天然气液化方法及使用多个变化的气体流的天然气液化厂的制作方法

文档序号:4775277阅读:191来源:国知局
专利名称:天然气液化方法及使用多个变化的气体流的天然气液化厂的制作方法
技术领域
本发明一般来讲涉及气体的压缩和液化,更具体地讲,涉及通过使用多个尾气流的联合制冷膨胀工艺(combined refrigerant and expansion process)将诸如天然气的气体部分液化的方法和设备。
背景技术
天然气是如汽油和柴油的燃烧燃料的已知替代品。为了克服汽油和柴油的各种缺点,包括生产成本和由其使用所产生的后续排放,已进行了大量的努力来开发作为替代燃烧燃料的天然气。正如本领域中所知,天然气是比其它燃烧燃料更清洁的燃烧燃料。此外,认为天然气比汽油或柴油更安全,因为天然气会在空气中上升并分散,而不是沉降。为了用作替代燃烧燃料,天然气(本文中也称为“原料气”)通常被转化成压缩天然气(CNG)或液化(或液态)天然气(LNG),以便所述燃料在使用之前的存储和运输。按照惯例,天然气液化的两个已知的基本循环称为“级联循环”和“膨胀循环”。简单地说,级联循环由一系列与原料气的热交换组成,每次交换的温度依次降低,直到液化完成为止。制冷程度是用不同的制冷剂获得或用相同制冷剂在不同蒸发压力下获得。级联循环被认为可非常有效地生产LNG,因为操作成本相对较低。然而,操作效率往往被与昂贵的热交换和制冷剂系统相关的压缩设备相关的相对高的投资成本所抵消。此外,在物理空间有限的情况下,合并了此系统的液化厂可能不切实际,因为在级联系统中使用的物理组件是相对较大的。在膨胀循环中,气体通常被压缩至选定的压力,冷却,并随后使其通过膨胀涡轮膨胀,从而产生功并降低原料气的温度。随后将所述低温原料气进行热交换以实现所述原料气的液化。按照惯例,在天然气液化中此循环已被视为不可行,因为没有允许处理天然气中存在的例如水和二氧化碳的一些组分的条件,所述组分会在换热器中遇到的温度下凝固。此外,为了使惯用系统的操作成本低效率高,通常大规模地建造此类系统以处理大体积的天然气。结果,所建造的设施较少,使得更难以向液化厂或设施提供未净化气(rawgas)并且使液化产物的分配成为问题。大规模设施的另一个主要问题是与之相关的资金和操作费用。例如,惯用的大规模液化厂,即每天生产大约70,000加仑LNG的液化厂,在资金支出方面可能花费1630至2450万美元或更多。大设施的另一个问题是与存储预备将来使用和/或运输的大量燃料相关的成本。不仅有与建造大的存储设施相关的成本,而且还有与之相关的效率问题,因为存储的LNG倾向于随时间升温并汽化,造成LNG燃料产物的损失。此外,当存储较大量的LNG燃料产物时,安全性可能成为问题。
为了解决上述问题,已设计出试图较小规模地从原料气生产LNG或CNG的各种系统,旨在尽力解决长期存储问题以及减少与天然气的液化和/或压缩相关的资金和操作费用。例如,已设计出在减压站生产LNG的小规模LNG厂,其中使用来自相对高压的传输管的气体来生产LNG并将来自所述液化工艺的尾气导入单个低压下游传输管。然而,此类工厂可能仅适于在上游和下游传输管之间具有相对高的压差的减压站,或可能在具有相对低的压降的减压站效率低下。鉴于此,使用现有的LNG厂在某些现有的减压站生产LNG是不切实际的。此外,因为如住宅用气或工业用气的许多天然气源被认为是相对“脏的”,所以对提供“清洁的”或“预先净化的”气体的需求实际上是对在液化工艺之前实施昂贵的、通常复杂的过滤和净化系统的需求。此需求直接增加了建造和操作此类液化厂或设施的费用和复杂性。 鉴于上述,有利的是提供一种方法和一种用于实施此方法的工厂,所述工厂是灵活的并且其生产液化天然气的效率提高。此外,有利的是提供一种无需“预先净化”就可从相对“脏的”或“未净化的”天然气源生产液化天然气的更有效的方法。希望开发新的液化方法和利用可具有以变化的压力运载天然气的多个传输管的减压位置的工厂,以及利用具有相对低的压降的减压站的工厂。此外,希望开发新的液化方法和能够更有效利用液化期间产生的各种尾气的工厂。此设计的灵活性还将使其适于用作各种不同位置的小规模液化厂的最佳落实方案的模块化设计。此外,有利的是提供用于天然气液化的工厂,其建造和操作相对廉价且很少需要或不需要操作者监管。此外,有利的是提供这种工厂,其可相对易于运输并且可位于居民社区内或附近的现有天然气源处并进行操作,从而提供消费者获取LNG燃料的便利性。

