用于制造一个或多个空气产物的方法和空气分离设备与流程

文档序号:14895245发布日期:2018-07-08 00:20阅读:175来源:国知局

本发明涉及按照独立权利要求的前序部分所述的一种用于空气的低温分离的方法以及一种空气分离设备。



背景技术:

通过在空气分离设备中将空气进行低温分离从而制造出液态或气态的状态下的空气产物是已知的并且例如在文献“工业气体处理(industrialgasesprocessing),h.-w.(hrsg.),wiley-vch,2006”尤其是段落2.2.5“低温精馏(cryogenicrectification)”中描述。

空气分离设备具有蒸馏塔系统其例如可以构成为双塔系统,特别是经典的linde双塔系统,但是也可以构成为三塔或多塔系统。除了用于获取液态和/或气态状态下的氮和/或氧的蒸馏塔(亦即用于氮氧分离的蒸馏塔)之外,还可以设有用于获取另外的空气成分特别是稀有气体氪、氙和/或氩的蒸馏塔。

所述蒸馏塔系统的蒸馏塔以不同的压力水平运行。已知的双塔系统具有所谓的高压塔(也称为压力塔、中间压力塔、或者下塔)和所谓的低压塔(也称为上塔)。高压塔的压力水平例如是4bar至6bar,特别是例如5.3bar。低压塔以例如1.3bar至1.7bar特别是例如1.4bar的压力水平运行。在确定的情况下,例如对于具有集成式气化的混合工艺(英语:integratedgasificationcombinedcycle,igcc)也可以在低压塔应用3至4bar的压力。在此以及下文提出的压力是在所述塔的塔顶(kopf)处的绝对压力。

在文献us2005/126221a1中描述一种hap方法(参见下文),其中应用附加的压缩器(verdichter)。文献us5,515,687公开一种mac-bac方法(同样参见下文),其中,采用了发电涡轮机。借助于发电涡轮机产生的电能用于驱动再压缩器(nachverdichter)。与之不同,例如由文献us2016/0231053a1已知增压机(booster)借助于泄压涡轮机在mac-bac方法中的运行。具有泄压涡轮机和增压器的另一布置组件由文献fr2690982a1已知。文献us5,355,681a公开一种氩获取(argongewinnung)。



技术实现要素:

本发明提出如下任务:更有能效和成本更有利地设计空气的低温分离。

在该背景下,本发明提出具有相应的独立权利要求的特征的一种用于空气的低温分离的方法和一种空气分离设备。有利的设计方案分别是从属权利要求的主题以及从以下描述得出。

在阐明本发明的特征和优点之前,进一步阐明本发明的一些基础并且限定以下应用的术语。

在空气分离设备中应用的装置在所引用的专业文献中(例如在的段落2.2.5.6“器械(apparatus)”中)描述。只要以下的限定与此没有偏差,则因此在本发明框架内所应用的语言使用方面在表达上参照所引用的专业文献。

液体或气体能够以这里所应用的语言表示一个或多个成分是富(reich)或者贫(arm)的,其中,“富”能够表示以摩尔、重量或者体积为基础表示至少50%、75%、90%、95%、99%、99.5%、99.9%或99.99%的含量,而“贫”则能够表示至多50%、25%、10%、5%、1%、0.1%或0.01%。术语“主要(überwiegend)”可以相应于“富”的定义。液体和气体还能够表示一个或多个成分被富集(angereichert)或贫化(abgereichert),其中,这些术语涉及到被获取液体或气体的初始液体或初始气体中的含量。如果液体或气体至少包含(参照初始液体或初始气体)相应成分的1.1倍、1.5倍、2倍、5倍、10倍、100倍或1000倍的含量,那么该液体或气体是“富集的”;如果液体或气体最多包含(参照初始液体或初始气体)相应成分的0.9倍、0.5倍、0.1倍、0.01倍或0.001倍的成分,那么该液体或气体是“贫化的”。如果在此例如谈及“氧”或“氮”,则对此也应理解为如下液体或气体:该液体或气体富含氧或氮,然而不必非要仅由此组成。

