液化气态、富含甲烷的进料以获得液化天然气的方法

文档序号:4763564阅读:146来源:国知局
专利名称:液化气态、富含甲烷的进料以获得液化天然气的方法
技术领域
本发明涉及一种液化气态、富含甲烷的进料以获得液化产品的方法。液化产物通常是液化天然气。尤其本发明涉及控制此液化方法。
背景技术
液化方法包含以下步骤(a)提供高压下的气态、富含甲烷的进料至位于主要热交换器温热端的主要热交换器的第一管侧,以蒸发制冷剂冷却、液化及过冷却此气态、富含甲烷的进料,以获得液化物流,从主要热交换器的冷端将液化物流移出主要热交换器,并将液化物流当作液化产品输送而储存;(b)从位于主要热交换器温热端的主要热交换器的壳侧移出蒸发制冷剂;(c)于至少一个制冷剂压缩机中压缩蒸发制冷剂,以获得高压制冷剂;(d)部分冷凝高压制冷剂,并于分离器中将部分冷凝的制冷剂分离成液态重质制冷剂馏分与气态轻质制冷剂馏分;(e)在主要热交换器的第二管侧过冷却重质制冷剂馏分,以获得经过冷却重质制冷剂物流,于减压下将重质制冷剂物流导入位于主要热交换器中点的主要热交换器的壳侧,并使重质制冷剂物流于壳侧内蒸发;以及(f)于主要热交换器的第三管侧冷却、液化及过冷却至少部分的轻质制冷剂馏分,以获得经过冷却的轻质制冷剂物流,于减压下将轻质制冷剂物流导入位于主要热交换器冷端的主要热交换器的壳侧,并使轻质制冷剂物流于壳侧内蒸发。
专利国际申请公开号第99/31448号揭露控制液化的方法。在习知控制方法中,是使用一种基于模型预测控制的先进处理控制器来测定一组操作变量的同步控制行为,以当控制一组控制变量中的至少一个时,使一组参数中的至少一个最优化;其中该组操作变量包括重质制冷剂馏分的质量流量、轻质制冷剂馏分的质量流量,以及富含甲烷进料的质量流量;其中该组控制变量包括于主要热交换器温热端的温度差以及于主要热交换器中点的温度差;以及其中一组欲适化的变量包括液化产品的产量。
该习知方法被认为是有利的,因为混合制冷剂的整体组成没有被操作来最优化液化产品的产量。然而,申请人现已发现到个别地控制混合制冷剂的整体组成是很麻烦的。

发明内容
本发明的一目的是提供一种替换方法,其中包含对混合制冷剂的整体组成的控制。
为此目的,液化气态、富含甲烷的进料以获得液化产物的方法的特征在于该方法还包括调整制冷剂的组成与数量并控制液化方法,其使用一种基于模型预测控制的先进处理控制器来测定一组操作变量的同步控制行为,以当控制一组控制变量中的至少一个时,使一组参数中的至少一个最优化;其中该组操作变量包括重质制冷剂馏分的质量流量、轻质制冷剂馏分的质量流量、制冷剂成份的补充数量、所移除的制冷剂数量、制冷剂压缩机的容量以及富含甲烷进料的质量流量;其中该组控制变量包括位于主要热交换器温热端的温度差、与液化天然气温度有关的变量、进入步骤(d)分离器的制冷剂组成、主要热交换器的壳内的压力、步骤(d)分离器内的压力以及步骤(d)分离器内的液体高度;以及其中一组欲最优化的变量包括液化产品的产量。
在说明书与申请专利范围中,术语“操作变量”是指可被先进处理控制器操作的变量,而术语“控制变量”是用指必须被先进处理控制器保持在预设值(设定值)或预设范围(设定范围)内的变量。措词“最优化变量”是指最大化或最小化变量,并将变量维持在预设值。
模型预测控制或基于预测控制的模型是一种习知技术,例如请见Perry’s Chemical Engineers’Handbook,第七版,第8-25至8-27页。模型预测控制的重要特征在于使用模型与控制变量的可得的量测来预测未来的处理行为。计算控制器的输出以使性能指数最优化,该性能指数为所预测的误差与所计算的未来控制变动(future control move)的线性或二次函数。于每一次取样瞬间,会重复控制计算,且预测值是基于目前的量测值来更新。适当的模型为一种包含一组可表达操作变量对控制变量的阶跃响应的结果的经验阶跃响应模型(empiricalstep-response model)。
可由个别的最优化步骤得到欲最优化的参数的最优值,或者可将欲最优化的变量包含于性能函数中。