发明内容
在一个实施方案中,天然气液化的方法可包括将气态天然气(NG)工艺流和冷却流导入工厂,通过从气态NG工艺流向冷却流传热来冷却气态NG工艺流,以及使冷却的气态NG工艺流膨胀以形成液态NG工艺流和包含气态NG的第一尾气流。所述方法可进一步包括在第一压力下将第一尾气流导出工厂,使第二液态NG流与液态NG工艺流分离以及用换热器使第二液态NG流汽化以形成包含气态NG的尾气流。此外,可在第二压力下将第二尾气流导出工厂,所述第二压力不同于第一尾气流的第一压力。在另一个实施方案中,天然气液化的方法可包括将包含气态二氧化碳(CO2)的气态天然气(NG)工艺流导入工厂,在换热器内冷却气态NG工艺流,并使冷却的气态NG工艺流膨胀以形成包含固态CO2的液态NG工艺流。所述方法可进一步包括将基本上纯的液态NG导入储罐。此外,所述方法可包括使CO2与液态NG工艺流分离并且处理所述CO2以提供CO2产物流。在另一个实施方案中,天然气液化的方法可包括将包含至少一种杂质的边际气态天然气(NG)工艺流导入工厂并且使所述边际气态NG工艺流与第二基本上纯的NG流混合以提供改善的气态NG工艺流。所述方法可进一步包括在换热器内冷却所述改善的气态NG工艺流,使冷却的改善的气态NG工艺流膨胀以形成液态天然气(LNG)工艺流,并使至少一种杂质与LNG工艺流中分离以提供基本上纯的LNG工艺流。此外,所述方法可包括提供来自基本上纯的LNG工艺流的第二基本上纯的NG流。在进一步的实施方案中,天然气液化厂可包括气态天然气工艺流进口、包含被配置用来冷却气态天然气工艺流的多通道换热器和被配置用来将至少一部分气态天然气工艺流冷却为液态的膨胀器阀。所述天然气液化厂可进一步包括液态天然气出口、第一尾气出口和至少一个第二尾气出口,所述至少一个第二尾气出口与所述第一尾气出口分开。


在阅读以下发明详述并参考所述附图之后,本发明的上述和其它优点将变得显而易见。 图I是根据本发明的一个实施方案的液化厂的总体示意图。图2是描绘如可供本发明的液化厂和方法一起使用的天然气减压位置的流程图。
具体实施例方式图I中说明的是本发明的一个实施方案的天然气(NG)液化厂10的总体示意图。工厂10包括工艺流12、冷却流14、传送原动气流(transfer motive gas stream) 16和尾气流26、30。如图I所示,工艺流12可被引导通过NG进口 32、主换热器34和膨胀阀36。随后,工艺流12可被引导通过气液分离罐38、周转罐40、水力旋流器42和过滤器44。最后,工艺流12可被引导通过分流器46、阀48、储罐50和液态天然气(LNG)出口 52。如图I进一步展示,冷却流14可被引导通过冷却液进口 54、涡轮压缩机56、环境换热器58、主换热器34、涡轮膨胀机60,并且最后通过冷却液出口 62。此外,传送原动气流16可被引导通过传送流体进口 64、阀66和周转罐40。任选地,传送原动气流16也可被引导通过主换热器34。第一尾气流30可包括来自工厂10的气流的组合。例如,如图I所示,第一尾气流30可包括二氧化碳处理流22、分离室排放流18、周转罐排放流20和储罐排放流24。可从水力旋流器42的底流出口 68引导二氧化碳处理流22,并随后可将其引导通过升华室70、主换热器34和第一尾气出口 72。