较低时可予以适度加热;也可连接生理参数监测单元,将动态的个体化睡眠生理信息存贮至系统控制单元并分析,有助于获取最佳的个体化微环境参数。

系统还可包括配套的床垫,其上表面与输气单元和或侧向隔离单元相连,也可通过一基座与输气单元和或侧向隔离单元相连;基座可以是内部中空的独立部件或组件与空气调节装置相连再与输气单元对接;也可以是与输气单元和或侧向隔离单元融为一体,即基座的一部分则构成输气单元、一部分构成侧向隔离单元。

具体可在枕体和或床垫上设置监测人体生理参数的心电、肌电、温度等模块及压力传感器,可设置加温单元、肢体舒缓单元;肢体舒缓单元可含有气囊、振动等结构通过改变身体位置舒缓由固定姿态或其他原因导致的肌肉关节疲劳,系统控制单元相关程序接收到床垫压力传感信息控制肢体舒缓单元运行。

为打造躯体微环境,还包括立体被服,立体被服上设有可将其部分或全部撑起的立体支撑单元,使用者躯体大部分位于立体被服内腔。

立体支撑单元可以是顺应人体从头向脚的方向的能将被服撑起的拱形的纵向延展的肋条状结构,也可是横向、斜向延展的肋条状结构,可由金属片材钣金或树脂模塑制成,也可以中空可充盈延展的囊体或是细长的筋条;立体支撑单元上可连有测温、负离子、红外线模块,实时监测使用者躯体皮肤温度并可随时加温及释放负离子;所述全部撑起是指被服与躺卧其内的使用者非接触的撑起的状态,从而避免被服内侧面对使用者皮肤的接触,有助于消除被服对皮肤的压迫和或刺激;被服如上的立体设计可使躯体微环境边界扩大,其内可通入净化的富含氧气和或负离子的空气并调节温湿度以满足个体化需求。

为便于衔接,还包括具有上缘部分、下缘部分、侧缘部分的薄片状或条块状的衔接单元,衔接单元的侧缘部分与侧向隔离单元连接部分为包括磁力连接在内的易于分离的可活动的连接。

衔接单元的下缘部分可与遮盖使用者躯体的被服相连,从而使呼吸装置内腔顶部开放,前部由被服覆盖并与被服内腔连通。

衔接单元的侧缘部分可与两个侧向隔离单元连接部分连为一体;也可以是与一个连为一体,而与另一个搭接,所述连为一体是指须使用一定外力方能分开的连接;衔接单元的下缘部分可与遮盖使用者躯体的被服直接或通过连接部件相连。

为进一步强化呼吸微环境,还包括从输气单元上缘部分或侧向隔离单元上缘部分探出的顶部隔离单元;顶部隔离单元侧缘部分悬空与侧向隔离单元留有空隙,也可与输气单元及两个侧向隔离单元上缘部分可移动的连接;顶部隔离单元将可吸入气体输出区域流出的气流与外部空气至少部分隔离,从而形成顶部被封闭的呼吸装置内腔,顶部隔离单元前缘构成呼吸装置气体出口的上部边界。

所述可移动的连接,是指顶部隔离单元配以相应结构以平移、旋转等方式部分或全部脱离对输气单元、两个侧向隔离单元上缘部分的连接,从而部分或全部暴露顶部空间;顶部隔离单元可呈透明或部分透明、不透明的膜状、片状、帘状、条块状等,固定的或可延展、可移动的,可以是与侧向隔离单元连为一体的设置;顶部隔离单元展开后可呈球面状、穹隆状,球面状、穹隆状的顶部隔离单元与输气单元为具有一定行程的滑动配合;通过滑动可将两个侧向隔离单元上缘部分连接,将输气区域流出的气流与顶部空间部分或全部隔离。

顶部隔离单元在与输气单元相对移动过程中也可同时与两个侧向隔离单元上缘滑动配合而启动相互连接,也可至行程结束时才与两个侧向隔离单元上缘连接。

顶部隔离单元也可为中空的部件与空气调节装置连接从而具备气体输送功能,可吸入气体从其内表面流出。

为避免起床时可能的触碰伤害,顶部隔离单元可经输气单元上缘的开口部分或全部回收至输气单元内腔。

也可将顶部隔离单元在回收时可部分或全部移动至使用者仰卧状态时身体所处的最低水平面之下。

基于顶部隔离单元可移动至低于身体最低水平面位置的构思,可将床面下的局部空间设置成容纳顶部隔离单元的适形空腔结构,从而使顶部隔离单元全部或大部可收纳在床面或身体最低水平面之下,可位于较厚的床垫内,最大程度消除起床或抬头时碰撞的可能。

衔接单元,其与侧向隔离单元和或顶部隔离单元前缘部分为包括磁力连接在内的易于分离的可活动的连接;从而形成的装置内腔顶部可与外部隔离,前部由被服覆盖并与被服内腔连通。

上述各个隔离单元及衔接单元及被服之间的连接,其连接部分可设置通气孔;各单元自身也可根据需要设置通气孔,装置内腔的气体可经通气孔流出,通气孔位置优选远离呼吸道开口区域。

衔接单元与侧向隔离单元和或顶部隔离单元前缘部分的连接为可选择折叠、压缩结构在内的相对位置可延展或可移动的连接,这种连接可在使用者翻身等体位变化时触碰到衔接单元使其延展或其移动但不会使之与侧向隔离单元脱离。

当微环境系统覆盖整个人体时,为避免呼吸微环境流出的气体对躯体微环境的影响,还包括位于呼吸装置内腔呈膜片状的躯体隔离部件,躯体隔离部件设有躲避躯体部位的躯体让位缺口或凹陷。

躯体隔离部件的设置阻隔了部分或全部可吸入气体对头部和或颈部以下躯体皮肤的影响,这种影响可以是温度也可是湿度依赖的,头部的呼吸道开口及呼吸系统对气体的要求与其他部位的躯体皮肤经常不同,例如躯体正在发汗则不需要温暖湿润的气体流经,否则影响汗液的释放;躯体让位缺口可因位置不同而设置如颈部让位缺口、胸部让位缺口,当躯体隔离部件有翻折部分时其上可设有颈胸联合让位凹陷,避免睡眠时压迫人体部位;躯体隔离部件与睡眠呼吸装置内腔周边适形的接触可以是与侧向隔离单元也可是与衔接单元,也可以与顶部隔离单元,或是与其多部同时接触,从而起到部分或全部的隔离效果;躯体隔离部件的上部也可设置出气孔。

