太阳能地源热组合式碳零排放制热制冷系统的制作方法

文档序号:4766015阅读:145来源:国知局
专利名称:太阳能地源热组合式碳零排放制热制冷系统的制作方法
技术领域
本发明涉及一种太阳能地源热组合式制热制冷系统。
背景技术
目前,太阳能地源热组合式制热制冷系统主要有公开号为CN 101907370A的《使用太阳能和地热的制热、制冷系统》、公开号为CN 201811489U的《一种太阳能辅助地源制冷制热系统》和公开号为CN 200979316的《太阳能与热泵及地热耦合制冷制热系统》,这三种制热制冷系统虽然能够实现太阳能地源热组合式制热制冷,但是其热转换效率低、能源浪费大,并且无法实现碳的零排放。

发明内容
本发明是为解决现有太阳能地源热组合式制热制冷装置的热转换效率低、能源浪费大,以及无法实现碳的零排放的问题,从而提供一种太阳能地源热组合式碳零排放制热制冷系统。太阳能地源热组合式碳零排放制热制冷系统,它包括太阳能集热器I、承压水箱2、换热器3、冷凝器4、光伏发电板5、控制器6、储电装置7、逆变器9、压缩机10、地热盘管11、换热板12、膨胀阀13、过滤器14、储液罐15、地暖循环泵16、太阳能介质循环泵18和空调蒸发器19 ;所述换热板12埋入地下;太阳能集热器I的热介质流出口与换热器3的热介质流入口连通;所述换热器3的介质流出口通过太阳能介质循环泵18与太阳能集热器I的介质流入口连通;换热器3的主体固定在承压水箱2内;所述承压水箱2的水流出口与地热盘管11的水流入口连通;所述地热盘管11的水流出口通过地暖循环泵20与承压水箱2的水流入口连通;光伏发电板5的电源信号输出端与控制器6的电源信号输入端连接;所述控制器6的电源信号输出端与储电装置7的电源信号输入端连通;所述储电装置7的电源信号输出端与逆变器9的电源信号输入端连接;所述逆变器9的电源信号输出端与压缩机10的电源信号输入端连接;冷凝器4的主体固定在承压水箱2内;冷凝器4的冷凝液流出口与储液罐15的冷凝液流入口连通;所述储液罐15的冷凝液流出口与过滤器14的冷凝液流入口连通;所述过滤器14的冷凝液流出口与膨胀阀13的冷凝液流入口连通;所述膨胀阀13的冷凝液流出口同时与空调蒸发器19的冷凝液流入口和地下换热循环泵20的冷凝液流入口连通;所述换热循环泵20的冷凝液流出口与换热板12的冷凝液流入口连通;所述换热板12的冷凝液流出口和空调蒸发器19的冷凝液流出口同时与压缩机10的冷凝液流入口连通;压缩机10的冷凝液流出口与冷凝器4的冷凝液流入口连通。它还包括热水阀门8,承压水箱2上开有热水流出口,热水阀门8安装在所述热水流出口处。它还包括自来水补水控制阀17,承压水箱2上开有自来水流入口,自来水补水控制阀17安装在所述自来水流入口处。本发明以太阳能集热为主,压缩机制冷为辅,当光照充足时,系统回水温度大于或等于设定值时,采用太阳能集热器提供热能,保证回水温度;当光照不足时,系统回水温度小于设定值时,采用压缩机自动开启制热功能,提升回水温度。从而实现太阳能地源热组合式制热制冷,本发明的热转换效率高,节能效果好;同时,由于本发明的热转换效率较高,光伏发电装置有充足的发电时间,因此有充足的储能时间,从而能够大幅度减少光伏发电装置的数量、面积等,进而大幅度降低光伏发电系统的成本;本发明的太阳能地源热组合式碳零排放制热制冷系统和光伏发电的结合,从而实现了碳的零排放。


图I是本发明的结构示意图;图2是本发明中换热板的工作原理示意图;图3是本·发明中换热器与冷凝器在承压水箱中的结构示意图;其中标记31为换热器3的热介质流入口 ;32为换热器3的介质流出口 ;33为冷凝器4的冷凝液流入口 ;34为冷凝器4的冷凝液流出口 ;35为承压水箱2的水流入口 ;36为承压水箱2的热水流出口 ;37为承压水箱2的自来水流入口 ;38为承压水箱2的水流出口;图4是本发明的地热换热部原理示意图。
具体实施例方式具体实施方式
一、结合图I至图4说明本具体实施方式