此外,可从气液分离罐38的气体出口引导分离室排放流18,可从周转罐40引导周转罐排放流20,可从储罐50引导储罐排放流24。随后,分离室排放流18、周转罐排放流20和储罐排放流24可被引导通过混合器74、换热器34和压缩机W。最后,如图I所示,可从分流器46的出口引导第二尾气流26。随后,第二尾气流26可被引导通过泵78、换热器34,并且最后通过第二尾气出口 80。在操作中,冷却流14可通过冷却液进口 54以气相导入工厂10中,并随后被导入涡轮压缩机26进行压缩。随后,压缩的冷却流14可流出涡轮压缩机56并且被导入环境换热器58中,其可从冷却流14向环境空气传热。此外,冷却流14可被引导通过主换热器34的第一管道,所述冷却流可在所述第一管道中进一步冷却。在一些实施方案中,主换热器34可包括高性能铝质多通道板翅型换热器,如可购自 Chart Industries Inc. ,!Infinity Corporate Centre Drive, Suite 300, Garfield,Heights, Ohio 44125,或购自此设备的其它众所周知的制造商的换热器。经过主换热器34之后,冷却流14可在涡轮膨胀机60中膨胀和冷却。例如,涡轮膨胀机60可包括具有针对进口的质量流率、气体压力水平和气体温度的特定设计的涡轮膨胀机,如可购自 GE Oil and Gas, 1333 West Loop South, Houston, Texas 77027-9116,USA,或购自此设备的其它众所周知的制造商的涡轮膨胀机。此外,驱动涡轮压缩机56所需的能量可由涡轮膨胀机60来提供,如由直接连接到涡轮压缩机56的涡轮膨胀机60来提供或由驱动发电机(未示出)以产生电能以驱动可连接到涡轮压缩机56的电动机(未示出)的涡轮膨胀机60来提供。随后,冷却的冷却流14可被引导通过主换热器34的第二管道并随后经由冷却液出口 62流出工厂10。同时,可将气态NG导入NG进口 32以向工厂10提供工艺流12并且随后工艺流12可被引导通过主换热器34的第三管道。来自工艺流12的热量可被传递到主换热器34内 的冷却流14并且工艺流12可以冷却的气态流出主换热器34。随后,工艺流12可被引导通过如焦耳-汤姆逊(Joule-Thomson)膨胀阀的膨胀阀36,工艺流12可在所述膨胀阀中膨胀并冷却以形成液态天然气(LNG)部分和气态NG部分。此外,可能含在工艺流12内的二氧化碳(CO2)可在LNG部分内固化并悬浮,因为二氧化碳的冻结温度比甲烷(CH4,NG的主要组分)的高。LNG部分和气态部分可被导入气液分离罐38,并且LNG部分可作为LNG工艺流12被导出分离罐38,随后可被导入周转罐40中。随后,传送原动气流16 (如气态NG)可经传送原动气进口 64通过阀66导入工厂10中,阀66可用来调节传送原动气流16被导入周转罐40之前的压力。传送原动气流16可促进将液态NG工艺流12传送通过水力旋流器42 (如可购自例如Krebs Engineering of Tucson, AZ),固态CO2可在所述水力旋流器中与液态NG工艺流12分离。例如,可使用传送原动气流16对工艺流12的液体加压以将工艺流12移动通过水力旋流器42。任选地,可不使用分离周转罐40而可使用分离罐38的一部分作为周转罐或可使用泵将工艺流12传送到水力旋流器42中。在其它实施方案中,可使用泵将工艺流从分离罐38传送到水力旋流器中。与使用周转罐的分批工艺相比,泵可提供某些优点,因为它可提供恒定的系统流动性。然而,如图I所示周转罐配置的可提供更可靠的工艺流12流动性。在其它实施方案中,可使用多个周转罐40 ;任选地,也可使用多个水力旋流器42。此配置可改善工艺流12通过工厂10的流动匀整性,同时保持工艺流12的可靠的流动性。此外,可提供蓄积器(未示出)并且传送原动气流16可在被导入周转罐40之前在所述缓冲罐中积蓄以便于工艺流12从周转罐40方便地传送出来并通过水力旋流器42。