进一步的为提升呼吸质量,输气单元内侧面的可吸入气体输出区域表面至少一部分是可选用球面或椭球面的凹侧朝向使用者呼吸道开口区域的曲面形状;从椭球面或球面的可吸入气体输出区域流出的可吸入气体向心的流向使用者躺卧状态时的呼吸道开口区域,最大程度的避免外部环境气体对可吸入气体的污染。

一种方案是,输气单元内侧面的可吸入气体输出区域内或其附近位置设有至少一个邻近头部使用的独立可吸入气体输出区域。

独立可吸入气体输出区域是指近距离的将可吸入气体投放至呼吸道开口,面积小于呼出气体输出区域,使用者头部相对固定时使用或佩戴在头部使用,可不接触使用者头部也可连接于头部,可以是包括面罩、中空平面板状、中空弧形板状的部件;独立可吸入气体输出区域为可移动结构,可移动是指该区域结构可从输气单元内侧面探出及回收所述移动结构是指辅助此部分独立的可吸入气体输出区域移动探出至口鼻开口处之上方或之侧面的结构,可选择伸缩管、伸缩杆、可形变膜片、柔性管路等。

面积较小的独立可吸入气体输出区域,其可吸入气体流量也较小;当头部位置稳定时,接触呼吸道开口皮肤或不接触都可吸入足量的调节后的气体,所用气体量可远小于可吸入气体输出区域的流量,可吸入气体损失最少;可吸入气体调节更为容易,如提升其氧含量、改变其温湿度等,尤其对于呼吸道粘膜或头面部皮肤失水显著的使用者,可提供足够大湿度的气体且不会在呼吸装置内表面有明显的冷凝。

进一步的,独立可吸入气体输出区域上设有包括但不限于人体生理参数监测、人呼出气体监测、负离子发生器、人体影像摄取、非接触式加温之一种或多种功能模块。

由于该独立区域紧邻呼吸道开口,便于对使用者呼出气体实时准确监测,如呼出的二氧化碳浓度、反映呼吸道炎症的一氧化氮浓度、反映糖尿病变化的丙酮等,可以在睡眠中获取个体化的人体代谢及疾病相关大数据。

各种鼻炎时在睡眠中对鼻部的加温及超近距离负离子吸入也可有助于缓解相关症状;面部表情动态监测也有助于为疾病判断及美容方案提供依据。

一种综合应用的思路是,呼吸装置内设有邻近头部使用可移动的独立可吸入气体输出区域,可吸入气体输出区域周边设有气流不对向呼吸道开口的隔离气体输出区域;使前述方案的优势叠加。

考虑到气味对睡眠的影响,呼吸装置的可吸入气体输出区域处设有挥发物质释放单元;挥发物质可以是固体片剂、颗粒或是液体,可以通过调节电加热温度或是改变暴露面积调节释放浓度;挥发物质释放单元可设置在本系统活性炭或其他气体吸附功能模块之后的任何位置。

为确保呼吸微环境的空气品质,空气调节装置中的净化、吸附、分解、湿化、除湿、温化、冷却、增氧、加氢之一组或多组功能模块与可吸入气体输出区域通过对外密封的管路相连。

当有多种气体输出区域设计时,空气调节装置中的各功能模块分别与可吸入气体输出区域、隔离气体输出区域、独立可吸入气体输出区域之一个或多个区域通过对外密封的管路相连。

所述对外密封的管路是指从空气调节装置各模块流出的调节后的气流先经由对外部环境密封的管路传输至输气单元内腔,而不是传统家用空气净化器那样流出的洁净气体马上混入外部环境之中;本发明的空气调节装置流出的气流也可直接进入输气单元内腔。

一种整体设计方案是,空气调节装置、呼吸装置与中空的床体融合设置;空气调节装置的各功能模块至少大部置于床体内腔,调节后的气体通过位于床体内腔的对外密封的管路与输气单元内腔连通。

系统的各装置及模块与床体融合,节约室内空间的同时也加强了噪音消除的功能。

为了系统的智能控制,在空气调节装置、呼吸装置、被服、床垫、床体之一部或多部设置监测外部环境和或人体微环境内气象参数的功能模块。

人体微环境内的气象参数不仅包括可吸入气体、人呼出的气体参数,还包括皮肤、肠道释放的气体,如肠道排出的甲烷、硫化氢等;硫化氢会刺激皮肤,当监测到浓度较高时可加大送气量或启动系统另行设置的位于躯体微环境内的通风单元及时将其排放至外部环境。

可在空气调节装置与输气单元内腔的连接管路内、输气单元内腔、呼吸装置内腔之一部或多部设置监测可吸入气体参数的传感器。

可同时在空气调节装置、呼吸装置、被服、床垫、床体之一部或多部设置监测人体生理参数、人体影像摄取和或影响人体生理活动的功能模块。

为适应人体各部分舒适温度不同的要求,头部温度由睡眠呼吸装置发出的气流及装置内的枕体上接触式发热单元和或非接触式发热单元调节。

一种方便使用的设计是,使用者头部接触枕体后系统自动开启,系统控制单元驱动各模块按照相应程序运行;可在枕体上设置压力开关或接触开关实现该功能。

一种供休息及睡眠的人体微环境系统的运行方法,所述系统包括系统控制单元、空气调节装置、呼吸装置,枕体;系统控制单元接收系统传感器输送的呼吸暂停或人体显著缺氧的信息,根据预设程序驱动唤醒模块,可选择声音、振动、气囊充盈、部件推拉、电刺激之一或多种方式将使用者从睡眠中唤醒。

例如系统控制单元收到与手指连接的无创血氧饱和度测定单元输送来的数值,血氧饱和度下降至90%且持续一分钟,枕体下的气囊充盈抬高头颈,从呼吸暂停中唤醒使用者。

还可以按如下步骤:

a.系统控制单元接收系统传感器输送的呼吸异常或人体缺氧的信息;

b.根据预设程序驱动相应体位调节功能模块;

c.调整体位后继续监测呼吸异常或人体缺氧相关信息;

d.根据接收的信息按相关程序判定:

e1.若呼吸异常及缺氧好转,停止体位调节功能模块运行;

e2.若呼吸异常及缺氧好转,继续运行体位调节功能模块一定时间后停止;

e3.若呼吸异常及缺氧加重,启动唤醒程序。

一种供休息及睡眠的人体微环境系统的运行方法,包括如下步骤:

a.通过包括键盘、触摸屏、鼠标、按钮、麦克风、遥控器、智能手机之一种或多种作为输入工具在系统的人机交互界面设定从呼吸装置输出的可吸入气体和或系统其他功能模块相关运行参数;

b.相关运行参数通过无线或有线方式传输至系统控制单元;

c.系统控制单元接收并分析传感器输入的外部环境相关气象参数,启动相关调节程序控制空气调节装置和或系统其他功能模块使其做相应运转,最终达到设定参数要求。

例如:设定可吸入气体相对湿度75%,温度同环境温度32℃;中央控制单元执行的程序根据监测到的外部环境湿度50%启动加湿模块运行至相对湿度75%并维持;而当监测到的外部环境湿度为75%时则停止运行该加湿模块;设定参数也可以是按不同睡眠时间和或不同睡眠深度设定不同微环境参数,如设定深睡眠状态下温湿度、气流速度、氧浓度等参数。