在应用模型预测控制之前,首先测定操作变量的阶跃变化对欲最优化的变量及对控制变量的影响。此产生一组阶跃响应系数。此组阶跃响应系数形成液化方法的模型预测控制的基础。
在正常操作过程中,控制变量的预测值则会为了一些未来控制而经常计算。对于这些未来控制变动,计算性能指数。性能指数包括二项,第一项表示每一控制变动中预测误差的未来控制变动的总和,而第二项表示每一控制变动中操作变量变化的未来控制变动的总和。对每一控制变量而言,预测误差为控制变量的预测值与控制变量的参考值间的差异。将预测误差乘以加权因子,并将控制变动的操作变量变化皆乘以变动抑制因子。此处所讨论的性能指数即为线性。
或者,这些项可为平方项的加总,于此例中,性能指数为二次方的。
此外,可对操作变量、操作变量的变化以及控制变量作限制。其可产生一个别的方程组,该方程组可在性能指数最小化的同时被解出。
可以两种方式进行最优化,一种方式是在性能指数的最小化之外个别地最优化,第二种方式是于性能指数中最优化。
当个别地进行最优化时,欲最优化的变量被包括在每一控制变动中的预测误差的控制变量中,而此最优化可得到控制变量的参考值。
或者,于性能指数的计算中进行最优化,而此可得到具有适当加权因子的性能指数的第三项。于此例中,控制变量的参考值是预先设定为稳态值,其维持为常数。
考虑到为获得未来控制变动的操作变量值所作的限制,将性能指数最小化。然而,仅执行下一个控制变动。然后,再重新开始未来控制变动的性能指数的计算。
具有阶跃响应系数的模型与模型预测控制中所需方程序为控制液化方法所执行的电脑程序的一部分。装载有这样一种可处理模型预测控制的程序的电脑程序被称为先进处理控制器。因为电脑程序是商业可得的,我们将不详细讨论此种程序。本发明更与选择变量有关。


图1为显示液化天然气工厂的流程图。
具体实施例方式
现将参照所附的显示液化天然气工厂的流程图来说明本发明。
液化天然气的工厂包含具有温热端3、冷端5及中点7的主要热交换器1。主要热交换器1的器壁8界定出壳侧10。于壳侧10中,设置有从温热端3延伸至冷端5的第一管侧13、从温热端3延伸至中点7的第二管侧15,及从温热端3延伸至冷端5的第三管侧16。
在正常操作过程中,于提升压力下将气态、富含甲烷的进料是经由在主要热交换器温热端3的供应导管20供应至主要热交换器1的第一管侧13。流经第一管侧13的进料则被在壳侧10内蒸发的制冷剂所冷却、液化与过冷却。所得液化物流于主要热交换器1的冷端5经由导管23移出。将液化物流送至储槽(未显示),在此,液化物流于大气压力下以液化产品储存。
蒸发的制冷剂从温热端3经由导管25移出主要热交换器1的壳侧10。为调整制冷剂的整体组成,成份像是氮气、甲烷、乙烷与丙烷可分别经由导管26a,26b,26c与26d加入导管25的制冷剂中。导管26a至26d装有适当可控制进入导管25的成份流动的阀件(未显示)。制冷剂亦称为混合制冷剂或多成份制冷剂。
于制冷剂压缩机30中,压缩蒸发的制冷剂以得到从导管32移出的高压制冷剂。制冷剂压缩机30是由适当马达驱动,例如装有起动一辅助马达(未显示)的气体涡轮35。
导管32内的高压制冷剂于空气冷却器42内冷却,并于热交换器43中部分冷凝,以得部分冷凝的制冷剂。空气冷却器42可用热交换器取代,于热交换器中制冷剂以海水冷却。
高压制冷剂经由入口装置46导入为分离容器45形式的分离器。于分离容器45中,部分冷凝的制冷剂被分成液态重质制冷剂馏分以及气态轻质制冷剂馏分。液态重质制冷剂馏分从分离容器45的底部经由导管47移出,而气态轻质制冷剂馏分经由导管48移出。
为调节制冷剂的数量,重质制冷剂可经由装有阀49a的导管49排出。
重质制冷剂馏分于主要热交换器1的第二管侧15过冷却,以得到过冷却的重质制冷剂物流。过冷却的重质制冷剂物流经由导管50移出主要热交换器1,并得以在为膨胀阀51形式的膨胀装置中膨胀。于减压下,其于主要热交换器1的中点7经由导管52与喷嘴53导入主要热交换器1的壳侧10。重质制冷剂物流得以于减压下于壳侧10蒸发,借此冷却管侧13,15与16内的流体。