在水力旋流器42中,来自LNG工艺流12的包括固态CO2的浆液可被引导通过底流出口 82并且LNG工艺流12可被引导通过顶流出口 84。随后,LNG工艺流12可被引导通过过滤器44,所述过滤器可除去任何剩余的CO2或其它杂质,所述杂质可(诸如)在清洁工艺期间通过过滤器出口 86从所述系统中除去。在一些实施方案中,过滤器44可包括一个筛滤器或多个平行放置的筛滤器。随后,基本上纯的LNG工艺流12 (如基本上纯的液态CH4)可从过滤器44流出并被导出为LNG工艺流12和可形成第二尾气流26的第二 LNG流。LNG工艺流12可被引导通过阀48并进入储罐50中,其中所述工艺流可通过LNG出口 52抽取以用于如由LNG提供动力的车辆或抽入运输车辆中。此外,在水力旋流器42中的CO2浆液可被引导通过底流出口 82以形成CO2处理流22并导入CO2升华室70中以使固态CO2升华以便从工厂10除去。此外,分离室排放流18、周转罐排放流20和储罐排放流24可在混合器74中混合以提供可用于升华CO2处理流22的气流28。流出混合器74后的气流28可以是相对冷的并且可被引导通过主换热器34的第四管道以从主换热器34的第三管道中的工艺流12吸取热量。随后,气流28可被引导通过压缩机76以进一步在将气流28导入CO2升华室70之前使气流28加压并升温以升华来自水力旋流器42的底流出口 82的CO2处理流22的CO2。在一些实施方案中,换热器,如本发明受让人所有的2007年9月13日提交的标题为Heat Exchanger and AssociatedMethod的申请第11/855,071号中描述的换热器可用作升华室70,所述申请的公开内容以全文引用方式并入本文。在其它实施方案中,气流28的一部分(如过量流动部分)可在被导入CO2升华室70之前通过三通管件(tee)(未示出)导出工厂10并且可提供另外的尾气流(未示出 )。随后,来自CO2处理流22的混合的气态CO2和来自气流28的气体可作为第一尾气流30从升华室70流出,其可以是相对冷的。例如,第一尾气流30在流出升华室70时可刚好高于CO2升华温度。随后,第一尾气流30可被引导通过主换热器34的第五管道以在第一压力下通过第一尾气出口 72流出工厂10之前从第三管道中的工艺流12吸取热量。最后,最初可包含来自分流器46的第二基本上纯的LNG流的第二尾气流26可被引导通过泵78。在其它实施方案中,泵78可能是不需要的并且可不包括在工厂10中。例如,可通过传送原动气流16向周转罐40内的工艺流12施加足够的压力以使得可不需要泵78并且可不将其包括在工厂10中。随后,第二尾气流26可被引导通过主换热器34的第六管道,它可在所述管道中从第三管道中的工艺流12吸取热量,并且可被汽化以形成气态NG0随后,第二尾气流26可在第二压力下经由第二尾气出口 80导出工厂10,所述第二压力不同于流出第一尾气出口 72的第一尾气流30的第一压力。在一些实施方案中,当工艺流12前进通过主换热器34时,工艺流12可首先被冷却流14冷却,所述冷却流14可从换热器34内的工艺流12吸取待除去的热量的约三分之二(2/3)的。在主换热器34内的工艺流12的剩余冷却可随后通过从工艺流12向第二尾气流26的传热来完成。鉴于此,可调节被导入第二尾气流26中的流量以实现从换热器34内的工艺流12的特定量的吸热。鉴于上述并在此进一步描述,工厂10可用于在具有多种气体配置供应的多种位置中来液化天然气。天然气液化的理想位置可具有高的进气压力水平和对管道中的气体具有显著的流速容量的低的下游尾气管道压力水平。然而,需要气体液化的许多位置并不符合这种高的进气压力水平和对管道中的气体具有显著的流速容量的低的下游尾气管道压力水平的理想条件。鉴于此,本文描述的发明在所述方法和设备中提供了灵活性以便利用特定位置的管道中的气体压力水平和流速。