进一步包括步骤d:使用中,系统控制单元接收并分析传感器输入的可吸入气体相关气象参数,启动相关调节程序控制空气调节装置和或系统其他功能模块使其做相应运转。

步骤d还可以是:使用中,系统控制单元接收并分析传感器输入的使用者呼出气体相关参数,启动相关调节程序控制空气调节装置和或系统其他功能模块使其做相应运转。

例如:系统控制单元接收到呼出气体二氧化碳浓度过高的信息,则输出指令至制氧机加大功率提升可吸入气体氧浓度至22%。

步骤d也可以是:系统控制单元接收并分析传感器输入的使用者人体生理和或影像相关参数,启动相关调节程序控制空气调节装置和或系统其他功能模块使其做相应运转。

又一种供休息及睡眠的人体微环境系统的运行方法,包括如下步骤:

a.通过包括键盘、触摸屏、鼠标、按钮、麦克风之一种或多种作为输入工具在系统的人机交互界面选择系统预设的功能模式;

b.在具体的功能模式界面内选择:

b1:自定义设定;

b2:默认设定;

b3:之前运行过并储存的自定义设定;

直接确认或设定后确认相关选择;

c.系统控制单元按选择的内容启动相关程序控制空气调节装置和或系统其他功能模块使其做相应运转;

进一步包括步骤d:系统控制单元根据接收到的系统传感器传输来的参数启动相关调节程序控制空气调节装置和或系统其他功能模块使其做相应运转。

一种改善人体休息及睡眠人体微环境系统的运行方法,所述系统包括系统控制单元、空气调节装置、呼吸装置,其特征在于,所述方法包括如下步骤:

a.系统控制单元相关模块记录并储存系统运行一段时间的一个使用者的个体化相关数据;

b.由人力、外部分析软件或系统控制单元内的相关分析软件处理已获取的数据,或同时选择参考互联网络中多个不同使用者个体化数据后云计算生成适用于该使用者的新的个体化的运行程序;

c.在功能模式界面内选择个体化再选择“新的个体化运行程序”直接确认或设定后确认;

d.系统控制单元根据新的个体化运行程序控制空气调节装置和或系统其他功能模块使其做相应运转。

本发明的人体微环境系统构成了睡眠微环境,人体的活动如呼吸、位移等均会明显改变微环境的局部气象参数,系统通过相应程序及时调节确保微环境的稳定;系统的调节功能使得外部环境的变化对微环境影响极小。

总之,最佳的系统运行方式是执行以来自本系统的个体化微环境睡眠大数据为基础的智能控制程序,根据监测到的外部环境气象参数、人呼出气体参数、人体生理参数、微环境气象参数等动态调整微环境各功能模块,使之在整个睡眠周期内适应个体化健康需求,并为疾病的预防、发生、发展、治疗、康复状况的判断提供个体化数据。

本发明的有益效果是:

1.提供良好气体质量的呼吸微环境,不仅阻止颗粒过敏原及微生物的吸入,适宜的个体化的温湿度、风速、氧气浓度、氢气浓度、负离子、有益的芳香物质等同时保障呼吸系统及其他人体生理系统良好运行,改善睡眠质量。

2.提供与可吸入气体输出区域耦合设置的可个体化调节的枕体,局部承载力、温度可个体化调节的床垫,改善睡眠质量。

3.提供呼吸微环境内的可个体化设置的视听功能模块,有助于阻隔噪音、促进睡眠,保障睡眠及渐进式的睡眠声光唤醒。

4.提供可个体化设置的立体被服形成躯体微环境,彻底消除传统被服因阻止皮肤散热、对皮肤的压力而致的睡眠干扰;非接触式躯体定向加温不仅可防止关节疾病在睡眠中发作也可促进其在睡眠中更好的康复;腹部、腰部、胸部等关键部位或穴位区域的定向加温有助改善胃肠、心肺等脏器功能。

5.监测睡眠外部环境湿度、温度、颗粒物浓度、氧浓度等相关气象参数,根据监测结果由系统控制单元指令空气调节装置做相应运行参数调整以确保由本系统形成的人体微环境的稳定。

6.监测人体微环境内的湿度、温度、颗粒物浓度、二氧化碳浓度、氧浓度等相关气象参数,根据监测结果由系统控制单元指令空气调节装置做相应运行参数调整以确保人体微环境稳定。

7.直接或间接监测并贮存微环境内的人体各部分体表温度、睡眠姿态、呼出气体成分、呼吸节律、呼吸音、心电信号、脑电信号、肌电信号、血压、肠鸣音、梦中语音、面部表情、肢体活动影像等相关人体参数,根据监测结果由系统控制单元指令空气调节装置及微环境内功能模块做相应运行调整以确保微环境稳定或及时适应人体参数变化。

8.根据监测到的外部环境参数、人体微环境参数、微环境内的人体相关参数变化,由系统控制单元指令空气调节装置及微环境内功能模块做相应运行以确保微环境稳定或及时适应个体化需求。

9.根据监测到的微环境中睡眠不同时相的人体各部分体表温度、睡眠姿态、呼出气体成分、呼吸节律、呼吸音、心电信号、脑电信号、血压、肠鸣音、梦中语音、面部表情、肢体活动影像等相关人体参数变化判断使用者的个体化睡眠特点及健康状态,为健康策略的制订提供充分数据。

10.根据传输到云端或其他计算中心的多个供休息及睡眠的人体微环境的系统采集的大数据尤其是个体化调节效果的数据不断计算并优化算法,输出进一步个体化的人体微环境调节的方案以指导单个系统更好的运行,并逐步得出人类个体化睡眠的最佳微环境参数及调控方案。

本发明尤其对于以下人群适用:①因空气因素所致的睡眠障碍者;②睡眠中疾病频发者;③患有免疫力低下疾病呼吸系统易于感染者;④过敏性鼻炎、哮喘夜间发作者;⑤高龄体弱易于感冒者;⑥处于空气污染环境者;⑦需通过良好睡眠人体微环境康复疾病者;⑧需通过监测睡眠诊断疾病者;⑨需通过良好睡眠微环境调节情绪者。

