一种磁制冷换热系统及其控制方法与流程

文档序号:20193763发布日期:2020-03-27 19:55阅读:130来源:国知局
一种磁制冷换热系统及其控制方法与流程

本发明涉及磁制冷换热技术领域,具体涉及一种利用磁制冷技术的换热系统及其控制方法。



背景技术:

在现有的磁制冷系统中,磁工质由于磁体的运动交替励磁和退磁,因而交替产生热量和冷量,为了将其产生的冷量和热量分别根据需要进行热交换,就需要在通过磁工质的冷媒管上设置控制阀,控制冷媒管路的切换从而使热量/冷量交替的输出到对应的换热器中。在当前的磁制冷系统中由于必须要设置控制冷媒管路切换的阀增加系统复杂性,同时频繁切换管路也产生大量的噪音。同时,使连通制冷系统和制热系统的冷媒管交替通过同一磁工质区域也造成热量/冷量有很多消耗,使能耗增加。另外,冷媒只能交替通过,因而热交换不能连续进行,中间会有停顿,影响了效率。



技术实现要素:

针对现有技术中存在的上述缺陷本发明实施例提供了一种磁制冷换热系统及其控制方法。为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。

根据本发明实施例的第一方面,提供了一种磁制冷换热系统的控制方法,磁制冷换热器系统包括磁制冷换热装置、冷媒管路和换热器,冷媒管路分别连接磁制冷换热装置和换热器并形成循环回路;磁制冷换热装置包括磁工质床、磁体、换热腔、冷媒管和驱动器,其中,磁工质床为圆环形中空筒体,磁工质填充在筒体中;磁体固定在磁工质床轴心的一个扇面区域中,换热腔为包围磁工质床部分区域的中空腔体,磁工质床与换热腔相互贴近但不接触,冷媒管连通换热腔,驱动器与磁工质床连接,并驱动磁工质床以其圆环形的中轴为轴心旋转;磁制冷换热系统还包括温度传感器,温度传感器用于检测磁工质的温度;控制方法包括:

获取磁工质的温度;

基于磁工质的温度,调节磁工质床的旋转转速。

在一种可选的实施方式中,基于磁工质的温度,调节磁工质床的旋转转速,包括:

当磁工质的温度小于目标温度时,控制磁工质床以最大转速旋转。

在一种可选的实施方式中,基于磁工质的温度,调节磁工质床的旋转转速,还包括:

当磁工质的温度大于或等于目标温度时,控制磁工质床从当前转速进行降速。

在一种可选的实施方式中,控制方法还包括:

基于目标温度,确定磁工质床进行降速时的降速速率。

在一种可选的实施方式中,控制方法还包括:

基于磁工质的温度,调节循环回路的冷媒流量参数。

根据本发明的第二个方面,还提供了一种磁制冷换热系统,磁制冷换热器系统包括磁制冷换热装置、冷媒管路和换热器,冷媒管路分别连接磁制冷换热装置和换热器并形成循环回路;磁制冷换热装置包括磁工质床、磁体、换热腔、冷媒管和驱动器,其中,磁工质床为圆环形中空筒体,磁工质填充在筒体中;磁体固定在磁工质床轴心的一个扇面区域中,换热腔为包围磁工质床部分区域的中空腔体,磁工质床与换热腔相互贴近但不接触,冷媒管连通换热腔,驱动器与磁工质床连接,并驱动磁工质床以其圆环形的中轴为轴心旋转;磁制冷换热系统还包括温度传感器,温度传感器用于检测磁工质的温度;磁制冷换热系统还包括控制器,用于:

获取磁工质的温度;

基于磁工质的温度,调节磁工质床的旋转转速。

在一种可选的实施方式中,控制器具体用于:

当磁工质的温度小于目标温度时,控制磁工质床以最大转速旋转。

在一种可选的实施方式中,控制器还用于:

当磁工质的温度大于或等于目标温度时,控制磁工质床从当前转速进行降速。

在一种可选的实施方式中,控制器还用于:

基于目标温度,确定磁工质床进行降速时的降速速率。

在一种可选的实施方式中,控制器还用于:

基于磁工质的温度,调节循环回路的冷媒流量参数。

本方案的磁制冷换热系统是通过将磁体静止,磁工质相对于磁体进行旋转运动,所述磁工质床接近磁体的区域为励磁区,磁工质床远离磁体的区域为退磁区,设置管路,管路中有冷媒,冷媒可能连续的通过管道循环的流经进入换热腔与励磁区的磁工质进行热交换,将其释放的冷量带走,从而实现制冷效果;也可以将换热腔设置在退磁区,将退磁区的磁工质释放的热量带走,从而实现制热的效果。这样不需要通过设置阀体控制冷媒的流动,磁工质释放的冷量或热量可以持续性的被冷媒带走,从而解决了现有的磁制冷系统中的停顿、交替等缺点,提高了热交换效率,降低了能耗。