为了表征压力和温度,本申请应用术语“压力水平”和“温度水平”,由此应表示:相应的设备中相应的压力和温度不必以准确的压力值或温度值的形式得以应用,才能实现按照本发明的方案。然而这样的压力和温度典型地在确定范围内偏移,该范围例如处于中间值±1%、±5%、±10%、±20%或甚至±50%。相应的压力水平和温度水平可以在此处于不相交的范围内或者在相互重叠的范围内。特别是例如压力水平包括不可避免的或者可预期的压力损耗。相应地适用于温度水平。在此以bar说明压力水平是绝对压力。

在空气分离方法中,为了冷却形成和液化,可在不同位置处应用涡轮膨胀器(turboexpander),正如对于本领域内技术人员原则上已知的那样。以下谈及“claude涡轮机”、“lachmann涡轮机”和“压力氮涡轮机”。对于这些涡轮膨胀器的功能和目的可参照专业文献,例如:“工业气体手册(industrialgashandbook:gasseparationandpurification)f.g.kerry,crcpress,2006”,特别是段落2.4“当代液体循环(contemporaryliquefactioncycles)”,段落2.6“”claude循环理论分析(theoreticalanalysisoftheclaudecycle)以及段落3.8.1“lachmann原理(thelachmannprinciple)”。

在双塔系统的情况下,借助于claude涡轮机将冷却的压力空气从较高的压力水平泄压(entspannt)到高压塔的压力水平并且馈入到高压塔中。与之不同,借助于lachmann涡轮机将冷却的压力空气泄压到低压塔的压力水平并且馈入到低压塔中。借助于压力氮涡轮机最后对来自高压塔的氮进行泄压。这种泄压可以在该氮在主热交换器中完全加热(所谓的冷压力氮涡轮机)之前或在此之后(所谓的热压力氮涡轮机)实现。相应的氮可以紧接着特别是用于吸附剂的再生(regeneration)。而且通过采用压力氮涡轮机(druckstickstoff-turbine)也可以降低空气分离设备的能耗。如果给压力氮涡轮机从高压塔的塔顶输送氮,那么该氮相应地是纯的。压力氮涡轮机然而也可以将非纯氮从高压塔输送,正如也在本发明框架内的情况那样。在后一种情况下,相应的压力氮涡轮机也称为“非纯式压力氮涡轮机”。非纯式压力氮涡轮机的特征在于,从高压塔给其输送富含氮的流体,该流体的氮含量低于高压塔的塔顶产物的氮(也即低于高压塔中可产生的最大氮含量)。该氮从高压塔特别是在侧向地亦即塔顶之下至少一些(即至少2、3、4或5个)理论或实际塔板提取。

涡轮膨胀器可以通过共同的轴与另外的泄压机器或能量转换器(例如油制动器、发电动机、或压缩器级)耦合。如果一个或多个涡轮膨胀器与一个或多个压缩器级(参见下文)耦合并且必要时可附加地机械制动,从而压缩器级在没有外部(例如借助于电动机)输送能量的情况下运行,那么对于这种布置方案一般也应用术语“增压涡轮机”。相应的增压涡轮机的压缩器级(verdichterstufe)一般也称为“增压器”。这种增压涡轮机在此压缩至少一个流是通过泄压至少一个另外的流(然而没有外部的、例如借助于电动机输送的能量)得以实现。

与之不同,压缩器在此理解为外部的典型是电驱动的装置,其设置用于:将至少一个气态流从至少一个输入压力(所述流以该输入压力输送至压缩器)压缩到至少一个最终压力(所述流以该最终压力从压缩器提取)。压缩器在此形成一个结构单元,然而可以具有多个单个的压缩器单元或“压缩器级”,压缩器单元或“压缩器级”呈已知的活塞装置、旋拧装置和/或叶轮装置或涡轮机装置(亦即径向或轴向压缩器级)的形式。特别是,这些压缩器级借助于共同的驱动装置(例如经由共同的轴或共同的电动机)驱动。多个压缩器级可以由此共同地形成一个或多个压缩器。

旋转单元(例如泄压机器或泄压涡轮机、压缩器或压缩器级、增压涡轮机或增压器、电动机的转子以及诸如此类)可以相互机械耦合,其中,“机械耦合”在本申请的语言使用方面理解为:通过机械元件(如齿轮、皮带、传动装置以及诸如此类)可以在这些旋转单元之间建立固定或机械可调节的转速关系。机械耦合一般可以通过两个或多个分别相互配合(例如以形状配合或摩擦配合)的元件(例如齿轮或具有皮带的驱动盘)或者通过抗扭连接得以建立。机械耦合可以特别是通过共同的轴引起,这些旋转单元分别抗扭地固定在该共同的轴上。这些旋转单元的转速在该情况下相同。

