窗式空调器的制作方法

文档序号:26145770发布日期:2021-08-03 14:31阅读:57来源:国知局
窗式空调器的制作方法

本发明涉及空调调节技术领域,特别涉及一种窗式空调器。



背景技术:

现在生活中,人们对于新风的要求越来越多,ptac(packagedterminalairconditioner,包装末端空调设备)窗机作为美国市场中,中高端酒店宾馆最常使用的制冷系统同样也有很强烈的需求。然而现在人们不仅要求新风,而且对新风的舒适度又提出了新的需求。相关技术中,通过将新风风道与室内侧风道连通,利用室内蒸发器作为新风蒸发器进行除湿,如此,虽然能够节约一个新风蒸发器,而由于室内风机将新风从室内出风口吹出较远距离后,会和室内气流进行充分混合后再进入室内风道进行除湿。因此,未经过除湿的新风还是会在一定程度上影响室内空气,从而给用户以不舒适的体验。

上述内容仅用于辅助理解发明的技术方案,并不代表承认上述内容是现有技术。



技术实现要素:

本发明的主要目的是提出一种窗式空调器,旨在解决上述提出的一个或多个的技术问题。

为实现上述目的,本发明提出的窗式空调器包括底盘、机壳、室内侧换热器及新风装置;

机壳安装于所述底盘;

室内侧换热器安装于所述机壳内,所述室内侧换热器具有沿上下方向延伸的一侧壁;

新风装置,安装于所述机壳内,且用于向室内输送新风,所述新风装置包括自室外一侧朝向室内一侧延伸的新风壳,部分所述新风壳位于所述室内侧换热器的侧壁的外侧。

在一实施例中,所述新风壳设有与室外连通的新风入口、与室内连通的新风出口及连通所述新风入口与所述新风出口的新风风道,所述新风出口邻近所述室内侧换热器的迎风面设置。

在一实施例中,所述新风出口凸出所述室内侧换热器的迎风面设置,或,所述新风出口与所述室内侧换热器的迎风面相平齐。

在一实施例中,所述新风壳具有凸出所述室内侧换热器的迎风面设置的出风段,所述出风段的末端朝向所述室内侧换热器与所述侧壁相对的一端弯折设置,所述出风段的末端形成有所述新风出口。

在一实施例中,所述新风出口的开口朝前设置,或,

所述新风出口的开口朝向所述室内侧换热器的迎风面设置,或,

所述新风出口的开口朝向所述室内侧换热器与所述侧壁相对的一端。

在一实施例中,所述新风出口沿上下方向延伸设置。

在一实施例中,所述新风出口的延伸长度大于或等于所述室内侧换热器侧壁高度的三分之一,且小于或等于所述室内侧换热器侧壁的高度。

在一实施例中,所述窗式空调器还包括设于所述机壳内的室内风道壳,所述室内风道壳内形成有室内侧风道,所述机壳的前侧壁面设有室内进风口,所述室内侧换热器对应所述室内侧风道的进风端及所述室内进风口设置;

部分所述新风壳夹设于所述室内风道壳对应所述室内侧换热器的侧壁的端部与所述机壳之间;和/或,部分所述新风壳夹设于所述室内侧换热器的侧壁与所述室内风道壳之间。

在一实施例中,所述新风壳还具有依次连接的进风段及连接段,所述连接段位于所述室内侧换热器的侧壁的外侧,所述进风段设于所述室内侧换热器靠近室外的一侧,所述连接段的过风面积小于所述进风段的过风面积。

在一实施例中,所述机壳的后侧壁面开设有新风口,所述新风壳的新风入口与所述新风口相连通,所述新风壳内设有新风风机,所述新风风机用于向所述新风风道输送新风。

在一实施例中,所述室内侧换热器包括第一室内换热器及第二室内换热器,所述窗式空调器具有恒温除湿模式,在所述恒温除湿模式下,所述第一室内换热器及所述第二室内换热器的其中一者处于制热模式,另一者处于制冷模式。

在一实施例中,所述第一室内换热器与所述第二室内换热器呈上下排布设置,所述新风出口由所述第二室内换热器延伸至所述第一室内换热器设置;或,

所述新风出口至少为两个,多个所述新风出口沿上下方向间隔设置,且至少一所述新风出口对应所述第一室内换热器设置,至少一所述新风出口对应所述第二室内换热器设置。

在一实施例中,所述第一室内换热器及所述第二室内换热器为翅片式换热器,所述第一室内换热器的翅片及所述第二室内换热器的翅片均沿上下方向延伸设置,且呈一体设置。

在一实施例中,所述窗式空调器还包括压缩机、室外换热器、冷媒循环管路、第一阀及第二阀;