这可如图I所示通过分离工厂10中的各种气体流动流完成。在一些实施方案中,工厂10可在NG分配减压位置100 (如图2所示)使用。减压位置100可诸如在相对高的压力管道102、中等压力管道104和相对低的压力管道106之间包括显著不同的气体压力水平、流速水平和温度水平,其可为本文中描述的工厂10和方法所利用。举例而非限制地来说,相对高的压力管道102可具有约SOOpsia的压力,中等压力管道104可具有约200psia的压力,相对低的压力管道106可具有约30psia的压力。相对高的压力管道102可连接工艺流进口 32并且提供气态NG工艺流12。此外,相对高的压力管道102可连接冷却液进口 54并且向冷却进口 54提供气态NG以用作冷却流14。冷却液出口 62可提供作为第三尾气流的冷却流14并且可连接中等压力管道104和相对低的压力管道106之一。此外,传送原动气进口可连接中等压力管道104和相对低的压力管道106
之一 O任选地,冷却流出口 62可连接冷却流进口 54以提供闭合的冷却流回路,并且可使用任何合适的相对高压的气体,如氮气或另一种气体。第一尾气出口 72可连接中等压力管道104和相对低的压力管道106之一,因为第一尾气出口 72和第二尾气出口 80是分开的并且可被配置用来提供处于不同压力下的尾气26、30,所以第二尾气出口 80可独立于第一尾气出口 72来连接中等压力管道104和相对低的压力管道106之一。鉴于此,第一尾气出口 72可连接相对低的压力管道10而第二尾气出口连接中等压力管道104,或第一尾气出口可连接相对低的压力管道10而第二尾气出口连接中等压力管道104。每个尾气流14、26、30均可被导入处于不同压力下的可用管道102、104、106,并且可被配置用来释放对于特定的减压站100和工厂10来说经济和有效的处于一定压力下的每个尾气流14、26、30。第一尾气流30可含有大量的CO2,并且,在一些实施方案中,可作为产物流连接CO2处理厂(未示出)以提供净化的CO2产物。例如,可使用CO2处理厂来处理与液态NG工艺流分离的CO2,并且可提供基本上纯的CO2产物。鉴于此,通常作为废液除去的副产物可用作可使用或出售的产物流。此外,第二尾气流26可由基本上纯的NG组成并且可在流出工厂10后进行燃烧。在一些实施方案中,第二尾气流26可在火炬(未示出)中燃烧。在其它实施方案中,第二尾气流26可在引擎(未示出)中燃烧以向工厂10提供动力。例如,如果需要大量的能量来将第二尾气流压缩到可用管道的压力以便除去,或如果此管道不可用,那么在火炬中燃烧第二尾气流26可能是经济的。在另一个实施例中,可向可产生可用于对工厂10的组件(如一个或多个压缩机56、76)提供动力的引擎提供第二尾气流。在其它实施方案中,第二尾气流26的一部分或全部可再导入工艺流12中。在一些实施方案中,可使用第二尾气流26来稀释可包括一种或多种杂质的临界工艺流12以提供可更有效进行处理的杂质百分比较低的工艺流12。例如,可用来自第二尾气流26的基本上纯的NG来稀释CO2富集的工艺流12以提供具有较低CO2百分比的工艺流12组合物。类似地,为了工厂10的更大的灵活性和效率,还可提供容纳多个独立的输入流的工厂10的能力。例如,工艺流12、冷却流14和传送原动气流16可从不同来源在不同的压力和流量下全部进料到工厂10。在一些情况下,提供处于诸如约SOOpsia的相对高的压力下的工艺流12可能是有利的。然而,对诸如传送原动气流16的其它输入流提供如此高的压力可能不是特别有利的。例如,在较高的工艺流12压力可能产生提高的工艺流12效率的情况下,使用单个输入流的系统必然需要用于所有输入流的较高的输入压力。然而,工厂10可允许的方法可仅使工艺流12的压力增加,而其它输入流14、16可能在较低压力下输入工厂10中,减少输入工厂10中的必须被压缩的气体的量,从而使得工厂10的能量需求降低。