为调节制冷剂的数量,气态轻质制冷剂可经由装有阀54a的导管54排出。
经由导管48移出的气态轻质制冷剂馏分流至主要热交换器1的第三管侧16,并于此冷却、液化与过冷却,以获得过冷却的轻质制冷剂物流。过冷却的轻质制冷剂物流经由导管57移出主要热交换器1,并得以于膨胀阀58形式的膨胀装置中膨胀。于减压下,其于主要热交换器1的冷端5经由导管59与喷嘴60导入主要热交换器1的壳侧10。轻质制冷剂物流得以于减压下于壳侧10内蒸发,借此冷却管侧13,15与16内的流体。
所得液化物流从导管23移出主要热交换器1,并流至闪蒸器70。导管23上装有为膨胀阀71形式的膨胀装置,以容许压力的减低,以致于减压下经由闪蒸器70内的入口装置72导入所得液化物流。此减压适当地大致等于大气压。膨胀阀71亦调节总流量。
废气从闪蒸器70顶部经由导管75移出。废气可于终端闪蒸压缩器(未显示)中压缩,以得到高压燃料气体。
液化产物从闪蒸器70底部经由导管80移出,并流至储槽(未显示)。
第一个目的是使流经导管80的液化产物的生产量最大化,其是借由膨胀阀71来操控。
为达成此目的,使用基于模型预测控制的先进处理控制器来控制液化方法,以测定一组操作变量的同步控制行为,以当控制至少一组控制变量中的至少一个时,使液化产物的产量最优化。
该组操作变量包括流经导管52(膨胀阀51)的重质制冷剂馏分的质量流量、流经导管57(膨胀阀58)的轻质制冷剂馏分的质量流量、制冷剂成份补充的数量(经由导管26a至26d提供)、从导管49流出和/或从导管54排出的制冷剂数量、制冷剂压缩机30的容量以及流经导管20(由膨胀阀71操控)的富含甲烷进料的质量流量。于另一具体实例中,膨胀涡轮(未显示)可置于膨胀阀71上游的导管23中。
这些操作变量中,重质制冷剂馏分的质量流量、轻质制冷剂馏分的质量流量、制冷剂成份补充的数量,及流出和/或排出的制冷剂数量是有关于存货或混合制冷剂数量的操作变量。
制冷剂压缩机30(或数个压缩机,其当使用超过一个压缩机时)的容量是以制冷剂压缩机的速度、制冷剂压缩机入口导引叶片的角度、或是制冷剂压缩机的速度与入口导引叶片的角度两者来决定。因此,制冷剂压缩机的操作变量容量为制冷剂压缩机的速度、制冷剂压缩机入口导引叶片的角度、或是制冷剂压缩机的速度与入口导引叶片的角度两者。
该组控制变量包括主要热交换器1的温热端3的温度差(即在导管20内的流体的温度与导管25内的温度的差异)。
适当地,控制另外的变量,其为中点7的温度差,亦即为位于中点7的第一管侧13内液化的气体温度与于位于中点7的主要热交换器1的壳侧10内的流体温度的差异。于说明书与申请专利范围中,此温度差是指第一中点温度差。
适当地,控制另外的变量,其为中点7的温度差,亦即为位于中点7的第一管侧13内液化的气体温度与经由导管52导入的重质混合制冷剂物流温度的差异。于说明书与申请专利范围中,此温度差异是称为第二中点温度差。
适当地,又一控制变量为位于中点7的第一管侧13内液化的气体温度。
该组控制变量亦包含一个关于液化天然气的温度。此外,该组控制变量包含进入分离容器45的制冷剂的组成、主要热交换器1的壳侧10内的压力、以及分离容器45内的液体高度。
该组欲最优化的变量包含液化产物的产量。
借由选择这些变量,可使用此基于模型预测控制的先进处理控制来达成主要热交换器1的控制。
申请人已经发现可达成一种有效且快速的控制,其容许最优化液化产物的产量、控制主要热交换器内的温度分布,以及控制制冷剂的组成与制冷剂的数量或存货。
本发明的本质在于领悟到混合制冷剂的组成与存货是无法与液化产物的产量的最优化分离的。
控制变量之一为主要热交换器1的温热端3的温度差,其为导管20内的流体温度与导管25内的温度间的差异。将温热端3的温度保持在预定极限之内(最小极限值与最大极限值),以确保没有液态制冷剂可经由导管25从壳侧10排出。
适当地,控制另一变量,其为中点7的温度差,即位于中点7的第一管侧13内液化的气体温度与位于中点7的主要热交换器1的壳侧10内的流体温度的差异。第一中点温度差应维持于预定范围内。