所述压缩机的冷媒出口设置有排出管,冷媒入口设置有吸入管;

所述排出管、所述室外换热器、所述第一室内换热器、所述第二室内换热器、所述吸入管通过所述冷媒循环管路依次连通;

所述第一阀串接在所述室外换热器与所述第一室内换热器之间的冷媒循环管路上,所述第二阀串接在所述第一室内换热器与所述第二室内换热器之间的冷媒循环管路上。

在一实施例中,所述冷媒循环管路包括连接所述排出管与所述室外换热器的第一配管,以及连接所述吸入管与所述第二室内换热器的第二配管;窗式空调器还包括切换装置;

所述切换装置串接于所述第一配管及所述第二配管上,所述切换装置具有第一切换状态及第二切换状态;

在所述第一切换状态下,连接于所述切换装置两端的所述第一配管导通,连接于所述切换装置两端的所述第二配管导通;

在所述第二切换状态下,所述排出管和所述切换装置之间的所述第一配管与所述切换装置和所述第二室内换热器之间的所述第二配管导通,所述室外换热器和所述切换装置之间的所述第一配管与所述吸入管和所述切换装置之间的所述第二配管导通。

本发明窗式空调器通过使得新风壳自室外一侧朝向室内一侧延伸,且部分所述新风壳位于所述室内侧换热器的侧壁的外侧,通过独立的新风风道将新风引入室内,不必借助室内风机及室内换热风道吹入室内,从而使得新风的送风距离短。则大部分未经除湿的新风在和室内气流充分混合前,能够快速被室内风机吸入到室内换热风道,通过室内侧换热器进行除湿,然后吹入室内,大大缩减了新风的流通路径,降低未经过除湿的新风与室内风的混合率,使得新风对室内温度及湿度的影响更小,从而用户的使用舒适度更佳。

另外,使得部分新风壳位于室内侧换热器的侧壁的外侧,相比于新风壳从室内侧换热器的底部或室内风道壳的底部穿设至室内侧,充分利用室内侧换热器的侧壁外侧的空间,不用改变室内风道壳或其他结构的形状,进而不必改变模具,减少成本。同时,使得新风壳不必承重,进而保证新风壳的工作稳定性。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。

图1为本发明窗式空调器一实施例的结构示意图;

图2为本发明窗式空调器另一实施例的结构示意图,其中,机壳被移除;

图3为图2中窗式空调器的正视结构示意图;

图4为图2中窗式空调器的俯视结构示意图;

图5为图2中窗式空调器的左视结构示意图;

图6为本发明窗式空调器又一实施例的结构示意图;

图7为本发明窗式空调器再一实施例的结构示意图。

附图标号说明:

本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。

具体实施方式

需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。

另外,若本发明实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义为,包括三个并列的方案,以“a和/或b”为例,包括a方案,或b方案,或a和b同时满足的方案。

本发明提出一种窗式空调器。

在本发明实施例中,如图1至图5所示,该窗式空调器包括底盘100、机壳200、室内侧换热器310及新风装置400。机壳200安装于底盘100;室内侧换热器310安装于机壳200内,室内侧换热器310具有沿上下方向延伸的一侧壁311。新风装置400安装于机壳200内,且用于向室内输送新风,新风装置400包括自室外一侧朝向室内一侧延伸的新风壳410,部分新风壳410位于室内侧换热器310的侧壁311的外侧。

在本实施例中,底盘100为窗式空调器的内部结构提供安装和支撑。空调室内器还包括机壳200,机壳200安装于底盘100,以使得机壳200和底盘100形成整个窗式空调室内器的外框架,窗式空调器的内部结构均安装在机壳200和底盘100形成的容纳空间内。机壳200的形状可以呈方形、筒形等,可根据具体使用需求进行选择,在此不做具体限定。通常,为了方便制造和成型,机壳200的形状大致呈方形设置。机壳200内设有位于底盘100前侧的室内风道壳500及位于底盘100后侧的室外风道壳,室内风道壳500内形成有室内侧风道,室外风道壳内形成有室外侧风道。室内侧风道内设有室内风机,室内侧换热器310设于底盘100上,其可以安装在室内风道壳500内,也可以安装在室内风道壳500外对应室内侧风道的进风端的位置,只需使得从室内侧风道吹出的气流为经过室内侧换热器310换热后的气流即可。室外侧风道内设有室外风机及室外换热器320,室外风机用于驱动室外气流进入室外侧风道内为室外换热器320进行散热。机壳200的后侧壁311面设有室外进风口及新风口,新风口与新风入口411相连通。室内风道壳500的延伸方向通常与底盘100的长度方向一致。