重症患者无论何种病因,适应病房环境及环境变化的能力极为低下,无菌病房通常是最安全的选择,但难以精细调控的开放环境无法满足患者个体化的需求,本发明则可通过阻隔微生物而降低呼吸道感染发生率、平衡体温等上述综合手段显著提升重症患者的救治成功率。

附图说明

并不局限本发明的附图如下:

图1a:实施例1的示意图;

图1b:实施例1的示意图;

图1c:实施例1的示意图;

图2:实施例2的示意图;

图3:实施例3的示意图;

图4a:实施例4的示意图;

图4b:实施例4的示意图;

图4c:实施例4的示意图;

图5:实施例5的示意图;

图6:实施例6的示意图;

图7a:实施例7的示意图;

图7b:实施例7气流场的示意图;

图8:实施例8的示意图;

图9a:实施例9的示意图;

图9b:实施例9的示意图;

图10a:实施例10的示意图;

图10b:实施例10的示意图;

图10c:实施例10的示意图;

图10d:实施例10的示意图;

图10e:实施例10的示意图;

图11a:实施例11的立体被服示意图;

图11b:实施例11的躯体隔离部件示意图;

图11c:实施例11的立体被服一种开启示意图;

图11d:实施例11的立体被服另一种开启示意图;

图12a:实施例12的一体式装置示意图;

图12b:实施例12的床体内部示意图;

图12c:实施例12的立体被服连接示意图;

图12d:实施例12的立体被服开启示意图;

具体实施方式:

通常的家用空气调节装置,包括空气净化器、加湿器、负离子发生器等,使用时均处于室内开放的空间,从净化器输出的净化气流迅速混入室内非净化的空气中再被吸入人体,空气质量无法保障;且面对室内的巨大的空间,净化器的气体流量通常每小时数百立方米,将几十平方米房屋内的污染颗粒从每立方米数百微克降至几十微克需要较长时间,且每立方米几十微克的颗粒物也会对人体各系统造成伤害,尤其是对于过敏体质者;睡眠时由于副交感神经兴奋导致的呼吸道机械防御能力下降,故睡眠时的空气质量尤为重要;本发明的核心构思是提供休息及睡眠状态的人体微环境,由于人睡眠时呼吸的潮气量仅每公斤体重5-10毫升,提供潮气量十倍左右的净化空气至人体呼吸微环境即可满足睡眠及卧床休息的需要,确保可吸入气体质量的的同时也极大节约电能。

并不局限本发明的实施例如下:

实施例1:

如图1a、1b、1c附图所示,本发明的实施例1包括:呼吸装置1,一个可由工程塑料、木材、金属等硬质材料制成甚至是弹性材料如硅橡胶等制成的从水平面向上延展分布的具有内腔110的高于使用者头部的输气单元11,输气单元上缘部分115封闭,输气单元11内侧面111对向使用者,输气单元11外侧面113朝外,输气单元内腔110通过连接管路102连接空气调节装置(未示出)输出的气体,其中的可吸入气体与输气单元11相对应的可容纳均流部件101的内腔110a连通,从可吸入气体输出区域112的出气孔1120流出;空气调节装置输出的隔离气体通过连接管路103与输气单元分隔出的内腔110b连通,从隔离气体输出区域114的出气孔1140流出;隔离气体输出区域114沿可吸入气体输出区域112周边分布,两个区域以边界112c区分,隔离气体输出区域114也可仅在顶部分布;隔离气体输出区域114流出的隔离气体不会流经呼吸道开口区域,而将外部气流更好的隔离。

优选的,隔离气体流速大于可吸入气体;也可湿度和或温度与可吸入气体不同,也可改变气体比例如提升氮气含量以实现更好的隔离效果。

图中作用于呼吸气体、隔离气体的均流部件101,可以是纤维织物通气海绵如聚氨酯海绵等,以使从外部空气调节装置输送来的气流先经此均流部件使气流平均分布再经输气单元内侧面111上的气体输出区域112、114上的出气孔1120、1140流出;当然,可吸入气体输出区域112、隔离气体输出区域114设置密集的微小孔洞也可起到均流部件的作用,如直径在1-5毫米而间距小于2毫米的密集孔洞,或每平方厘米多于50个孔洞,或其他类型密集的设置;从气体输出区域112、114流出的气流如图1a中箭头所示,其中呼吸气流朝向并覆盖躺卧状态下使用者呼吸道开口区域m0,呼吸道开口区域m0由虚线围合示意其轮廓;为确保使用者呼吸道开口区域m0位于可吸入气体的气流中心位置且考虑卧位睡眠时的头颈适形受力需求,枕体12上头部承载位置设有头部凹陷121、颈部突出122以及两个限制头部左右过多移动的侧向限位突出体124,凹陷121、突出122、侧向限位突出体124可以与枕体12一体式制作也可以是独立的部件与枕体12连接;可吸入气体输出区域112上设置的出气孔1120止于与枕体12的交界处120,为避免气流直接吹向仰卧、侧卧状态的使用者头顶带来的可能不舒适感觉,尤其是脱发的使用者,与头顶对应的可吸入气体输出区域112上可不设置出气孔1120,但此处会有死腔引发气体湍流使该区域污浊气体不易清除,本实施例与此处添加一优选柔性的包括充气、充液囊体在内的体积可变化的高低及厚度可调以适应不同使用者需求的填充部件123,消除了头顶后的死腔,而当使用者需散热时可将此填充部件123体积缩小或去除,当然此填充部件123也可附带发热元件予头部加温。

为阻止外部污浊气体从两侧混入可吸入气体中,输气单元11两侧设有可将可吸入气体输出区域112流出的气流至少部分侧向阻隔的侧向隔离单元13,可成片状、板状、块状与输气单元11连为一体或可拆卸的密封连接,具有内侧面131、外侧面132、上缘部分133、前缘部分134;使用者呼吸道开口区域m0及枕体12位于呼吸装置1的两个侧向隔离单元13之间;如图1b所示,侧向隔离单元上缘133高于呼吸道开口最高点,侧向隔离单元优选的至少高于使用者躺卧状态下的呼吸道开口的高度已确保更好地隔离外部气流的效果;所述侧向隔离单元上缘高于呼吸道开口最高点是指以仰卧状态下的身体所处最低水平面p0为基准,侧向隔离单元上缘133最低处与身体最低水平面p0的垂直距离h1大于口鼻开口最高点与该身体最低水平面p0的垂直距离h0,计算方式当然也可采用床面、地面等水平面为基准;如图1c中侧向隔离单元外侧面132附近的三个弯曲箭头指示外部污浊气流因侧向隔离单元13的阻隔作用无法混入以直行箭头示出的可吸入气流;图1b中邻近呼吸道开口区域m0的两个弯曲箭头指示的为人体呼出的代谢后的气体,实验表明应用风速高于每秒0.1米的可吸入气体,人体呼出的气体会在吸气之前被预先净化的可吸入气体吹离呼吸道开口区域m0,而彻底避免呼出的二氧化碳等气体的再次吸入。