任选地,进口流可在导入工厂10中之前被另外处理。例如,可压缩或膨胀进口流、以在不同于源压力和温度的特定压力和温度下提供输入流。再例如,可使用一个或多个外部脱水器(未示出)从以下一种或多种中除水导入NG进口 32中之前的气态NG、导入冷却液进口 54中之前的冷却流14和导入传送流体进口 64中之前的传送原动气流16。通过保持分开的输入气流进口 32、54、64和分开的尾气流出口 62、72、80,工厂10可以是灵活的。换句话说,单个工厂设计可适应各种源气体位置并且在各种源气体位置处是相对闻效的。公开的工厂10的灵活性的另一个实施例可见于冷却流14的布置中。冷却流14的冷却气体通过冷却液进口 54进入工厂中并且随后可被引导通过涡轮压缩机56以增加冷却流14的压力。随后,冷却流可在进入涡轮膨胀机60之前,诸如用环境换热器58和主换热器34来冷却,在所述冷却流再被弓I导通过主换热器34之前,可在所述涡轮膨胀机中膨胀和冷却。如之前的讨论,来自在涡轮膨胀机60中膨胀气体的能量可用于对涡轮压缩机56提 供动力,这可为工厂10提供功率节约。此外,由涡轮压缩机56产生的压力的量和在冷却流14被导入涡轮膨胀机60中之前可从冷却流14汲取的热的量与冷却流14流出涡轮膨胀机60后的压力和温度之间存在一定的关系。由于改变冷却流出口压力来符合可用于从工厂10运出冷却流尾气的管道的所需管道容量的能力,本发明的实施方案可利用这个关系来提供提闻的效率。作为非限制性实施例,冷却流尾气出口 62可将尾气从冷却流14导出工厂10并导入需要处于约200psia的压力和约50 °F的温度下的气体的中等压力管道104中。当使用气态NG提供冷却流14时,冷却流14的温度和压力可受NG中含有的CO2浓度的限制,因为在特定压力下低于临界温度的温度将导致CO2的相变。分开的冷却流尾气出口 62允许在主换热器34中调节流量和压力以用由膨胀器60提供的可用的冷却来平衡工艺需要。通过使涡轮膨胀机60出口压力与可用的尾气压力需求相符合可实现显著的能源节约。当诸如中等压力尾气管道104或相对低的压力尾气管道106的尾气管道不可用时,来自工厂10的尾气62、72、80可能需要再压缩。在此情况下,限制从涡轮膨胀机60的压降的能力可能是非常重要的,因为这可以降低冷却流尾气出口 62与诸如相对高的压力管道102的相对高的压力进口之间所需的压缩比,并且降低压缩冷却流14尾气所需的能量。此外,工厂10的冷却可来自不同于冷却流14的涡轮膨胀机60的来源,从而可允许冷却流输入54压力和输出62压力的灵活性和控制。例如,冷却可来自环境换热器58,以及来自工厂的其它区域的冷却流,诸如来自CO2升华室70和来自第二尾气流26的冷却流。在其它实施方案中,冷却可通过包括冷却器或有源制冷系统来获得。在一些实施方案中,工厂10可被配置为连接到诸如管道102的天然气源的“小规模”天然气液化厂10,但同样涵盖诸如井口的合适的其它来源。术语“小规模”是用于与具有例如每天70,000加仑的LNG或更多的生产能力的大规模工厂相区分。相比之下,本发明公开的液化厂可具有例如每天大约30,000加仑的LNG的生产能力,但可按需要确定适于不同输出量的规模并且不限于小规模操作或工厂。此外,本发明的液化厂10的尺寸比大规模工厂的明显更小,并且可从一个场地运输到另一个场地。然而,工厂10也可在需要时配置为大规模工厂。工厂10也可以是相对廉价地建造和操作,并且可被配置以很少需要或不需要操作者监管。此外,工厂10可被配置为可以(诸如)用卡车移动的移动式工厂10,并且可被配置用来连接许多减压站或其它NG源。本文中说明和描述的工厂10和方法可包括在天然气供应进入工厂10之前使用任何常规设备和方法从天然气供应中除去二氧化碳、氮气、氧气、乙烷等。此外,如果天然气源具有很少的二氧化碳、氮气、氧气、乙烷等,在液化工艺和设备中可不需要使用水力旋流器和二氧化碳升华并且因此不需要予以包括。虽然本发明可能容易产生各种修改和替代形式,但是特定的实施方案 已通过附图中的举例说明来展示并且已经在本文进行了详细描述。然而,应理解的是,并不希望本发明局限于所公开的特定形式。事实上,本发明包括落入由以上所附权利要求书所界定的本发明的范畴之内的所有修改方案、等价方案和替代方案。