,太阳能地源热组合式碳零排放制热制冷系统,它包括太阳能集热器I、承压水箱2、换热器3、冷凝器4、光伏发电板5、控制器6、储电装置7、逆变器9、压缩机10、地热盘管11、换热板12、膨胀阀13、过滤器14、储液罐15、地暖循环泵16、太阳能介质循环泵18和空调蒸发器19 ;所述换热板12埋入地下;太阳能集热器I的热介质流出口与换热器3的热介质流入口连通;所述换热器3的介质流出口通过太阳能介质循环泵18与太阳能集热器I的介质流入口连通;换热器3的主体固定在承压水箱2内;所述承压水箱2的水流出口与地热盘管11的水流入口连通;所述地热盘管11的水流出口通过地暖循环泵20与承压水箱2的水流入口连通;光伏发电板5的电源信号输出端与控制器6的电源信号输入端连接;所述控制器6的电源信号输出端与储电装置7的电源信号输入端连通;所述储电装置7的电源信号输出端与逆变器9的电源信号输入端连接;所述逆变器9的电源信号输出端与压缩机10的电源信号输入端连接;冷凝器4的主体固定在承压水箱2内;冷凝器4的冷凝液流出口与储液罐15的冷凝液流入口连通;所述储液罐15的冷凝液流出口与过滤器14的冷凝液流入口连通;所述过滤器14的冷凝液流出口与膨胀阀13的冷凝液流入口连通;所述膨胀阀13的冷凝液流出口同时与空调蒸发器19的冷凝液流入口和地下换热循环泵20的冷凝液流入口连通;所述换热循环泵20的冷凝液流出口与换热板12的冷凝液流入口连通;所述换热板12的冷凝液流出口和空调蒸发器19的冷凝液流出口同时与压缩机10的冷凝液流入口连通;压缩机10的冷凝液流出口与冷凝器4的冷凝液流入口连通。本系统通过太阳能光伏发电板供电,通过制冷压缩机、蒸发机或冷凝器对地源热进行吸收和施放能量,实现冬季取暖和生活热水、空调制冷等多种功能。
本系统和太能能集热装置有机的结合作为对热源的补充加热,使热效率更高同时对埋于地下的蒸发器适当的减少工作时间,延长土壤的蓄热时间,可以更好的提高热转换率。本系统将太阳能光伏发电板供电、太阳能集热及地源热三者有机的结合作为一个整体实现碳的零排放。同时也增加热转换效率。综上所述,本发明以太阳能集热为主,压缩机制冷为辅,当光照充足时,系统回水温度大于或等于设定值时,采用太阳能集热器提供热能,保证回水温度;当光照不足时,系统回水温度小于设定值时,采用压缩机自动开启制热功能,提升回水温度。从而实现太阳能地源热组合式制热制冷,本发明的热转换效率高,节能效果好,并且实现了碳的零排放,本系统尤其适用于电力缺乏地区,高纬度、高寒地带地区。

本实施方式中的换热板12的工作原理参见图2所示。本实施方式中,换热器3与冷凝器4在承压水箱2中时的结构示意图参见图3所
/Jn ο具体实施方式
二、本具体实施方式
具体实施方式
一所述的太阳能地源热组合式碳零排放制热制冷系统的区别在于,它还包括热水阀门8,承压水箱2上开有热水流出口,热水阀门8安装在所述热水流出口处。
具体实施方式
三、本具体实施方式
具体实施方式
一或二所述的太阳能地源热组合式碳零排放制热制冷系统的区别在于,它还包括自来水补水控制阀17,承压水箱2上开有自来水流入口,自来水补水控制阀17安装在所述自来水流入口处。
具体实施方式
四、本具体实施方式
具体实施方式
三所述的太阳能地源热组合式碳零排放制热制冷系统的区别在于,换热板12与地表的距离为5m。
具体实施方式
五、本具体实施方式
具体实施方式
一、二或四所述的太阳能地源热组合式碳零排放制热制冷系统的区别在于,它还包括换热板保护罩3,所述换热板保护罩3封装在换热板12的外部,所述换热板保护罩3的内部充满超导液。
具体实施方式
六、本具体实施方式
具体实施方式
五所述的太阳能地源热组合式碳零排放制热制冷系统的区别在于,换热器2与太阳能集热器I之间循环的介质为防冻液。本实施方式中,系统以太阳能集热为主、压缩机制热为辅。太阳能集热采用分体式设计,导热介质采用防冻液,通过循环泵进行强制热循环。
具体实施方式
七、本具体实施方式
具体实施方式
一、二、四或六所述的太阳能地源热组合式碳零排放制热制冷系统的区别在于,控制器6采用太阳能充放电控制器(优选SPZ048100)实现。