本发明特别是结合所谓的mac-bac(“主空气压缩器/增压空气压缩器(mainaircompressor/boosteraircompressor)”)方法得以应用。mac-bac方法的特征在于,总共输送给蒸馏塔系统的应用空气量的仅仅一部分被压缩到如下压力水平:该压力水平基本(也即以至少3、4或5bar)高于高压塔的压力水平。总共输送给蒸馏塔系统的应用空气量的另一部分仅仅被压缩到高压塔的压力水平或者典型地与该高压塔的压力水平偏差不超过1bar至2bar的压力水平,并且以这个压力水平馈入到高压塔中。总共输送给蒸馏塔系统的压力空气的、已压缩到较高的压力水平的那部分能够以mac-bac方法在冷却之后以部分方式在claude涡轮机中泄压,正如也在附图中阐明的那样。

在同样在空气分离中所应用的hap方法中,与之不同地,总共输送给蒸馏塔系统的全部应用空气量被压缩到如下压力水平:该压力水平基本(也即以至少3bar)高于高压塔的压力水平。这个压力差是至少3bar,然而也可以显著更高(例如4、5、6、7、8、9或10bar且直至14、16、18或20bar)。hap方法例如由文献ep2980514a1以及ep2963367a1已知。

全部的氮(该全部的氮从高压塔被提取,并且既没有浓缩且作为回流被返回引导到该高压塔中,也还没有浓缩且作为液体回流应用于低压塔)原则上影响到低压塔中的分离,因为这些氮在该处不再作为回流可用。这样的氮是从空气分离设备以液态或气态氮产物形式所提取的氮,以及是如上所述在压力氮涡轮机中所泄压的并且以其他方式被利用的氮。在此也包括内压缩的氮,亦即液态氮,该液态氮从高压塔被提取、在泵中达到一定压力、并且在主热交换器中被汽化。内压缩(innenverdichtung)也例如在“段落2.2.5.2“内压(internalcompression)”中阐明。

“氩析出(argonausschleusung)”在此一般理解为如下措施,其中,从低压塔抽取流体,该流体相对于从低压塔所馈入的、富含氧的液体(特别是低压塔的残留产物)而言是富集氩的,即例如:具有至少双倍、五倍或十倍的氩含量。氩析出还包括:被包含在相应的、已抽取的流体中的氩的至少一部分不再引导回到低压塔中。流体特别是经受氩贫化(argonabreicherung),并且才随后又引导回到低压塔中。经典类型的氩析出是:将相应的流体传送到原始氩塔或氩析出塔中,只有贫氩的、富含氧的流体从该原始氩塔或氩析出塔又引导回到低压塔中。

这种氩析出的有利效果归因于,对于在低压塔中析出的氩量而言,不再需要氧与氩的分离。在低压塔自身中将氩与氧分离,这原则上是耗费的并且需要主冷凝器的相应的“热”功率。如果氩被析出并且因此氧与氩的分离停止,或者这例如转移到原始氩塔或氩析出塔中,那么相应的氩量不再需要在低压塔的氧部分中分离出来,并且主冷凝器的热功率可以降低。因此,在氧产量保持相同的情况下,要么能够使更多空气吹入到低压塔中,要么能够使更多压力氮从高压塔提取,这又提供了能量方面的优点。

在常规的原始氩塔中,可获取原始氩,并且将其在后置的纯氩塔中制备成氩产物。与之不同,氩析出塔首先用于氩析出,用以上述目的。原则上可将“氩析出塔”理解为用于将氩与氧进行分离的分离塔,该分离塔并不用于获取纯氩产物,而是用于将在低压塔和高压塔中待分离的空气进行氩的析出。这种氩析出塔的铺排线路(schaltung)仅稍微不同于典型的原始氩塔,然而却包含显著更少的理论塔板数(即少于40,特别是处于15至30之间)。正如原始氩塔那样,氩析出塔的底壳区域(sumpfbereich)与低压塔的中间位置相连接,并且氩析出塔通过塔顶冷凝器被冷却,在该塔顶冷凝器的汽化侧上被典型地泄压的底壳流体(sumpfflüssigkeit)从高压塔被导入。氩析出塔典型地不具有底壳汽化器(sumpfverdampfer)。