权利要求
1.一种天然气液化的方法,其包括将气态天然气工艺流和冷却流导入工厂中;通过从所述气态天然气工艺流向所述冷却流传热来冷却所述气态天然气工艺流; 使所述冷却的气态天然气工艺流膨胀以形成液态天然气工艺流和包含气态天然气的 第一尾气流;在第一压力下将所述第一尾气流导出所述工厂;使第二液态天然气流与所述液态天然气工艺流分离并且用换热器使所述第二液态天 然气流汽化以形成包含气态天然气的第二尾气流;和在第二压力下将所述第二尾气流导出所述工厂,所述第二压力不同于所述第一尾气流 的所述第一压力。
2.根据权利要求1所述的方法,进一步包括保持所述工厂内的所述冷却流与所述气态 天然气工艺流的分离。
3.根据权利要求2所述的方法,其中将冷却流导入工厂中进一步包括将气态冷却流导 入所述工厂中,所述气态冷却流的气体组成不同于导入所述工厂中的所述气态天然气工艺 流的气体组成。
4.根据权利要求2所述的方法,其中将冷却流导入工厂中进一步包括导入气态冷却 流,所述气态冷却流的压力不同于导入所述工厂中的所述气态天然气工艺流的压力。
5.根据权利要求2所述的方法,其中将冷却流导入所述工厂中包括将包含气态天然气 的冷却流导入所述工厂中。
6.根据权利要求1所述的方法,其中将气态天然气工艺流导入工厂中进一步包括将包 含二氧化碳的气态天然气工艺流导入所述工厂中。
7.根据权利要求6所述的方法,其中使所述冷却的气态天然气工艺流膨胀以形成液态 天然气工艺流和包含气态天然气的第一尾气流进一步包括使所述冷却的气态天然气工艺 流膨胀以产生悬浮在所述液态天然气工艺流中的固态二氧化碳部分。
8.根据权利要求7所述的方法,进一步包括使所述固态二氧化碳部分与所述液态天然气工艺流的至少一部分分离以提供基本上 纯的液态天然气;使所述固态二氧化碳升华;和 将所述升华的二氧化碳导出所述工厂。
9.根据权利要求8所述的方法,其中将所述升华的二氧化碳导出所述工厂中包括将所 述升华的二氧化碳以所述第一尾气流导出所述工厂。
10.根据权利要求8所述的方法,进一步包括将悬浮在所述液态天然气工艺流中的所述固态二氧化碳部分导入周转罐中;将传送原动气体导入所述周转罐中以将悬浮在所述液态天然气工艺流中的所述固态 二氧化碳部分导入水力旋流器中;将气体从所述周转罐导出所述工厂。
11.根据权利要求10所述的方法,其中将气体从所述周转罐导出所述工厂包括将气体 以所述第一尾气流从所述周转罐导出所述工厂。
12.根据权利要求10所述的方法,其中使所述固态二氧化碳部分与所述液态天然气工艺流的至少一部分分离以提供基本上纯的液态天然气包括将所述固态二氧化碳部分引导 通过所述水力旋流器的底流并将所述基本上纯的液态天然气引导通过所述水力旋流器的 顶流。
13.根据权利要求10所述的方法,其中将传送原动气体导入所述周转罐中包括导入来 自天然气源的传送原动气体,所述天然气源的压力比所述气态天然气工艺流的天然气源的 压力低。
14.根据权利要求8所述的方法,进一步包括将所述液态天然气工艺流导入储罐以向所述储罐提供基本上纯的液态天然气;和 其中使第二液态天然气流与所述液态天然气工艺流分离包括使由基本上纯的液态天 然气组成的第二液态天然气流与所述液态天然气工艺流分离。
15.根据权利要求14所述的方法,其中将所述第二尾气流导出所述工厂进一步包括燃 烧所述第二尾气流。
16.根据权利要求15所述的方法,其中燃烧所述第二尾气流包括在火炬中燃烧所述第二尾气流。
17.根据权利要求15所述的方法,其中燃烧所述第二尾气流包括在内燃机中燃烧所述第二尾气流。