机壳200上设有室内进风口210及室内出风口,室内侧风道的进风端与室内进风口210连通,室内侧风道的出风端与室内出风口连通。室内进风口210及室内出风口均可以开设在机壳200的前侧壁311面。或者使得室内进风口210位于机壳200的前侧壁311面,室内出风口位于机壳200的顶面。还可以使得室内出风口位于机壳200的前侧壁311面与顶面的交界处。室内侧风道内还可以设置室内风机,该室内风机可以是离心风机或贯流风机等。通过室内风机将新风及室内气流从室内进风口210引入,经过室内侧换热器310换热后流经室内侧风道,并从室内出风口吹出。

可以理解的是,新风壳410自室外向室内一侧延伸,也即新风壳410自室外风道壳一侧延伸至室内风道壳500一侧。如此,新风壳410位于室外风道壳一侧的新风入口411与室外连通,位于室内风道壳500一侧的新风出口412与室内连通,通过独立的新风风道413将室外气流直接引入室内。在一实施例中,如图2所示,机壳200的后侧壁面开设有新风口,新风壳410的新风入口411与新风口相连通,新风壳410内设置有新风风机417,新风风机417用于向新风风道413内输送新风,并将气流从新风入口411引向新风出口412。在另一些实施例中,还可以使得新风入口411与室外侧风道连通,则可利用室外风机,将室外气流吹向新风风道413内,并从新风出口412吹出。随后,室内风机将新风及室内风一起吸入室内侧风道,经过除湿后从室内出风口吹出。则在新风除湿时,能够利用室内侧换热器310进行除湿,不用另外设置新风蒸发器,则大大降低了制造成本,提高了能效。判断窗式空调器是否需要开启除湿模式,可以通过室内的温度感温装置和湿度感知装置共同来判断。

需要说明的是,窗式空调器安装好之后,面向用户的一侧为前,背向用户的一侧为后。可以理解的是,室内侧换热器310具有顶壁、底壁、前侧壁、后侧壁及左右两侧壁,此处的沿上下方向延伸的侧壁311指的是室内侧换热器310的左侧壁311或右侧壁311。部分新风壳410位于室内侧换热器310的侧壁311的外侧,则新风壳410可以设置在室内侧换热器310的侧壁311与室内风道壳500之间,还可以使得新风壳410与室内风道壳500一体设置,或者在室内风道壳500对应新风壳410的位置设置缺口,使得新风壳410可拆卸地密封设置在该缺口处。当然,在没有室内风道壳500的实施例中,可以使得新风壳410设置在室内侧换热器310的侧壁311与机壳200之间,或与机壳200一体设置。另外,新风壳410也可以设置在室内风道壳500对应室内侧换热器310的侧壁311的端部与机壳200之间。或者使得新风壳410与室内风道壳500和/或机壳200一体设置,当然,还可以在室内风道壳500和/或机壳200对应新风壳410的位置设置缺口,使得新风壳410可拆卸地密封设置在该缺口处。新风壳410可以安装在底盘100上,也可以直接嵌置在室内风道壳500和/或机壳200上。

窗式空调器还包括安装于底盘100上的电控盒,电控盒及新风装置400分设于室内侧换热器310左右方向上的两侧。如此,充分利用室内侧换热器310左右两侧的空间,使得底盘100上的布局更加合理,整体排布更加紧凑。且通过使得新风装置400及电控盒分设在底盘100长度方向上的两侧,使得底盘100上的重量分布更加均匀,防止因重力分布不均匀造成底盘100变形,且便于整机的安装。