本发明的优点:

本发明的本质优点在于,正如也在下文中还将描述的那样,与应用常规方法的情况相比,本发明使得具有高压塔和低压塔的公知双塔系统能够被更有效地利用,亦即更好“发挥潜能”。

为此应用mac/bac方法,并且使得joule-thomson涡轮机(也称为液体涡轮机或密集式液体膨胀机)中所泄压的空气(所谓的节流或joule-thomson流)实现双倍再增压。这种双倍再增压首先采用非纯式压力氮涡轮机并且紧接着采用所谓的中间压力涡轮机进行,也即如下涡轮机:该涡轮机泄压空气,该空气紧接着被馈入到高压塔中,与joule-thomson涡轮机中所泄压的空气相比,上述空气仅以显著更小的程度被冷却。中间压力涡轮机在此直接从再压缩器的出口(并且不是从中间提取部)供给。本发明的优点在此例如结合氩析出塔(dummy-氩塔)得以发挥作用,正如已经阐明的那样。

通过应用非纯式压力氮涡轮机,能够以优化的所谓的吹入等价的方式运行精馏系统,由此能够节省能量。这种吹入等价通常限定成:从高压塔提取的、且既不作为回流被导回到该高压塔中的、也不作为液态回流应用于低压塔的氮量,再加上被泄压到低压塔中的压力空气的量,再除以全部馈入到蒸馏塔系统中的压力空气,所得出比例关系。如果例如应用非纯式压力氮涡轮机,并且在该非纯式压力氮涡轮机中:将数量m1的非纯氮从高压塔进行泄压,将数量m2的氮(从高压塔被提取)作为液态的和/或气态的氮产物从空气分离设备进行提取(即没有作为回流应用于高压塔和/或低压塔),并且将数量m3的压力空气总共输送至蒸馏塔系统,那么得出的吹入等价e则是:

e=(m1+m2)/m3(1)

原则上,提高吹入等价能够降低能量需求。

在输送给非纯式压力氮涡轮机的涡轮机流中的氧含量在此有利地大致相应于来自低压塔的所谓的非纯氮流(也称为废气)的氧含量。在该情况下,这些物质流相互均衡,并且不必采用附加的分离工作(用于净化涡轮机流,以便实现具有处于ppm范围内的氧含量的“纯”压力氮的纯度)。

节流(drosselstrom)的再增压在本发明的框架内同样促使成本降低,因为在该情况下再压缩器可减少一个或两个级进而可成本更有利地创建和运行。

以不同温度水平运行的两个涡轮机的应用还能够实现更好地优化主热交换器中的q-t曲线,并且能够实现具有更优效率的中间压力涡轮机的设计,因为液体成分在涡轮机出口处更少地故障。通过这种方式也节省能量。

最后,中间压力涡轮机的应用能够实现将纯的氮产物从高压塔的塔顶较多地提取,因为由此使非纯氮压力涡轮机卸载;和/或能够实现液态氮、液态氧和/或(假如存在完全的氩系统的话)液态氩的、相对多的液态产物。

本发明提出一种用于制造一个或多个空气产物的方法,其方式是,在具有蒸馏塔系统的空气分离设备中将空气进行低温分离,该蒸馏塔系统包括以第一压力水平运行的高压塔以及包括低压塔,其中:将应用空气量在主空气压缩器中压缩到第一压力水平,将应用空气量的第一部分和第二部分在再压缩器中再压缩,将第三部分仅仅压缩到第一压力水平并且以第一压力水平馈入到高压塔中。这相应于mac-bac方法如上所述地执行。

在按照本发明的方法的框架内,将应用空气量的已再压缩的第一部分依次采用第一增压器和第二增压器进一步压缩,并且紧接着冷却,泄压到第一压力水平,并且馈入到高压塔中。该第一部分涉及到已经提及的joule-thomson流,其中,为了将已压缩且双倍增压的、应用空气量的第一部分进行泄压,特别是采用上述joule-thomson涡轮机,或采用涡轮机与节流阀的组合。