输气单元内侧面111上至少一部分为可吸入气体输出区域112,也可全部为可吸入气体输出区域112;所述可吸入气体是指经过调节后的使用者在躺卧状态下可能被吸入人体的气体,包括但不限于净化、湿化、除湿、雾化、温化、降温、增氧、增加负离子、增加氢气含量、添加芳香物质等单一或复合处理后的气体;躺卧状态包括仰卧、侧卧、俯卧状态;可吸入气体输出区域的面积优选大于使用者呼吸道开口区域m0的面积;使用者呼吸道开口区域m0是指包含口和或鼻的区域,也涵盖躺卧状态下的口和或鼻的可能移动的区域m1,比如左侧卧位、右侧卧位及仰卧位切换时口和或鼻可能所处的区域,如图1c所示由枕体12上的侧向限位突出体124参与界定的呼吸道开口可能移动的区域m1,由虚线围合示意的轮廓;图1c中示出一种无填充部件123的情形,输气单元内侧面111与躺卧状态下使用者头顶部分相对的一部分区域112e为非输气区域或弱输气区域,本实施例头顶后部的气流量小于周边为弱输气区域112e,以气流指示箭头的长短示意。

侧向隔离单元13为可选择但不限于通过充盈流体、部件套叠、材料形变、部件重合方式而实现的可延展结构的局部和或整体的可向前和或向上延展的侧向隔离单元13,本实施例中示出的可由工程塑料、木材、金属等硬质材料模塑或钣金等工艺制成甚至是弹性材料如硅橡胶等制成的从水平面向上延展设置的上缘部分133平直的侧向隔离单元13,与输气单元11两侧部分密封连接。

实施例2:

如图2所示,与实施例1最大不同的是,侧向隔离单元13为可延展设计,左侧的隔离单元13由三部分相互套叠而成,可收缩至与输气单元11连接的第一部分,也可向前延展,如前缘部分134处箭头所示;图中右侧隔离单元13为四部分相互套叠而成,后部位于侧向隔离单元13右侧的上下分布的长槽111a内,延展方向朝向上方,如上缘部分133处箭头所示。

实施例3:

如图3所示,与实施例2的区别是,侧向隔离单元13为中空的可压缩的手风琴状可延展结构,其内充盈气体或液体后可向前、向上延展;左侧的可延展隔离单元13后部位于输气单元11左侧的上下分布的长槽111b内,充入流体后沿箭头指示方向向上延展;右侧的隔离单元13则在内部充盈后沿箭头指示方向向前延展,泵体及流体管路等图略。

实施例4:

如图4a、4b、4c所示,输气单元内侧面111的可吸入气体输出区域112表面呈球面,其凹侧朝向使用者呼吸道开口区域m0,也可选择其他曲率的弧形;从球面上密集分布的出气孔1120流出的可吸入气体,其流动向心性地朝向使用者躺卧状态时呼吸道开口区域m0,最大程度的避免外部环境气体对呼吸道开口区域m0的污染;如图4a中局部放大所示,每个出气孔1120的轴线l0精准或大致朝向被枕体12上的限位结构约束的使用者头部的呼吸道开口区域m0;图4b中示意可吸入气体的向心性流动;图4c显示枕体12上的填充部件123及侧向隔离单元13;本例未示出隔离气体输出区域,在本实施例方案下如设置隔离气体,其流动方向仍不得对向呼吸道开口区域m0。

实施例5:

如图5所示,输气单元内侧面111的可吸入气体输出区域有两处球面部分112a、112b,每个球面部分凹侧朝向使用者呼吸道开口区域m0;从球面部分112a、112b上密集分布的出气孔1120流出的可吸入气体,其流动分别向心性地朝向使用者躺卧状态时呼吸道开口区域m0;输气单元11两侧设有球面状侧向隔离单元13,侧向隔离单元13前部贯穿上下的区域或其前部下方区域为可相对隔离单元13本体进行外展及内收移动的活动部分1341,本例示出活动部分1341通过柔性连接部分1342与隔离单元13本体相连;侧向隔离单元13前部紧邻使用者肩部,肩部宽阔的使用者可将此活动部分1341向外移动以避免碰撞肩部;本例右侧隔离单元前部显示了外展状态的下方区域的活动部分1341;左侧示出侧向隔离单元13前部贯穿上下的更大区域的活动部分1341;侧向隔离单元13前部还设有对向使用者肩部的非接触的加温单元r0,图中点状虚线所示为红外加温单元光线辐射的范围,覆盖仰卧者肩部;本例未示出隔离气体输出区域。

实施例6:

如图6所示,与实施例5方案不同的是,输气单元11为两个使用者提供可吸入气体,可吸入气体输出区域的两处球面部分112a、112b分别为其对应的使用者供气,有两个侧向隔离单元13用于阻止外部污浊空气的混入;两个使用者之间也可设置内部隔离单元13a,以确保不同使用者各自可吸入气体的不同需求,这种不同可以是湿度、温度、风速、含氧量等的不同;两处球面部分112a、112b的可吸入气体可来自同一空气调节装置,也可分别对接不同的空气调节装置来源的可吸入气体,每个使用者躺卧的枕体12上或附近可设有操控及调节空气调节装置的模块(图略),本例未示出隔离气体输出区域。

实施例7:

如图7a、7b所示,输气单元内侧面111的可吸入气体输出区域112周边设有将区域112包围且气流不对向呼吸道开口m0及使用者身体表面的隔离气体输出区域114,两个区域以边界线112c区分;隔离气体输出区域114上遍布出气孔1140,从其流出的隔离气体流动方向以箭头所示不对向躺卧状态下的使用者呼吸道开口m0及身体表面,而是形成一个具有一定厚度的倒u型的风幕状流场114a,并将可吸入气体流场112d对外隔离,而使用者呼吸道开口m0位于可吸入气体流场112d内,这样即使没有侧向隔离单元13外部污浊的空气也难以进入可吸入气体流场112d;隔离气体优选净化后的空气;实验表明:当隔离气体风速大于可吸入气体和或外部空气风速时隔离效果更佳,隔离气体氮气比例大或湿度大时也会更佳;也可根据个体化需求,调节隔离气体与可吸入气体之间温度差值以获取良好的隔离效果。