本发明窗式空调器通过使得新风壳410自室外一侧朝向室内一侧延伸,且部分新风壳410位于室内侧换热器310的侧壁311的外侧,通过独立的新风风道413将新风引入室内,不必借助室内风机及室内换热风道吹入室内,从而使得新风的送风距离短,则大部分未经除湿的新风在和室内气流充分混合前,能够快速被室内风机吸入到室内换热风道,通过室内侧换热器310进行除湿,然后吹入室内,大大缩减了新风的流通路径,降低未经过除湿的新风与室内风的混合率,使得新风对室内温度及湿度的影响更小,从而用户的使用舒适度更佳。

另外,使得部分新风壳410位于室内侧换热器310的侧壁311的外侧,相比于新风壳410从室内侧换热器310的底部或室内风道壳500的底部穿设至室内侧,充分利用室内侧换热器310的侧壁311外侧的空间,不用改变室内风道壳500或其他结构的形状,进而不必改变模具,减少成本。同时,使得新风壳410不必承重,进而保证新风壳410的工作稳定性。

在一实施例中,请参照图2至图5,新风壳410设有与室外连通的新风入口411、与室内连通的新风出口412及连通新风入口411与新风出口412的新风风道413,新风出口412邻近室内侧换热器310的迎风面312设置。

在本实施例中,需要说明的是,室内侧换热器310的迎风面312指的是,室内侧换热器310的管束的迎风的一面。当室内侧换热器310为u型管板换热器时,其迎风面312指的是室内侧换热器310面向室内进风口或迎风的一面。新风入口411及新风出口412可以为矩形、圆形、长条形、椭圆形,也可以为多个微孔,在此不做具体限定。需要说明的是,新风风道413为独立于室内侧风道的风道,也即,两者风道内的气流互不干扰。新风出口412邻近室内侧换热器310的迎风面312设置,则新风出口412与室内侧换热器310的迎风面312的距离小于或等于室内侧换热器310的厚度的10%。则新风出口412可以与室内侧换热器310的迎风面312平齐,或使得新风出口412凸出室内侧换热器310的迎风面312设置。也即,使得新风壳410的末端与室内侧换热器310的迎风面312平齐或凸出室内侧换热器310的迎风面312设置。如此,新风风道413能够直接延伸至室内换热器的迎风面312,更加有利于新风经过室内侧换热器310进行除湿。还可以使得新风壳410的末端不伸出室内侧换热器310的迎风面312设置,只需使得新风出口412邻近室内侧换热器310的迎风面312即可。此时,从新风出口412吹出的新风能够顺着室内侧换热器310的侧壁311、室内风道壳500的侧壁311或机壳200的侧壁311吹向室内或室内侧换热器310的迎风面312。

通过使得新风出口412邻近室内侧换热器310的迎风面312设置,从新风出口412吹出的气流能够快速的被室内风机吸入室内侧风道,且经过室内侧换热器310进行除湿。则由于新风出口412吹出的大部分气流能够在与室内气流充分混合之前先经过室内侧换热器310进行除湿,可有效地避免未经过除湿的新风进入到室内,与室内气流混合后影响室内的湿度及温度,从而进一步提高用户的使用舒适度。且室内风轮能够将室内风和从新风出口412吹出的新风一起吸入室内侧风道内,且经过室内侧风道除湿,如此,不仅对新风进行除湿,减小了新风对室内风的影响,且使得全屋的气流仅能够进行除湿,从而增大除湿效率。

进一步地,如图2及图4所示,新风壳410具有凸出室内侧换热器310的迎风面312设置的出风段414,出风段414的末端朝向室内侧换热器310与侧壁311相对的一端弯折设置,出风段414的末端形成有新风出口412。

在本实施例中,可以理解的是,出风段414凸出室内侧换热器310的迎风面312指的是,出风段414凸出最靠近室内进风口一侧的室内侧换热器310的迎风面,也即出风段414从室外一侧向室内一侧凸出整个室内侧换热器310设置。当室内侧换热器310包括前后层叠的两个室内换热器时,出风段414凸出靠前、也即靠近室内出风口一侧的室内换热器的迎风面312。出风段414可以设置机壳200内,也可以设置在机壳200外。当出风段414设置在机壳200内时,使得室内侧换热器310与机壳200的前侧壁311面呈间隔设置,出风段414位于室内侧换热器310与机壳200的前侧壁311面之间,且与室内进风口210相连通,则可利用室内侧换热器310与机壳200的前侧壁311面之间的间隙,使得出风段414吹出的新风气流能够快速吹向室内侧换热器310进行换热。当新风壳410的出风段414设置在机壳200外侧时,可以使得室内侧换热器310可以直接贴合机壳200的前侧壁311面,进而使得从室内进风口210进入的气流能够直接进入到室内侧换热器310中,提高换热效率。且出风段414设置在机壳200外,能够提高新风流通率,从而保证足够的新风量。