18.根据权利要求1所述的方法,进一步包括将分离的第三尾气流导出所述工厂。
19.根据权利要求18所述的方法,其中将分离的第三尾气流导出所述工厂包括将所述 冷却流以所述分离的第三尾气流导出所述工厂。
20.根据权利要求1所述的方法,其中将冷却流导入所述工厂中包括提供闭合回路冷 却流。
21.根据权利要求1所述的方法,进一步包括将所述气态天然气工艺流、所述冷却流、 所述第一尾气流和所述第二尾气流中的每一个弓I导通过多通道换热器的各自管道。
22.根据权利要求1所述的方法,进一步包括用压缩机压缩所述冷却流;用膨胀器使所述冷却流膨胀;和至少部分地用由所述膨胀器产生的动力来对所述压缩机提供动力。
23.根据权利要求22所述的方法,进一步包括在用所述压缩机压缩所述冷却流之后和 在用所述膨胀器使所述冷却流膨胀之前,用换热器从所述冷却流吸取热量。
24.一种天然气液化的方法,所述方法包括将包含气态二氧化碳(C02)的气态天然气工艺流导入工厂中;在换热器内冷却所述气态天然气工艺流;使所述冷却的气态天然气工艺流膨胀以形成包含固态C02的液态天然气工艺流; 将基本上纯的液态天然气导入储罐;使所述C02与所述液态天然气工艺流分离并且处理所述C02以提供C02产物流。
25.一种天然气液化的方法,所述方法包括将包含至少一种杂质的边际气态天然气工艺流导入工厂中;使所述边际气态天然气工艺流与第二基本上纯的天然气流混合以提供改善的气态天 然气工艺流;在换热器内冷却所述改善的气态天然气工艺流;使所述冷却的改善的气态天然气工艺流膨胀以形成液态天然气工艺流;使所述至少一种杂质与所述液态天然气工艺流分离以提供基本上纯的液态天然气工 艺流;和提供来自所述基本上纯的液态天然气工艺流的所述第二基本上纯的天然气流。
26.一种天然气液化厂,其包含气态天然气工艺流进口;包含被配置用来接收和冷却气态天然气工艺流的第一管道的多通道换热器;被配置用来将所述气态天然气工艺流的至少一部分冷却为液态的膨胀器阀;液态天然气出口;第一尾气出口 ;和至少一个第二尾气出口,所述至少一个第二尾气出口与所述第一尾气出口分开。
27.根据权利要求26所述的天然气液化厂,进一步包含被配置用来接收和加热第一尾气的所述多通道换热器的第二管道;和 被配置用来接收和加热第二尾气的所述多通道换热器的第三管道。
28.根据权利要求26所述的天然气液化厂,进一步包含连接具有第一压力的第一天然气管道的所述气态天然气工艺流进口 ;连接具有第二压力的第二天然气管道的所述第一尾气出口 ;和 连接具有不同于所述第二气体管道的所述第二压力的第三压力的第三天然气管道的 所述至少一个第二尾气出口。
29.根据权利要求28所述的天然气液化厂,其中所述第二天然气管道的所述第二压力 和所述第三天然气管道的所述第三压力各小于所述第一天然气管道的所述第一压力。
全文摘要
一种天然气液化的方法,该方法可包括冷却气态NG工艺流以形成液态NG工艺流。所述方法可进一步包括在第一压力下将所述第一尾气流导出工厂并在第二压力下将第二尾气流导出所述工厂。另一种天然气液化的方法,所述方法可包括使CO2与液态NG工艺流分离并且处理所述CO2以提供CO2产物流。另一种天然气液化的方法,所述方法可包括使边际气态NG工艺流与第二基本上纯的NG流混合以提供改善的气态NG工艺流。此外,一种NG液化厂,所述NG液化厂可包括第一尾气出口和至少一个第二尾气出口,所述至少一个第二尾气出口与所述第一尾气出口分开。
文档编号F25J3/00GK102667382SQ201080047943
公开日2012年9月12日 申请日期2010年8月12日 优先权日2009年10月22日
发明者B·M·维尔丁, T·D·特纳 申请人:巴特勒能源同盟有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1