适当地,控制另一变量,其为中点7的温度差,即位于中点7的第一管侧13内液化的气体温度与经由导管53导入的重质混合制冷剂物流温度的差异。第二中点温度差应维持于预定范围内。
适当地,又一控制变量为位于中点7的第一管侧13内液化的气体温度,且此温度应保持在预定值以下。
控制变量的一为与液化天然气温度有关的变量。适当地,此为经由导管23移出主要热交换器1的液化天然气温度。或者,与液化天然气温度有关的变量为流经导管75的废气量。
适当地,除了液化产物的产量之外,该组欲最优化的变量包括制冷剂的氮含量与制冷剂的丙烷含量,其中氮含量被最小化,而丙烷含量被最大化。
如前所述,最优化可分别进行,或于性能指数的计算中进行。在后者例子中,以预定加权因子加权欲最优化的变量。两种方法皆容许操作员作选择以使产量最大化或最优化制冷剂组成。
本发明的另一目的为使压缩机的利用最大化。为此目的,液化天然气的产量被最大化直到达到压缩机限制。因此,该组控制变量更包括驱动制冷剂压缩机30(或多个制冷剂压缩机,假使使用一个以上的制冷剂压缩机)所需动力。
另外,制冷剂压缩机的速度亦为控制变量,因为其可被降低直到位于温热端3的温度差的最大值达到最大极限值。
在热交换器中,高压制冷剂被部分冷凝。于此或一些其他的(未显示)热交换器中,热是借由辅助制冷剂(例如丙烷)的间接热交换而移除,辅助制冷剂于热交换器的壳侧中于适当压力下蒸发。
蒸发的辅助制冷剂是在适当马达,像是气体涡轮92所驱动的辅助压缩机90中压缩。辅助制冷剂于空气冷却机95中冷凝,其中空气为外部冷却剂。在提升压力下所冷凝的辅助制冷剂是经由具有膨胀阀99的导管97流通至热交换器43的壳侧。经冷凝的辅助制冷剂得以于低压下蒸发,而蒸发的辅助制冷剂再经由导管100回到辅助压缩机92中。应了解可利用超过一个的辅助压缩机,其可以平行或串联方式配置。
空气冷却机95可以热交换器取代,其中制冷剂以海水冷却。
为整合辅助制冷剂的循环控制与主要热交换器1的控制,该组操作变量还包括辅助制冷剂压缩机90或多个压缩机的容量,而该组控制变量还包括驱动辅助制冷剂压缩机90或多个压缩机的动力。以此方式,可最大化丙烷压缩机的利用。
辅助制冷剂压缩机90(或多个压缩机,假使使用一个以上的辅助制冷剂压缩机时)的容量是由辅助制冷剂压缩机的速度、辅助制冷剂压缩机入口导引叶片的角度、或是制冷剂压缩机的速度与入口导引叶片的角度两者所决定。因此,辅助制冷剂压缩机的操作变量容量为辅助制冷剂压缩机的速度、辅助制冷剂压缩机入口导引叶片的角度、或是制冷剂压缩机的速度与入口导引叶片的角度两者。
在图式所显示的具体实施例中,重质制冷剂可经由设有阀49a的导管49排出,而气态轻质制冷剂可由设有阀54a的导管54排出。或者,混合制冷剂可从位于制冷剂压缩机30下游的导管32移出。在此方式中,亦可调节制冷剂的数量。
权利要求
1.一种液化气态、富含甲烷的进料以获得液化产品的方法,该液化方法包括以下步骤(a)提供高压的气态、富含甲烷的进料至位于主要热交换器温热端的主要热交换器的第一管侧,以蒸发制冷剂来冷却、液化及过冷却该气态、富含甲烷的进料,以获得液化物流,从主要热交换器的冷端将液化物流移出主要热交换器,并将液化物流储存为液化产品;(b)从位于主要热交换器温热端的主要热交换器的壳侧移出蒸发制冷剂;(c)于至少一个制冷剂压缩机中压缩蒸发制冷剂,以获得高压制冷剂;(d)部分冷凝高压制冷剂,并于分离器中将部分冷凝的制冷剂分离成液态重质制冷剂馏分与气态轻质制冷剂馏分;(e)于主要热交换器的第二管侧过冷却重质制冷剂馏分,以获得过冷却的重质制冷剂物流,于减压下将重质制冷剂物流导入位于主要热交换器中点的主要热交换器的壳侧,并使重质制冷剂物流于壳侧内蒸发;以及(f)于主要热交换器的第三管侧冷却、液化及过冷却至少部分的轻质制冷剂馏分,以获得过冷却的轻质制冷剂物流,于减压下将轻质制冷剂物流导入位于主要热交换器冷端的主要热交换器的壳侧,并使轻质制冷剂物流于壳侧内蒸发,其特征在