通过使得出风段414的末端朝向室内侧换热器310与其侧壁311相对的一端弯折,则可以改变新风出口412的朝向及新风出口412的大小,且使得新风出口412更加贴近室内侧换热器310的迎风面312的中部,进而提升除湿效果。可以理解的是,出风段414的末端弯折可以为一段弯折,也可以为多段弯折,可根据实际需求进行选择弯折的段数及方向,在此不做具体限定。为了增大出风量,还可以使得出风段414的末端朝向新风出口412呈渐扩设置。

在一实施例中,请参照图3及图4,新风出口412的开口朝前设置。如此,在满足除湿需求的同时,可以简化新风壳410的出风段414的结构。另一实施例中,新风出口412的开口朝向室内侧换热器310的迎风面312设置。如此,从新风出口412吹出的新风能够立刻进入室内侧换热器310进行除湿,从而在满足新风进风量的同时降低新风对室内气流的影响。在另一些实施例中,新风出口412的开口朝向机壳200内左右方向上远离新风壳410的一端。如此,能够充分利用室内侧换热器310与机壳200的前侧壁311面之间的间隙,增大新风的流通率,使得新风出口412吹出的气流能够沿着室内换热器的迎风面312流通,则从新风出口412吹出的新风能够迅速进入室内侧换热器310中进行除湿。

在一实施例中,如图2、图3及图5所示,新风出口412沿上下方向延伸设置。通过使得新风出口412沿上下方向延伸,充分利用机壳200内高度方向上的空间,进一步增大新风出风量,且使得新风壳410的在左右方向上的占用空间小,使得整机结构更加紧凑。

进一步地,新风出口412的延伸长度大于或等于室内侧换热器310侧壁311高度的三分之一,且小于或等于室内侧换热器310侧壁311的高度。具体地,新风出口412的延伸长度可以为室内侧换热器310侧壁311的高度的三分之一、二分之一、三分之二、六分之五等。当新风出口412的延伸长度小于室内侧换热器310的侧壁311的高度的三分之一时,使得新风出风的出风面积小,不能够满足新风出风量的需求。当新风出口412的延伸长度大于室内侧换热器310侧壁311的高度时,使得新风壳410的出风段414的高度过高,从而需要增加整机高度,进而增大了整机的体积。通过使得新风出口412的延伸长度大于或等于室内侧换热器310侧壁311高度的三分之一,且小于或等于室内侧换热器310侧壁311的高度,则在不会增加整机高度的前提下满足新风出风量的需求。

在一实施例中,窗式空调器还包括设于机壳200内的室内风道壳500,室内风道壳500内形成有室内侧风道,机壳200的前侧壁面设有室内进风口210,室内侧换热器310对应室内侧风道的进风端及室内进风口210设置;部分新风壳410夹设于室内风道壳500的对应室内侧换热器310的侧壁311的端部与机壳200之间。

在本实施例中,机壳200的前侧壁311面设置室内进风口210,使得进风口面积大,满足进风量的需求。室内侧换热器310对应室内进风口210设置,则室内侧换热器310的迎风面312可以正对室内进风口210设置,也可以与室内进风口210所在的平面呈一定的夹角设置,只需使得从室内进风口210进入的气流能够直接吹向室内侧换热器310即可。室内侧风道的进风端对应室内进风口210设置,室内侧换热器310安装在室内侧风道的进风端,则气流从机壳200的前侧的室内进风口210进入后,能够直接经过室内侧换热器310换热后进入室内侧风道内。通过使得部分新风壳410夹设在室内风道壳500的对应侧壁311的端部与机壳200之间,则能够保证新风壳410、室内风道壳500及机壳200的完整性,进而在满足密封需求的同时便于新风壳410的独立维修和更换。在另一实施例中,部分新风壳410夹设于室内侧换热器310的侧壁311与室内风道壳500之间。此时,室内侧换热器310应设置在室内风道壳500内,且室内换热器的侧壁311与室内风道壳500之间还具有一定间隙。如此,新风壳410从室内风道壳500的内部穿出,使得整体的结构更加紧凑,同时也能够便于独立维修和更换新风壳410。当然,如图5所示,在其他实施例中,还可以使得部分新风壳410夹设于室内风道壳500的侧壁311与机壳200之间,部分新风壳410夹设于室内侧换热器310的侧壁311与室内风道壳500之间。

