一种热电协同蓄能式吸收-吸附复叠多效制冷系统的制作方法

文档序号:15016639发布日期:2018-07-24 23:43阅读:来源:国知局

技术特征:

1.一种热电协同蓄能式吸收-吸附复叠多效制冷系统,其特征在于,包括热电协同供能子系统、溴化锂-水蓄能及合成沸石-水复叠多效子系统和冷却水控制子系统;

所述热电协同供能子系统包括蓄电池和壁挂炉,蓄电池上连有逆变器,逆变器上连有发电装置和太阳光伏电池,发电装置上连有风机叶片,壁挂炉上连有进水箱;

所述溴化锂-水蓄能及合成沸石-水复叠多效子系统包括溴化锂-水机组和合成沸石-水机组成,具体包括发生器、吸附床、冷凝器、制冷剂储罐、蒸发器、吸收器、两相流喷射器、溶液冷却器和溶液热交换器;发生器与壁挂炉相连,发生器的输出端连接冷凝器和吸附床,发生器与吸附床之间设有第二气动调节阀,吸附床的输出端连接冷凝器,冷凝器的输出端连接制冷剂储罐和蒸发器,蒸发器的输出端连接两相流喷射器,两相流喷射器连接吸收器,吸收器的输出端并联连接有溶液热交换器和溶液冷却器,溶液热交换器与发生器相连,溶液冷却器连接两相流喷射器;

所述冷却水控制子系统包括折叠冷却器、折叠冷却器电动机、冷却塔、第一冷却水泵和第二冷却水泵,所述折叠冷却器与吸附床相连,折叠冷却器电机驱动折叠冷却器,冷却塔分别与折叠冷却器、冷凝器和吸收器相连。

2.如权利要求1所述的一种热电协同蓄能式吸收-吸附复叠多效制冷系统,其特征在于,所述进水箱内设有电加热管,进水箱上连有补水气动调节阀门。

3.如权利要求1所述的一种热电协同蓄能式吸收-吸附复叠多效制冷系统,其特征在于,所述发生器与壁挂炉之间的管路上设有第一气动调节阀、热源水入口气动调节阀门和热源水泵。

4.如权利要求1所述的一种热电协同蓄能式吸收-吸附复叠多效制冷系统,其特征在于,所述冷凝器与制冷剂储罐之间设有液位球阀,冷凝器与蒸发器之间设有U型管,U型管与制冷剂储罐之间设有第三气动调节阀。

5.如权利要求1所述的一种热电协同蓄能式吸收-吸附复叠多效制冷系统,其特征在于,所述蒸发器与吸附床之间设有第四气动调节阀和制冷剂泵。

6.如权利要求1所述的一种热电协同蓄能式吸收-吸附复叠多效制冷系统,其特征在于,所述吸收器的输出端设有溶液泵,吸收器的输出端经过溶液泵后分成两路,一路进入溶液热交换器,另一路经由溶液冷却器进入两相流喷射器,溶液冷却器与两相流喷射器之间设有调节阀。

7.如权利要求1所述的一种热电协同蓄能式吸收-吸附复叠多效制冷系统,其特征在于,所述冷却塔与折叠冷却器之间设有第一冷却水泵,冷凝器与吸收器之间设有第二冷却水泵。

8.如权利要求1-7任意一项所述的一种热电协同蓄能式吸收-吸附复叠多效制冷系统,其特征在于,所述热电协同蓄能式吸收-吸附复叠多效制冷系统包括强太阳辐射运行模式和弱太阳辐射运行模式,其中:

强太阳辐射运行模式为:在强太阳辐射时,太阳能光伏电池与风机叶片共同工作,产生直流电经逆变器转变成交流电并储存在蓄电池内,蓄电池为溴化锂-水蓄能及合成沸石-水复叠多效子系统中各循环泵提供电力,多余的电量对进水箱内的热源水预热;

太阳能直接驱动合成沸石-水机组,溴化锂-水机组与合成沸石-水机组并联运行,具体过程包括溴化锂-水机组制冷剂回路循环、溴化锂-水机组溶液回路循环、合成沸石-水机组单效循环和第一阀门控制过程:

溴化锂-水机组制冷剂回路循环:发生器产生的制冷剂蒸汽进入冷凝器,经冷凝器冷凝后分为两支路,其中一支路通过液位球阀进入制冷剂储罐,另一支路经U型管进入蒸发器,蒸发后的制冷剂蒸汽进入两相流喷射器,两相流喷射器引射来自蒸发器的制冷剂蒸汽,制冷剂蒸汽在两相流喷射器中增压且部分被溶液吸收;

溴化锂-水机组溶液回路循环:溴化锂溶液在吸收器中吸收水蒸气后变为稀溶液,经溶液泵升压后分为两路,由溶液调节阀控制流量,其中一路流进溶液热交换器被从发生器流出的高温浓溶液预热后流进发生器,另一路溶液流进溶液冷却器冷却降温,降温后的溶液与从溶液热交换器流出的浓溶液混合并进入两相流喷射器引射来自蒸发器的低压水蒸气,低压水蒸气在两相流喷射器中增压且部分被溶液吸收,从两相流喷射器出来的气液两相混合物经喷头在吸收器上部形成小液滴状的气液两相混合物,小液滴在下落过程中不断吸收水蒸气同时温度升高,溶液质量分数降低,稀溶液从吸收器出口流出;