权利要求
1.太阳能地源热组合式碳零排放制热制冷系统,其特征是它包括太阳能集热器(I)、承压水箱(2)、换热器(3)、冷凝器(4)、光伏发电板(5)、控制器(6)、储电装置(7)、逆变器(9)、压缩机(10)、地热盘管(11)、换热板(12)、膨胀阀(13)、过滤器(14)、储液罐(15)、地暖循环泵(16)、太阳能介质循环泵(18)和空调蒸发器(19);所述换热板(12)埋入地下; 太阳能集热器(I)的热介质流出口与换热器(3 )的热介质流入口连通;所述换热器(3 )的介质流出口通过太阳能介质循环泵(18)与太阳能集热器(I)的介质流入口连通;换热器(3)的主体固定在承压水箱(2)内;所述承压水箱(2)的水流出口与地热盘管(11)的水流入口连通;所述地热盘管(11)的水流出口通过地暖循环泵(20 )与承压水箱(2 )的水流入口连通; 光伏发电板(5)的电源信号输出端与控制器(6)的电源信号输入端连接;所述控制器(6 )的电源信号输出端与储电装置(7 )的电源信号输入端连通;所述储电装置(7 )的电源信号输出端与逆变器(9)的电源信号输入端连接;所述逆变器(9)的电源信号输出端与压缩机(10)的电源信号输入端连接; 冷凝器(4)的主体固定在承压水箱(2)内;冷凝器(4)的冷凝液流出口与储液罐(15)的冷凝液流入口连通;所述储液罐(15)的冷凝液流出口与过滤器(14)的冷凝液流入口连通;所述过滤器(14)的冷凝液流出口与膨胀阀(13)的冷凝液流入口连通;所述膨胀阀(13)的冷凝液流出口同时与空调蒸发器(19)的冷凝液流入口和地下换热循环泵(20)的冷凝液流入口连通;所述换热循环泵(20)的冷凝液流出口与换热板(12)的冷凝液流入口连通;所述换热板(12)的冷凝液流出口和空调蒸发器(19)的冷凝液流出口同时与压缩机(10)的冷凝液流入口连通;压缩机(10)的冷凝液流出口与冷凝器(4)的冷凝液流入口连通。
2.根据权利要求I所述的太阳能地源热组合式碳零排放制热制冷系统,其特征在于它还包括热水阀门(8),承压水箱(2)上开有热水流出口,热水阀门(8)安装在所述热水流出口处。
3.根据权利要求I或2所述的太阳能地源热组合式碳零排放制热制冷系统,其特征在于它还包括自来水补水控制阀(17),承压水箱(2)上开有自来水流入口,自来水补水控制阀(17 )安装在所述自来水流入口处。
4.根据权利要求3所述的太阳能地源热组合式碳零排放制热制冷系统,其特征在于换热板(12)与地表的距离为5m。
5.根据权利要求1、2或4所述的太阳能地源热组合式碳零排放制热制冷系统,其特征在于它还包括换热板保护罩(121 ),所述换热板保护罩(121)封装在换热板(12)的外部,所述换热板保护罩(121)的内部充满超导液。
6.根据权利要求5所述的太阳能地源热组合式碳零排放制热制冷系统,其特征在于换热器(3)与太阳能集热器(I)之间循环的介质为防冻液。
7.根据权利要求1、2、4或6所述的太阳能地源热组合式碳零排放制热制冷系统,其特征在于控制器(6)采用太阳能充放电控制器实现。
全文摘要
太阳能地源热组合式碳零排放制热制冷系统,涉及一种太阳能地源热组合式制热制冷系统。它是为解决现有太阳能地源热组合式制热制冷装置的热转换效率低、能源浪费大,以及无法实现碳的零排放的问题。它的太阳能集热器与承压水箱内的换热器通过介质进行热交换;承压水箱与地热盘管进行水循环;光伏发电板先后经控制器、储电装置、逆变器后给压缩机供电;冷凝器的主体固定在承压水箱内;冷凝器与储液罐、过滤器、空高调蒸发器、换热板和压缩机组成冷凝循环系统。本发明尤其适用于电力缺乏地区。
文档编号F25B49/02GK102878721SQ20121040901
公开日2013年1月16日 申请日期2012年10月24日 优先权日2012年10月24日
发明者马海滨, 关曙光, 温国宏 申请人:黑龙江以琳节能环保技术开发有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1