在一实施例中,请参照图2及图4,新风壳410还具有依次连接的进风段415及连接段416,连接段416位于室内侧换热器310的侧壁311的外侧,进风段415设于室内侧换热器310靠近室外的一侧,连接段416的过风面积小于进风段415的过风面积。

可以理解的是,机壳200内靠近室外的一侧具有较大的安装空间,则靠近室外风道壳一侧的进风段415可设置成过风面积较大的一段,保证足够的新风进风量。连接段416位于室内侧换热器310的侧壁311外侧,则为了尽量的减小对室内风道部件的影响,以及使得整体结构更加紧凑,应使得连接段416的尺寸较小,也即使得连接段416的过风面积小于进风段415的过风面积。

在一较佳实施例中,如图6及图7所示,室内侧换热器310包括第一室内换热器313及第二室内换热器314,窗式空调器具有恒温除湿模式,在恒温除湿模式下,第一室内换热器313及第二室内换热器314的其中一者处于制热模式,另一者处于制冷模式。

在本实施例中,通过使得室内侧换热器310具有第一室内换热器313及第二室内换热器314,且在恒温除湿模式下,使得第一室内换热器313及第二室内换热器314的其中一者处于制热模式,另一者处于制冷模式。经过室内侧换热器310的气流能够同时被加热和除湿,经过加热和除湿后的混合风温度适宜,不会有凉风感受,往复循环后不仅能将所有的室内风及新风重新除湿,且使得窗式空调器在除湿模式下整个室内温度不会下降,能够达到对全屋恒温除湿的目的。同时,除湿时能够充分利用室内侧换热器310,不用另外设置新风冷凝器及新风蒸发器,则大大降低了制造成本。

在一实施例中,第一室内换热器313与第二室内换热器314沿室内侧风道的进风方向层叠设置。当第一室内换热器313及第二室内换热器314沿室内侧风道的进风方向层叠设置时,从室内进风口210进入的室内风或新风,先经过第一室内换热器313除湿/加热,再经过第二室内换热器314加热/除湿,室内风机将经过加热除湿后的气流从室内出风口送入室内,实现全屋恒温除湿。使得第一室内换热器313和第二室内换热器314沿进风方向层叠设置,则从室内进风口210吹出的全部气流能够被同时加热,随后同时被除湿,从而无需使得加热和除湿分为两股不同的气流,减少了混合步骤,使得从室内出风口吹出的气流温度及湿度更加均匀、舒适。

在另一实施中,,第一室内换热器313及第二室内换热器314在垂直室内侧风道的进风方向上呈并排设置,以使从室内进风口210进入的气流一部分吹向第一室内换热器313,另一部分吹向第二室内换热器314。

在本实施例中,室内侧风道的进风方向通常为前后方向。则垂直进风方向的方向可为左右和上下方向。如此,第一室内换热器313及第二室内换热器314可以呈上下排布或左右排布,从室内进风口210进入的新风或室内风,部分经过第一室内换热器313加热/除湿,另一部分经过第二室内换热器314除湿/加热,然后在室内侧风道内混合后形成温度适宜的干燥气流,再由室内风机将恒温的干燥气流从室内出风口送入室内,实现全屋恒温除湿。通过使得第一室内换热器313及第二室内换热器314沿上下或左右排布,能够大大减小室内侧换热器310的厚度,充分利用机壳200高度方向的空间,从而减少室内侧换热器310的占用空间,减小整机体积和重量。

在一实施例中,第一室内换热器313与第二室内换热器314呈上下排布设置,新风出口412由第二室内换热器314延伸至第一室内换热器313设置;或,

新风出口412至少为两个,多个新风出口412沿上下方向间隔设置,且至少一新风出口412对应第一室内换热器313设置,至少一新风出口412对应第二室内换热器314设置。