在本发明的框架内,将应用空气量的再压缩的第二部分冷却,并且紧接着采用与第一或第二增压器已机械耦合的第一涡轮膨胀器进行泄压到第一压力水平,并且馈入到高压塔中。第一涡轮膨胀器是所谓的中间压力涡轮机,这同样之前已述。

按照本发明现在设定的是,将应用空气量的第一部分和第二部分在再压缩器中从第一压力水平再压缩到处于第一压力水平之上至少3bar的第二压力水平,并且从再压缩器共同地以第二压力水平提取。换言之,joule-thomson流和输送给中间压力涡轮机的压力空气流被共同地从再压缩器进行提取,而至少并不将这个部分从再压缩器进行中间提取(zwischenentnahme)。在此,应用空气量的再压缩的第二部分在没有进一步压力升高的情况下输送给第一涡轮膨胀器,也即:与应用空气量的再压缩的第一部分不同,第二部分不再继续增压。

在本发明的框架内,从高压塔还将非纯氮以第一压力水平提取,并且将其采用第二涡轮膨胀器(即上述非纯式压力氮涡轮机)泄压。第二涡轮膨胀器与选自第一和第二增压器所组成的组的如下增压器进行机械耦合:该增压器没有与第一涡轮膨胀器耦合。(如果第一涡轮膨胀器与第二增压器连接,那么第二涡轮膨胀器与第一增压器进行耦合,并且反之亦然。)对于“非纯”氮的组合成分在此特别是参照下文描述。该非纯氮的氮含量无论如何都是低于高压塔的塔顶产物。

最后,在本发明的框架内,从低压塔提取已富集氩的流体,对其进行氩贫化,并且将其引导回到低压塔中。这特别是采用如上所述的氩析出塔进行。通过所提及的措施于是实现从低压塔进行氩析出。通过这种方式,尽管从高压塔提取液态氮和/或压力氮(这按照本发明进行),然而也可以维持在低压塔中进行氧获取。

在本发明的框架内,从高压塔所提取的非纯氮具有0.1至5、特别是0.5至2摩尔百分比的氧含量。

如上所述,第一涡轮膨胀器特别是直接从再压缩器的出口馈入,已再压缩的第二部分于是没有被进一步再压缩和/或增压。换言之,特别是在没有压力升高的情况下进而特别是以第二压力水平将已再压缩的第二部分输送给第一涡轮膨胀器。对于相应的优点,这应在表达上参照涉及第一涡轮膨胀器所形成的中间压力涡轮机的上述说明。

在本发明的框架内,应用空气量的第一部分在采用第一增压器和第二增压器进行压缩之后特别是在空气分离设备的主热交换器中进行冷却,其中,应用空气量的第一部分以95k至110k、特别是97k至105k的温度水平在主热交换器中进行冷却。

应用空气量的第二部分在采用第一涡轮膨胀器泄压之后同样可以在空气分离设备的主热交换器中进行冷却,其中,应用空气量的第二部分以130k至200k、特别是150k至180k的温度水平从主热交换器进行提取。

在本发明的框架内,非纯氮可以在将其在第二涡轮膨胀器中泄压之前在空气分离设备的主热交换器中加热到110k至160k、特别是120k至150k的温度水平。对此备选地,非纯氮可在将其在第二涡轮膨胀器中泄压之前在附加于空气分离设备的主热交换器设定的辅助热交换器中加热到相应的温度水平。

有利地,对已富集氩的流体进行氩贫化,这借助于具有少于40理论塔板数的蒸馏塔(特别是具有上述特征的氩析出塔)实现。然而也可以应用常规的原始氩塔、特别是结合纯氩塔进行。

有利地,在本发明的框架内,将应用空气量的再压缩的第一部分采用第一增压器和第二增压器进一步压缩到50bar至95bar、特别是60bar至90bar的第三压力水平。

在本发明的框架内,有利地,应用空气量的第三部分以第一压力水平冷却并且同样输送给高压塔。在此涉及到将正常的空气馈入到高压塔中。在本发明的框架内,应用空气量的第一部分可以包括应用空气量的百分之15至40(特别是20至30),应用空气量的第二部分可以包括应用空气量的百分之5至30(特别是10至20),和/或应用空气量的第三部分可以包括应用空气量的百分之40至70(特别是45至60)。