隔离气体可由独立的空气调节装置(图略)发出,经由输气单元内腔的隔离气体通路103再由隔离气体输出区域114上遍布的出气孔1140流出;而可吸入气体则由输气单元内腔110的可吸入气体通路102进入可吸入气体输出区域112,再经出气孔1120流向使用者呼吸道开口m0;当然,隔离气体也可由与可吸入气体共用的空气调节装置(图略)分出一路而成,可在通路103中设有加温、加湿等改变隔离气体参数的结构以期更佳的隔离效果。

隔离气流输出区域可以完全沿可吸入气体输出区域112周边分布,也可仅在顶部分布尤其是设有侧向隔离单元13时,其流出的气流不会流经呼吸道开口区域,而将外部环境的气体隔离。

实施例8:

如图8所示,与实施例7的不同是,在隔离气体倒u型的风幕状流场114a的两个侧向隔离单元前缘部分134设有多个可输出隔离气体的出气孔1340,综合手段确保外部污浊空气无法接近位于呼吸装置1内的使用者呼吸道开口m0。

当然在侧向隔离单元上缘部分133以及输气单元的上缘部分115也可设置释放隔离气体的出气孔。

实施例9:

如图9a、9b所示,可吸入气体输出区域112呈球面凹向使用者头部,其周边设有较为宽大的隔离气体输出区域114,隔离气体的气流不对向使用者呼吸道开口区域m0;与前述实施例7、8最大的区别是输气单元内侧面111的可吸入气体输出区域112内还设有一个可移动的邻近头部使用的独立可吸入气体输出区域1121,上有出气孔1122;两区域间设有便于手指施力的间隙1123,可将独立可吸入气体输出区域1121从可吸入气体输出区域112内拉出,如图9b所示,使得出气孔1122对向呼吸道开口区域m0,独立可吸入气体输出区域1121面积小于可吸入气体输出区域112,其适用于使用者头部少有活动或清醒未眠的情形,由于紧邻呼吸道开口区域m0,可吸入气体流量很小时即能充分吸入人体,而调节此部分可吸入气体的难度较小且速度较快,如提升其含氧量或快速增高湿度甚至雾化吸入等均较易实现,调节更为精准;尤其对于口鼻干燥的使用者湿化吸入气体及缺氧者提升气流氧浓度,呼吸道感染时则可雾化吸入药物辅助治疗。

独立可吸入气体输出区域1121是指近距离的将可吸入气体投放至呼吸道开口,面积小于可吸入气体输出区域112,使用者头部相对固定时使用或佩戴在头部使用,可不接触使用者头部也可连接于头部;采用的移动结构是指辅助独立可吸入气体输出区域1121移动探出至口鼻开口处之上方或之侧面的结构,可选择伸缩管、伸缩杆、可形变膜片等制作。

空气调节装置2上设有三路气体生成装置,开启电源按钮20由系统控制单元21驱动的显示器22上显示命令界面(图略);其中的隔离气体生成方式为:外部空气进入净化单元27,再进入温度、风速调控单元28按指令程序调节温度、风速等相关参数,由隔离气体输送通路1141传输至隔离气体输送区域114;可吸入气体生成方式为:外部空气进入净化单元23,再进入温湿度调控单元26按指令程序调节温湿度相关参数,同时可混入制氧单元24内的氧气,最终由可吸入气体输送通路102传输至可吸入气体输送区域112;独立的可吸入气体生成方式为:外部空气进入净化单元25,再进入温湿度调控单元26按指令程序调节温湿度相关参数,同时可混入制氧单元24内的氧气,由独立的可吸入气体输送通路1124传输至独立的可吸入气体输送区域1121;所述净化单元内包括风机、净化模块、吸附模块等(图略);制氧单元24可为分子筛或电化学制氧装置;温湿度调控单元26的湿度调节可选择同温或加温液态水蒸发生成水蒸气,也可采用超声波等湿化方式,温度调节采用热网加热、风冷散热等现有方式,湿化液优选纯净水。

如图9b所示,一个摄像头c对向使用者面部,不仅可通过无线网络远程与智能手机等终端连接,面部表情远程可视,也可通过分析贮存的睡眠中面部表情信息分析判断使用者睡眠深度、周期特点、睡梦状况等个体化内容;人类缺乏睡眠期间面部表情连续记录的大数据,也极度缺乏在个体化的净化状态下的呼吸环境中睡眠的面部表情大数据!后者因排除了不利空气对睡眠的影响,其面部表情数据则更有助分析睡眠者各生理系统机能的变化,为疾病预警提供个体化的大数据,为中医现代化尤其是面诊的现代化提供科学依据;例如一个使用者在睡眠全程记录了60次皱眉的表情变化,而同步的心电图记录了t波低平,而无皱眉表情时心电图正常,多个睡眠周期均能有类似记录则可判断该睡眠表情与该睡眠者的心肌缺血高度正相关;从而及时将可吸入气体输送切换至提升氧气浓度的氧疗模式或以声、光、振动等方式提醒睡眠者服用相关药物或及时就医,也可将呼吸装置1内的摄像头等元件或信息系统与医疗机构联网由专业医师即刻干预。

独立可吸入气体输出区域1121上也可设置负离子发生器和或监测可吸入气体及人呼出气体相关参数的温湿度传感器t2、氧气浓度传感器o、风速传感器v、二氧化碳(图略)及一氧化氮、丙酮的气体传感器(图略),检测人呼出气体的二氧化碳、一氧化氮、丙酮等的气体传感器位置需对向呼吸道开口,检测结果用以判断人体代谢及疾病状况;人呼出气体监测的传感器也可设置在其他的可对向呼吸道开口的移动部件或呼吸装置1的其他部分如侧向隔离单元内侧131区域上(图略)。

当然,在空气调节装置2与输气单元内腔110的气体输送通路102、1124、1141内、输气单元内腔110、呼吸装置内腔10之一部或多部设置监测可吸入气体参数的传感器如温湿度传感器t2、氧气浓度传感器o、风速传感器v等。

系统控制单元21执行的程序可以根据监测到的可能流向人呼吸道开口区域m0的可吸入气体温湿度、风速、氧气浓度、氢气浓度等的参数自动更改空气调节装置相应模块如净化模块、制氧模块等的运行参数以满足预设的气体参数要求;例如设定可吸入气体氧浓度22%,监测到输气单元内腔110氧浓度20%且在一定时间内无提升,则输出指令至制氧机加大功率直至监测到的氧浓度达到22%;也可根据监测到的多参数数据按预设程序或智能分析同时改变多个空气调节装置相应模块的运行参数以满足睡眠不同时间段的个体化生理或心理需求。