在本实施例中,第一室内换热器313与第二室内换热器314沿上下方向排布设置,则第一室内换热器313及第二室内换热器314在高度方向层叠。第一室内换热器313及第二室内换热器314在上下方向上可以完全层叠设置,即第一室内换热器313及第二室内换热器314的迎风面312位于同一平面上。第一室内换热器313与第二室内换热器314也可以稍微呈前后交错设置,即使得第一室内换热器313及第二室内换热器314的迎风面312不位于同一平面上。为了保持整体一致性,以及使得第一室内换热器313及第二室内换热器314的层叠效果和换热效果更佳,可以选择使得第一室内换热器313及第二室内换热器314的厚度相等,且两者的迎风面312位于同一平面上。第一室内换热器313及第二室内换热器314可以为两个独立的换热器,也可以为一个换热器分隔而成的上下两个换热器。

使得第一室内换热器313及第二室内换热器314呈上下排布设置,则相比于两个室内换热器前后层叠设置,能够大大减小室内侧换热器310的整体厚度,从而减小室内侧换热器310的占用空间,使得整机结构更加紧凑、重量更轻、体积更小。且第一室内换热器313及第二室内换热器314呈上下排布,相比于两个室内换热器呈左右排布而言,两者之间可以紧密贴合,不会漏风,从而使得整体的换热效果更佳。

新风壳410可以部分或全部安装在底盘100上,也可以与底盘100呈间隔设置,即安装在室内风道壳500或机壳200上。通过使得新风出口412由第二室内换热器314延伸至第一室内换热器313设置,或使得至少一个新风出口412对应第一室内换热器313,至少一个新风出口412对应第二室内换热器314,则从新风出口412吹出的气流,部分直接对应第一室内换热器313,另一部分直接对应第二室内换热器314,也即,一部分气流进行加热,另一部分气流进行除湿,从而使得整个新风出口412吹出的新风的恒温除湿效果更佳。

在上述实施例的基础上,进一步地,第一室内换热器313及第二室内换热器314为翅片式换热器,第一室内换热器313的翅片及第二室内换热器314的翅片均沿上下方向延伸设置,且呈一体设置。

在本实施例中,翅片式换热器的传热效率高、结构紧凑、轻巧,因此,使得第一室内换热器313及第二室内换热器314为翅片式换热器能够使得整机结构更加紧凑、减小整机体积及重量。使得第一室内换热器313的翅片及第二室内换热器314的翅片呈一体设置,则实质上相当将一个完整的换热器划分为上部换热器和下部换热器。则整个换热器的完整性更好,不易出现漏风的现象,保证整机的换热能效。且仅使用一个换热器便可实现恒温除湿,充分、巧妙的利用了室内换热器,不必另外设置新风蒸发器及新风冷凝器,极大的降低了制造成本,提高了能效及生产工艺。简化了整机的结构,从而使得窗式空调室内机在满足具有恒温除湿模式的前提下,还具有轻巧、体积小等优势。

在一实施例中,如图6及图7所示,窗式空调器还包括压缩机600、室外换热器320、冷媒循环管路、第一阀710及第二阀720;

压缩机600的冷媒出口设置有排出管610,冷媒入口设置有吸入管620;

排出管610、室外换热器320、第一室内换热器313、第二室内换热器314、吸入管620通过冷媒循环管路依次连通;

第一阀710串接在室外换热器320与第一室内换热器313之间的冷媒循环管路上,第二阀720串接在第一室内换热器313与第二室内换热器314之间的冷媒循环管路上。

在本实施例中,压缩机600可以为变频式压缩机600或定频式压缩机600。通过使得压缩机600为变频式压缩机600,能够更佳的实现制冷及恒温除湿双系统,节约了一个压缩机600,从而使得整体结构更加简单,降低成本和功率,大大提高了能效。第一阀710及第二阀720可以为电磁阀、电子膨胀阀或节流阀,能够控制其所在配管的通断或流量。通过设置第一阀710及第二阀720,能够控制冷媒是否流入第一室内换热器313及第二室内换热器314,从而控制第一室内换热器313及第二室内换热器314是否参与制冷或制热。