从低压塔同样可以提取非纯氮,并且特别是将其连同从高压塔所提取的且采用第二涡轮膨胀器所泄压的非纯氮进行加热。如上所述,从低压塔所提取的非纯氮与从高压塔所提取的且采用第二涡轮膨胀器所泄压的非纯氮有利地具有相同或可比的氧含量。

本发明也涉及到一种具有蒸馏塔系统的空气分离设备,该蒸馏塔系统包括高压塔和低压塔,正如在相应的独立权利要求中提出的那样。

按照本发明的空气分离设备有利地设置用于执行如上所述的方法,并在其阐明的设计方案中以相同的方式具有按照本发明的方法的优点。因此在表达方面可参照上述说明。

附图说明

图1:按照本发明的一个实施形式的空气分离设备;

图2:按照本发明的一个实施形式的空气分离设备;

图3:按照本发明的一个实施形式的空气分离设备;

图4:按照本发明的一个实施形式的空气分离设备;

图5:按照本发明的一个实施形式的空气分离设备。

在以下附图中相互对应的元素以相同附图标记表示。这些元素出于清晰的原因不再重复阐明。关于空气分离设备及其相应构件的功能方面的进一步的细节应参照引用的专业文献(参见例如的附图2.3a和相关的说明)。

具体实施方式

图1示出空气分离设备,其设置用于按照本发明的一个实施形式运行。空气分离设备总体上以100表示。

在空气分离设备100中,应用空气以物质流a(air)的形式借助于主空气压缩器101在应用空气量中经由过滤器102被抽吸,并且被压缩到第一压力水平。已压缩到第一压力水平的应用空气以部分方式呈物质流b的形式被分支(air1),并且还呈物质流c的形式在再冷却单元103和吸附站104中经受本身已知的其它制备过程(aufbereitung)。

物质流c的、已压缩到第一压力水平的且已经受制备过程的应用空气以第一压力水平将其一部分以物质流d的形式输送至再压缩器105中进行再压缩而将其另一部分以物质流e的形式直接输送至辅助热交换器106和主热交换器107中进行冷却。

再压缩器105在示出的例子中包括两个没有单独标示的压缩器分段和相应的再冷却器。物质流d的子流在示出的例子中从再压缩器105以物质流f的形式以中间压力水平被提取(air2),剩余部分在再压缩器105中被压缩到第二压力水平并且以物质流g的形式离开再压缩器。

物质流g被分成物质流h和物质流i,其中,物质流h以第二压力水平输送给主热交换器107,而物质流i在第一增压器108和第二增压器109中经受进一步压力提高到第三压力水平并且以第三压力水平输送给主热交换器107。

物质流h从主热交换器107以中间温度水平被提取,在第一涡轮膨胀器110中(在这里该第一涡轮膨胀器110与第二增压器109机械耦合)又被泄压到第一压力水平,并且(也参见节点a)被馈入到蒸馏塔系统10的高压塔111中,该蒸馏塔系统10还具有低压塔112和氩析出塔113。

物质流i从主热交换器107的冷侧上被提取,并且采用发电涡轮机114或在节流阀(未标示)中或者在这两者中被泄压,由此被至少部分液化并且同样被馈入到高压塔111中。物质流i在馈入到高压塔111中之前的泄压同样以第一压力水平进行。

从高压塔111将非纯氮以物质流k的形式以上述示例性描述以第一压力水平进行提取,输送给主热交换器107的冷侧(参见节点b),从该主热交换器107以中间温度进行提取,并且在第二涡轮膨胀器115中进行泄压,该第二涡轮膨胀器115在此自身与第一增压器108机械耦合。第二涡轮膨胀器115涉及到多次提及的非纯式压力氮涡轮机。

在本申请的框架内,物质流i的空气也称为应用空气量(物质流a)的“第一部分”,物质流h的空气也称为应用空气量的“第二部分”,而物质流e的空气也称为应用空气量的“第三部分”。应用空气量(正如在此所示)在主空气压缩器101中被压缩到第一压力水平。应用空气量的第一部分和第二部分在再压缩器105中被再压缩到第二压力水平并且共同以第二压力水平从再压缩器105提取。