于该方法还包括调整制冷剂的组成与数量并控制液化方法,其使用一种基于模型预测控制的先进处理控制器来测定一组操作变量的同步控制行为,以当控制一组控制变量中的至少一个时,使一组参数中的至少一个最优化,其中该组操作变量包括重质制冷剂馏分的质量流量、轻质制冷剂馏分的质量流量、制冷剂成份的补充数量、所移除的制冷剂数量、制冷剂压缩机的容量以及富含甲烷进料的质量流量,其中该组控制变量包括位于主要热交换器温热端的温度差、与液化天然气温度有关的变量、进入步骤(d)分离器的制冷剂组成、主要热交换器的壳内的压力,步骤(d)分离器内的压力以及步骤(d)分离器内的液体高度,以及其中该组欲最优化的变量包括液化产品的产量。
2.如权利要求1所述的方法,其特征在于该组控制变量还包括第一中点温度差。
3.如权利要求1或2所述的方法,其特征在于该组控制变量还包括第二中点温度差。
4.如权利要求1至3中任一项所述的方法,其特征在于该组控制变量还包括在中点的第一管侧中所液化的气体的温度。
5.如权利要求1至4中任一项所述的方法,其特征在于与液化天然气的温度有关的变量为从主要热交换器移出的液化天然气的温度。
6.如权利要求1至4中任一项所述的方法,其特征在于还包括降低液化物流的压力以获得送至储槽的液化产品与废气,与液化天然气温度有关的变量为废气的数量。
7.如权利要求1至6中任一项所述的方法,其特征在于调节制冷剂的数量包括排出气态制冷剂。
8.如权利要求1至6中任一项所述的方法,其特征在于调节制冷剂的数量包括排出液态制冷剂。
9.如权利要求1至8中任一项所述的方法,其特征在于该制冷剂包括氮气与丙烷,其特征在于该组欲最优化的变量还包括制冷剂的氮气含量与制冷剂的丙烷含量,其中氮气含量被最小化,而丙烷含量被最大化。
10.如权利要求1至8中任一项所述的方法,其特征在于该组控制变量还包括驱动制冷剂压缩机所需的动力。
11.如权利要求1至10中任一项所述的方法,其特征在于制冷剂压缩机的操作变量容量为制冷剂压缩机的速度、制冷剂压缩机的入口导引叶片角度,或二者。
12.如权利要求1至10中任一项所述的方法,其特征在于在至少一个热交换器中,通过与在适当压力下蒸发的辅助制冷剂的间接热交换来对高压制冷剂进行部分冷凝,而其中蒸发的辅助制冷剂是在至少一个辅助制冷剂压缩机中被压缩,并通过与外部冷却剂热交换而冷凝,该组操作变量还包括辅助制冷剂压缩机的容量,以及该组控制变量还包括驱动该辅助制冷剂压缩机所需的动力。
13.如权利要求1至10中任一项所述的方法,其特征在于辅助制冷剂压缩机的操作变量容量为辅助制冷剂压缩机的速度,辅助制冷剂压缩机的入口导引叶片角度,或二者。
全文摘要
在主要热交换器(1)中利用蒸发制冷剂冷却和液化气态、富含甲烷的进料(20)以获得液化产品(23),并将液化物流(23)经导管(80)储存为液化产品。所述方法包括调整制冷剂的组成与数量并控制液化方法,其使用一种基于模型预测控制的先进处理控制器来测定一组操作变量的同步控制行为,以当控制一组控制变量中的至少一个时,使一组参数中的至少一个最优化,其中该组操作变量包括重质制冷剂馏分(52)的质量流量、轻质制冷剂馏分(59)的质量流量、制冷剂成分(26)的补充数量、所移除的制冷剂(54)数量、制冷剂压缩机的容量(30,32)以及富含甲烷进料(20)的质量流量,其中该组控制变量包括位于主要热交换器(1)温热端(3)的温度差、与液化天然气(23)温度有关的变量、进入分离器(45)的制冷剂组成、主要热交换器(1)的壳内的压力、分离器(45)内的压力以及分离器(45)内的液体高度,以及其中一组欲最优化的变量包括液化产品(80)的产量。
文档编号F25J1/02GK1745285SQ200480003111
公开日2006年3月8日 申请日期2004年1月30日 优先权日2003年1月31日
发明者W·赫普克斯, 林佩蓉, R·P·斯利夫, K·J·文克 申请人:国际壳牌研究有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1