当需要开启除湿模式时,压缩机600流出的高温冷媒进入到室外换热器320(冷凝器),从而室外换热器320出来的高温冷媒到达第一阀710,此时第一阀710可以全部或大部分打开,让室外换热器320的温度等于或略小于第一室内换热器313的温度,此时第一室内换热器313为冷凝器,起到加热气流的作用,然后流出第一室内换热器313的次高温冷媒到达第二阀720,第二阀720部分打开,起到毛细管节流的作用,节流后冷媒变为低温冷媒,流过第二室内换热器314,此时第二室内换热器314为蒸发器,起到降温的作用,也即除湿,从第二室内换热器314流出的冷媒再回到压缩机600。如此,新风和室内风混合后部分经过第一室内换热器313加热,部分经过第二室内换热器314降温除湿,进入室内侧风道混合后形成温度适宜的干燥气流,随后由室内出风口吹出,从而达到室内即除湿又不会吹冷风的目的,且除湿效果更佳。当然,第一室内换热器313也可以作为蒸发器,则第二室内换热器314作为冷凝器,同样可以实现恒温除湿的目的。

当不需要除湿,仅需开启全制冷模式时,使得压缩机600流出的高温冷媒进入到室外换热器320(冷凝器),从而室外换热器320出来的高温冷媒到达第一阀710,此时第一阀710小部分打开起到毛细节流的作用,让第一室内换热器313的温度大大小于室外换热器320的温度,此时第一室内换热器313为蒸发器,起到降温的作用,然后流出第一室内换热器313的低温冷媒到达第二阀720,第二阀720完全或大部分开启,起到完全通过或者再节流的作用,通过第二阀720的冷媒流过第二室内换热器314,此时第二室内换热器314为蒸发器,起到二次降温的作用,从第二室内换热器314流出的冷媒再回到压缩机600。如此,新风和室内风混合后经过第一室内换热器313降温,然后经过第二室内换热器314二次降温,进入室内侧风道后由室内出风口吹出,从而能达到室内快速降温的目的。

在一实施例中,请参照图7,冷媒循环管路包括连接排出管610与室外换热器320的第一配管810,以及连接吸入管620与第二室内换热器314的第二配管820;窗式空调器还包括切换装置900;

切换装置900串接于第一配管810及第二配管820上,切换装置900具有第一切换状态及第二切换状态;

在第一切换状态下,连接于切换装置900两端的第一配管810导通,连接于切换装置900两端的第二配管820导通;

在第二切换状态下,排出管610和切换装置900之间的第一配管810与切换装置900和第二室内换热器314之间的第二配管820导通,室外换热器320和切换装置900之间的第一配管810与吸入管620和切换装置900之间的第二配管820导通。

在本实施例中,可以理解的是,窗式空调器还具有控制器,控制器与第一阀710、第二阀720及切换装置900均电连接,从而控制切换装置900的切换状态及各个阀的开关及开度。切换装置900可以为四通阀或其他使得冷媒不会同时进入室外换热器320和第二室内换热器314的切换装置900。通过切换装置900,能够使得空调器的功能增加。可以理解的是,切换装置900串接在第一配管810及第二配管820上,也即切换装置900的两端连通第一配管810,两端连通第二配管820。

在切换装置900处于第一切换状态时,压缩机600的排出管610流出的高温冷媒通过第一配管810流向室外换热器320,然后依次流入第一室内换热器313及第二室内换热器314,最后经第二配管820及吸入管620流回压缩机600。通过控制第一阀710及第二阀720的开度,能够控制第一室内换热器313为制冷状态或制热状态,从而能够控制整个系统处于恒温除湿模式或全制冷系统。第一阀710及第二阀720控制第一室内换热器313是处于制冷状态或制热状态,与上述没有切换状态的实施例相似,在此不做赘述。

在切换装置900处于第二切换状态时,压缩机600的排出管610流出的高温冷媒通过第一配管810及第二配管820流入第二室内换热器314,随后流向第一室内换热器313及室外换热器320,最后通过第一配管810、第二配管820及吸入管620流回压缩机600。可以通过控制第一阀710及第二阀720的开度,进而控制第一室内换热器313是处于制冷状态或制热状态,从而控制整个系统是处于恒温除湿模式还是处于全制热状态。

当开启全制热模式时,切换装置900处于第二切换状态,压缩机600的排出管610流出的高温冷媒通过第一配管810及第二配管820流入第二室内换热器314,此时第二室内换热器314起到冷凝器加热的作用,从而第二室内换热器314出来的高温冷媒到达第二阀720,此时第二阀720全部打开,高温冷媒继续流出到第一室内换热器313,第一室内换热器313起到再次加热的作用,次高温冷媒到达第一阀710后,可使得第一阀710起到毛细管节流的作用,节流后冷媒变为低温冷媒,流经室外换热器320后回到压缩机600。如此,能实现室内快速制热的目的。

以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1