应用空气量的第一部分采用第一增压器108和第二增压器109进一步压缩到第三压力水平,在主热交换器107中冷却,紧接着泄压到第一压力水平并且馈入到高压塔111中。

应用空气量的第二部分在主热交换器107中冷却之后在与第二增压器109机械耦合的第一涡轮膨胀器110中泄压到第一压力水平并且馈入到高压塔111中。从高压塔将非纯氮以第一压力水平进行提取并且在与第一增压器108机械耦合的第二涡轮膨胀器115中进行泄压。

应用空气量的第三部分(即物质流e的空气)以两个子流l和m的形式输送给辅助热交换器106,其中,子流l从辅助热交换器106冷侧被提取,而子流m从辅助热交换器106以中间温度被提取。子流m在主热交换器107中进一步冷却并且从该主热交换器107冷侧被提取。可选择地(正如以虚线表示的物质流z的形式所阐明那样),然而也能够将应用空气量的第三部分的部分量仅在主热交换器107中进行冷却。将应用空气量的第三部分最后同样馈入到高压塔111中。

从高压塔111的底壳(sumpf)抽取以物质流n形式的、氧富集的液体,引导通过下冷却器(过冷却器,unterkühler)116,并且在氩析出塔113的塔顶冷凝器中作为冷却剂得以应用之后馈入到低压塔112中。

气态氮从高压塔111的塔顶以物质流o的形式被抽取,在主热交换器107中被加热,并且以一个或多个压力产物(sealgas,pgan)的形式被提供。另外的气态氮从高压塔111的塔顶以物质流p的形式被抽取,并且在主冷凝器117中(该主冷凝器117以热交换的方式将高压塔111与低压塔112连接)被至少部分液化。子流q被引导回到高压塔111中,子流r被引导通过下冷却器116并且作为液态的氮产物(lin)被提供。除了提及的物质流k之外,非纯氮也以物质流s的形式从高压塔111以液态方式被抽取,被引导通过下冷却器116,并且被馈入到低压塔112中。

从低压塔112的底壳将氧以物质流t的形式进行抽取,在泵118中以液态方式进行压力提高(内压缩),在主热交换器107中以至少部分的方式以物质流u、v的形式进行加热,并且转变成气态的状态或超越临界值的状态,并且作为相应的压力产物(icgox1,icgox2)输出。另外的氧以物质流w的形式从低压塔112被抽取,以部分方式被引导通过下冷却器116,并且作为液体产物(lox)被输出。流w必要时也可从泵出口处的物质流分支出来或从物质流v分支出来,可节流到较小的压力,可输送给下冷却器116,并且紧接着可作为产物输出。

从低压塔112的塔顶所抽取的非纯氮以物质流x的形式被引导通过下冷却器116,紧接着以部分方式在辅助热交换器106和主热交换器107中被加热,并且最后按照愿望以及根据需要在再冷却单元103中和/或吸附站104中得以利用(为此也参见节点c)。

从氩析出塔113的塔顶所抽取的流体可(为此也参见节点d)在辅助热交换器106中被加热并且被输出至大气(atm)。也就是说,没有获得氩产物,而是仅析出氩。如上所述,相应的设备然而也可以配备有典型的氩系统,特别是可以包括原始塔和纯氩塔。

在图1中阐明的空气分离设备100中,物质流k(即来自高压塔111的非纯氮)在其在涡轮膨胀器115中被泄压之后被供至物质流x引导通过主热交换器107的那部分,而在图2中阐明如下空气分离设备:其中阐明了供至引导通过辅助热交换器106的那部分。

在图3中阐明的空气分离设备中,物质流m没有引导通过辅助热交换器106而是通过主热交换器107(相应于按照图1和图2的物质流z)。取而代之地,物质流k在辅助热交换器106中被加热(参见节点b和e)。

在图4中阐明的空气分离设备中,辅助热交换器106不存在,物质流e因此完全引导通过主热交换器107。相应地,物质流x完全在主热交换器107中被加热。而且物质流y也在主热交换器107中被加热。

在图5中阐明的空气分离设备中,低压塔112扩展出区段112a用于获取低压氮。从低压塔112的塔顶因此可抽取低压氮物质流j。低压氮物质流j引导通过下冷却器116并且在主热交换器107的单独通道中被加热。物质流r的子流能够以液态方式在低压塔112的塔顶处输出。在图5中阐明的实施形式原则上可以借助之前附图中所示出的全部热交换配置得以实现,也即辅助热交换器106可以存在或者不存在。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1