如图9a所示,一组监测外部环境气体参数如气体温湿度、风速、氧气浓度、氢气浓度、甲醛浓度、苯化合物浓度、一氧化碳浓度等的外部环境气体传感器a设置在空气调节装置的系统控制单元21附近。

通过对外部环境气体参数监测、可吸入气体参数监测、使用者呼出气体参数监测的一组或多组数据比对分析,可由中央控制器依照相应程序自动控制空气调节装置各模块运行参数以达到最佳个体化可吸入气体需求,也可由使用者自行调节;根据使用者呼出气体参数监测结果还可有助于预测相关疾病发生风险、判断疾病发展所处阶段、及时改变可吸入气体参数治疗相关疾病,如监测到呼出气体一氧化氮浓度增加,显示呼吸道存在细菌性炎症则可按预设程序自动提升氧气浓度避免患者缺氧。

进一步的,床垫17表面及周边设有多个分布在使用者活动区域的压力传感器s、接触式温度传感器t0、非接触式温度传感器t1,实时监测压力、温度变化传递至系统控制单元21,根据预设的相关程序用以判断睡眠状况并根据监测到的数据及时判断是否启动床垫17上的肢体舒缓单元b和或非接触的加温单元r给人体皮肤升温,非接触的加温单元r及温度传感器t1位于与床垫17相连的可移动的薄片状基体171上,虚线所示为红外射线及其照射区域,优选的方案是加温单元r可由相应结构(图略)驱使追踪需要加热的人体区域如膝关节、腹部等;所述肢体舒缓单元b是指选择诸如气囊等可形变结构通过将肢体支撑或振动等方式避免肌肉劳损、椎间盘突出等的功能单元,其上也可连有优选碳纤维材料的加温部件(图略)。

试验表明:当同样的过滤材料面对不同流量的气体时,低流量的过滤效果更佳;本实施例中选用的空气调节装置2产生的过滤后的可吸入气体,当输气单元内侧面的可吸入气体输送区域在35cm×35cm面积,在使用者无明显体感下,气流速度0-0.25m/s时,采用美国tsi型dusttrakll8532空气颗粒分析仪测试外部环境pm2.5浓度300微克每立方米,本系统的呼吸装置内腔10呼吸道开口区域m0处的pm2.5浓度可降至为0。

实施例10:

如图10a,与实施例9最大的不同是,还设有可从输气单元上缘部分115向前探出的薄片状的由pc、abs、ps等树脂模塑成型或玻璃材质制成的顶部隔离单元14,由于输气单元11内侧面111及外侧面113为凹向内的球面曲度,顶部隔离单元14亦为凹向内的球面曲度与其相配合,整体呈穹窿状;穹隆状的的顶部隔离单元14侧缘部分142与输气单元11及两个侧向隔离单元13上缘部分133可移动的连接,可以是对外密封的连接;顶部隔离单元14下缘部分143位于由呼吸装置基座19的上部191与输气单元11之间的顶部隔离单元容纳腔140内,顶部隔离单元14可大部或全部回收至该容纳腔140内;顶部隔离单元14将可吸入气体输出区域112流出的气流与顶部的外部空间的气体部分或全部的隔离,从而形成顶部被封闭的呼吸装置内腔10,顶部隔离单元前缘141构成装置气体出口的上部边界,由使用者头部后面可吸入气体输送区域112释放的气流总体呈水平状从前方出口流出呼吸装置内腔10,而确保顶部及两侧的外部空气不能混入;使用者首先躺卧在枕体12上,手工操作或启动相应开关或自动运行使顶部隔离单元14探出与两个侧向隔离单元13上缘部分133连接从而将呼吸装置1顶部封闭;所述自动运行是指可选择光电、压力传感方式的人头部位置感知后的由电机144驱动顶部隔离单元做向前探出的运动;当选择电机144驱动时,可在侧向隔离单元内侧面131上设置弧形轨道143导向顶部隔离单元侧缘部分142的运动;作为一种变通,输气单元上缘部分115可设有开口(图略),顶部隔离单元14回收至输气单元内腔110,探出后则与输气单元上缘部分115开口密封接触。

为便于使用者操控本装置,如图10c所示,呼吸装置内腔10顶部隔离单元14内侧设有显示器221,可由一连接电机的滑动杆222驱使显示器221探出或缩回顶部隔离单元容纳腔140内;显示器221可为触摸屏操作,可在其上设置摄像头、颗粒物浓度传感器、温湿度传感器、风速传感器、气体传感器等,并与系统控制单元21数据连接用于各种监测;独立可吸入气体输出区域1121上方设有挥发物质释放单元f,可按照设定的程序释放有助睡眠的芳香物质如植物香料等,也可释放针对具体病症的挥发性药物;在侧向隔离单元内侧面131上设有多个音箱部件s、摄像头c、光线诱导睡眠及黎明唤醒单元w、非接触式加温元件r0、药物及饮水容纳盒d、紧急呼救按键k;三个气体输送区域的通路位于基座19内,分别为:由隔离气体输送通路1141与其输送区域114连通、可吸入气体输送通路102与其输送区域112连通;独立的可吸入气体输送通路1124与其输送区域1121连通。

为更好的使呼吸装置内腔10对外隔离,还设有包括具有上缘部分151、下缘部分152、侧缘部分153的薄片状弓形的衔接单元15,衔接单元的侧缘部分153与侧向隔离单元13的连接部分1321的连接方式为包括磁力连接在内的易于分离的可活动的连接,图10b以虚线示出了脱离连接的衔接单元15;如图10e,衔接单元的下缘部分152可与遮盖使用者躯体的被服16相连,呼吸装置内腔10前部开口通过衔接单元15与被服内腔160相连通;呼吸装置1及与其相连的枕体12、床垫17、被服16构成的呼吸装置内腔10与被服内腔160共同形成了人体微环境;其中呼吸装置内腔10形成呼吸微环境,被服内腔160形成躯体微环境;人体微环境内的各种环境要素如温度、湿度、清洁度等参数设定及各种生理传感监测、各种人体干预行为由系统控制单元21序调控。

衔接单元15的侧缘部分153可与两个侧向隔离单元连接部分1321连为一体;也可以是与一个连为一体,而与另一个搭接,所述连为一体是指须使用一定外力方能分开的连接;衔接单元的下缘部分152可与遮盖使用者躯体的被服16直接或通过连接部件相连;本实施例图10e示出被服前缘的多个挂孔161套入衔接单元下缘152上的钩状凸起1521而连接;为减少可能的幽闭感受及便于使用者观察呼吸装置外部,两个侧向隔离单元13上设有透明窗体1322,可由ps、pc、abs等透明树脂或玻璃制作。