合成沸石-水机组单效循环:吸附床产生的制冷剂蒸汽通过止回阀进入冷凝器,冷凝后分为两支路,其中一支路通过液位球阀进入制冷剂储罐,另一支路经U型管进入蒸发器,蒸发后的制冷剂经第四气动调节阀和冷剂泵回到吸附床实现合成沸石-水机组的单效循环,溴化锂-水蓄能及合成沸石-水的单效循环共同作用实现制冷系统并联;

弱太阳辐射运行模式为:在弱太阳辐射时,太阳能光伏电池无法产生直流电,风机叶片带动发电装置产生直流电,直流电经逆变器转变成交流电并储存在蓄电池内,蓄电池为溴化锂-水蓄能及合成沸石-水复叠多效子系统中各循环泵提供电力;

溴化锂-水机组与合成沸石-水机组串联运行,具体过程包括溴化锂-水机组制冷剂回路循环、溴化锂-水机组溶液回路循环、合成沸石-水机组单效循环和第二阀门控制过程:

溴化锂-水机组制冷剂回路循环:发生器产生的制冷剂蒸汽分为两支路,其中一支路进入冷凝器进行冷凝,另一支路通过第二气动调节阀门作为驱动蒸汽进入吸附床,驱动合成沸石-水的脱附反应发生,与吸附床相连的折叠冷却器处于折叠状态,放热后的制冷剂蒸汽进入冷凝器进行冷凝,冷凝后分为两支路,其中一支路通过液位球阀进入制冷剂储罐,另一支路经U型管进入蒸发器,蒸发后的制冷剂蒸汽进入两相流喷射器,两相流喷射器引射来自蒸发器的制冷剂蒸汽,制冷剂蒸汽在两相流喷射器中增压且部分被溶液吸收,完成循环;

溴化锂-水机组溶液回路循环:溴化锂溶液在吸收器中吸收水蒸气后变为稀溶液,经溶液泵升压后分为两路,由溶液调节阀控制流量,其中一路流进溶液热交换器被从发生器流出的高温浓溶液预热后流进发生器,另一路溶液流进溶液冷却器被冷却降温,降温后的溶液与从溶液热交换器流出的浓溶液混合并进入两相流喷射器引射来自蒸发器的低压水蒸气,低压水蒸气在两相流喷射器中实现增压且部分被溶液吸收,从喷射器出来的气液两相混合物经喷头在吸收器上部形成小液滴状的气液两相混合物,小液滴在下落过程中不断吸收水蒸气同时温度升高,溶液质量分数降低,稀溶液从吸收器出口流出,实现溴化锂-水机组溶液循环;

沸石-水机组制冷剂回路循环:吸附床产生的制冷剂蒸汽通过止回阀进入冷凝器,冷凝后分为两支路,其中一支路通过液位球阀进入制冷剂储罐,另一支路经U型管进入蒸发器,蒸发后的制冷剂经第四气动调节阀和冷剂泵回到吸附床完成循环。

9.如权利要求8所述的一种热电协同蓄能式吸收-吸附复叠多效制冷系统,其特征在于,所述第一阀门控制过程具体为:制冷剂储罐内有液位上限传感器和液位下限感应器,通过制冷剂储罐内液位对系统阀门进行调节,溴化锂-水机组与合成沸石-水机组并联运行时,第二气动调节阀关闭,制冷剂储罐内无制冷剂处于液位下限,液位球阀打开,第三气动调节阀关闭,第四气动调节阀关闭,待制冷剂储罐内液位达到液位上限,液位球阀关闭,折叠冷却器电动机驱动折叠冷却器展开,第一冷却水泵打开,冷却水进入折叠冷却器,吸附床被冷却五分钟后,第三气动调节阀、第四气动调节阀延时开启,制冷剂回到吸附床完成吸收,完成整个循环。

10.如权利要求8所述的一种热电协同蓄能式吸收-吸附复叠多效制冷系统,其特征在于,所述第二阀门控制过程具体为:制冷剂储罐内有液位上限传感器和液位下限感应器,通过制冷剂储罐内液位对系统阀门进行调节,溴化锂-水机组与合成沸石-水机组串联运行时,第二气动调节阀开启,制冷剂储罐内无制冷剂处于液位下限,液位球阀打开,第三气动调节阀关闭,第二气动调节阀开启,第四气动调节阀关闭,待制冷剂储罐内液位达到液位上限,液位球阀和第二气动调节阀关闭,折叠冷却器电动机驱动折叠冷却器展开,第一冷却水泵打开,冷却水进入折叠冷却器,吸附床被冷却五分钟后,第三气动调节阀、第四气动调节阀延时开启,制冷剂回到吸附床完成吸收,完成整个循环。

当前第2页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1