上述各个隔离单元及衔接单元15及被服16之间的连接部分可设置通气孔;如图10e示出在衔接单元之上设置通气孔1512便于气体排出,各单元自身也可根据需要设置通气孔,装置内部空间的气体可经通气孔流出,通气孔位置优选远离呼吸道开口区域m0;被服16之上任何区域尤其足部区域可设置通气孔,便于气体排出及气体交换。

衔接单元15的上缘部分151设有一突出区域,其上连有摄像头1511可连续记录睡眠时人体表情及头面颈部的活动动态信息,用于分析睡眠及健康状况也可供远程视频监测或方便人际交流。

衔接单元15与侧向隔离单元13和或顶部隔离单元14前缘部分141的连接为可选择折叠、压缩结构在内的相对位置可延展或可移动的连接,这种连接可在使用者翻身等体位变化时触碰到衔接单元使其延展或移动但不会使之与侧向隔离单元13脱离。

实施例11:

如图11a、11b附图所示,床垫17置于床体3上,与实施例10最大的不同是:与呼吸装置1连接的为立体被服s16,所述立体被服s16可由非柔性材料立体成型也可由支撑筋条s161将柔性材料构成的柔性区域s162撑起而成;立体被服内腔s160腾让出较大且稳定的空间非接触式的容纳人体,从而形成躯体微环境,也可在立体被服s16上加载更多功能元件用于监测及调节微环境;所述稳定的空间是相对于柔性被服16而言,柔性被服内腔160可随体位变化而改变且被服16内表面会接触人体皮肤。

为了将由立体被服s16参与形成的人体微环境分区管理及更为精准的调控,还包括呈膜片状的、周边适形的置于睡眠呼吸装置1内的躯体隔离部件18,躯体隔离部件18下部设有躲避躯体部位如颈部或胸部的躯体让位缺口181或凹陷;躯体隔离部件18将人体微环境区分为呼吸装置内腔10及立体被服内腔s160,独立出了呼吸微环境也即呼吸装置内腔10使之更易于被精准的调控,躯体隔离部件18的设置阻隔了部分或全部可吸入气体对头部和或颈部以下躯体皮肤的影响,这种影响可以是温度也可是湿度依赖的,头部的呼吸道开口及呼吸系统对气体的要求与其他部位的躯体皮肤经常不同,例如躯体正在发汗则不需要温暖湿润的气体流经,否则影响汗液的释放;躯体让位缺口181可因位置不同而设置成人体局部形状相对应的颈部让位缺口、胸部让位缺口或颈胸联合让位凹陷(图略),避免睡眠时压迫人体部位;躯体隔离部件18与睡眠呼吸装置内腔10周边适形的接触,可以是与侧向隔离单元13也可是与衔接单元15适形的接触,也可以与顶部隔离单元,或是与其多部同时适形的接触,从而起到部分或全部的隔离效果;躯体隔离部件的上部也可设置出气孔180,与其邻近的衔接部件15上也可同时设置出气孔1512,可将混有呼出气体的气流远离躯体皮肤或直接排出呼吸装置内腔10,避免可吸入气体及呼出气体影响躯体;躯体隔离部件18有助于将呼吸微环境与躯体微环境适度隔离,以满足身体不同区域对气体参数的不同需求。

图11c示出当选用非柔性立体被服s16时,被服s16由接近足部的旋转结构s163驱动开启或关闭,如箭头所示;被服s16接近头部的区域与衔接单元15是可以脱离分体式设计;当然,被服s16接近头部的区域与衔接单元15也可连为一体,同时脱离或接触呼吸装置1的侧向隔离单元13;图11d示出由支撑筋条s161将柔性区域s162撑起而成的立体被服s16,其支撑筋条s161根部沿导轨s164滑动而接近或远离呼吸装置1,如箭头所示;被服s16接近足部的区域设有多个便于气体排出或与外部环境进行气体交换的通气孔s1620。

空气调节装置2(见图9a)输出的可吸入气体通过隔离气体输送通路1141、可吸入气体输送通路102、独立的可吸入气体输送通路1124进入基座19并与相应输送区域连通。

实施例12:

如图12a、12b所示,与前述各实施例最大的不同是,呼吸装置1、空气调节装置2与床体3一体式设计,空气调节装置2主要模块均在床体内腔30,外部气体由进气栅格31进入空气调节装置2,图12b局部剖视及放大图具体显示与实施例9相同应用的制氧单元24、净化单元23、净化单元23的风机231、净化单元23的过滤模块232、净化单元25、净化单元27的部分结构均置于床体内腔30,与温湿度控制单元26(图略)相连的水箱261可拆卸式的嵌入床体3,含有收纳式显示器(图略)的系统控制单元21设置在床尾,外部环境气体参数传感器a设置在床尾的两个进气栅格31之间;为方便装置内的使用者观察外部环境,呼吸装置外侧面设有摄像头c,可将图像实时传送至呼吸装置内腔10的显示器上;空气调节装置2各功能模块的定期需更换的组件如净化滤材等,其上设有电子标签与空气调节装置2的识别单元配合使用(附图略),系统控制单元21不运行无法识别的组件。

如图12c、12d所示,非柔性立体被服s16将人体覆盖,被服s16可因床尾处的相应转轴结构旋转而整体抬起便于使用者进出,为消除幽闭感被服s16上设有多个透明窗体s164。

由于一体式设计,顶部隔离单元14在回收时可部分或全部移动至使用者仰卧状态时头部最低点所处的水平面之下;基于顶部隔离单元14可移动至低于头部最低点平面位置的构思,可将床面下的局部空间设置成容纳顶部隔离单元14的适形容纳结构,从而使顶部隔离单元14全部或大部可收纳在床面或头部最低点平面之下,如床体内腔30内,完全消除抬头时碰撞的可能;床体3上连有呼吸装置1的部分可折起高于床面,例如用作病床时,以适应使用者半卧体位需求(图略);顶部隔离单元14也可与立体被服s16连为一体融合设计,与立体被服s16同步开启及关闭。

一体式设计的人体微环境,其组成的呼吸装置、被服、床垫等可设有电磁屏蔽结构,如附有电磁屏蔽膜、镀金或铜镍复合镀层等方式,从而一定程度的消除外部环境的电磁波对人体的影响。

充分利用床体内腔30的一体式设计使产品模块之间连接更为紧凑且可阻隔电机噪音并节省室内空间。

本发明的系统也可与儿童车、轮椅、办公座椅等融合设置,形成相应的呼吸微环境和或躯体微环境。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1