应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。

附图说明

此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。

图1为根据本发明的磁制冷换热装置的一个实施例的结构示意图;

图2为根据本发明的磁制冷换热装置的一个实施例的俯视结构图;

图3为根据本发明的磁制冷换热装置的磁工质床的一个实施例的内部结构图;

图4为根据本发明的磁制冷换热装置的另一个实施例的结构示意图;

图5所示为根据本发明的磁制冷换热系统的一个示例性实施例;

图6是根据一示例性实施例所示出的本发明自清洁换热器的正面结构示意图一(正面为朝向气流通道的延伸方向);

图7是根据一示例性实施例所示出的本发明自清洁换热器的侧面结构示意图一;

图8是根据一示例性实施例所示出的本发明自清洁换热器的正面结构示意图二(正面为朝向气流通道的延伸方向);

图9是根据一示例性实施例所示出的本发明自清洁换热器的侧面结构示意图二;

图10是根据一示例性实施例所示出的本发明空调器的侧面结构示意图;

图11是根据一示例性实施例所示出的本发明的磁制冷换热系统的控制方法的流程示意图。

具体实施方式

以下描述和附图充分地示出本发明的具体实施方案,以使本领域的技术人员能够实践它们。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本发明的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。在本文中,各实施方案可以被单独地或总地用术语“发明”来表示,这仅仅是为了方便,并且如果事实上公开了超过一个的发明,不是要自动地限制该应用的范围为任何单个发明或发明构思。本文中,诸如第一和第二等之类的关系术语仅仅用于将一个实体或者操作与另一个实体或操作区分开来,而不要求或者暗示这些实体或操作之间存在任何实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素。本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的结构、产品等而言,由于其与实施例公开的部分相对应,所以描述的比较简单,相关之处参见方法部分说明即可。

根据本发明实施例的第一方面,提供一种磁制冷换热装置,包括:磁工质床、磁体、换热腔、冷媒管和驱动器。图1为根据本发明的磁制冷换热装置的一个实施例的结构示意图,如图1所示,磁工质床101为圆环形中空筒体,磁工质填充在所述筒体中。磁体(未示出)固定在磁工质床轴心的一个扇面区域中,可以是沿着磁工质床101的径向设置,如固定在中磁工质床101圆环的内侧或外侧,也可以是内侧和外侧相对各设置一个磁体,以强化磁场的强度,提高励磁的效率;也可以是沿着磁工质床101的圆环面,在圆环的轴向上设置,即,当磁工质床101水平放置时,磁体固定在磁工质床101的上侧或下侧,也可以上侧和下侧分别相对的固定一块磁体。换热腔102为包围磁工质床101部分区域的中空腔体,磁工质床101与换热腔102相互贴近但不接触。所述冷媒管103连通换热腔102,所述驱动器与磁工质床101连接,并驱动磁工质床101以其圆环形的中轴为轴心旋转。因而,在磁工质体101在驱动器(未示出)的驱动下以圆环中心为轴旋转时,换热腔102仍保持静止,换热腔102固定的位置可以是励磁区,这时,该换热腔102中的冷媒将连续的吸收因磁工质床101旋转而连续励磁的磁工质释放出的冷量,从而通过冷媒管103将低温冷媒输送出去;该换热腔102也可以固定在退磁区,这时,换热腔102中的冷媒将连续的吸收因磁工质床101旋转而连续退磁的磁工质释放出的热量,从而通过冷媒管103将高温冷媒输送出去。也可以设置一可控制的支架,该支架固定连接换热腔102,在需要低温冷媒时,将换热腔102定位在励磁区,在需要高温冷媒时,再控制支架将换热腔102定位到退磁区。本方案是通过将磁体固定静止,磁工质相对于磁体进行旋转运动,所述磁工质床101接近磁体的区域为励磁区,磁工质床远离磁体的区域为退磁区,设置管路,管路中有冷媒,冷媒可能连续的通过管道循环的流经进入换热腔与励磁区的磁工质进行热交换,将其释放的冷量带走,从而实现制冷效果;也可以将换热腔102设置在退磁区,将退磁区的磁工质释放的热量带走,从而实现制热的效果。这样不需要通过设置阀体控制冷媒的流动,磁工质释放的冷量或热量可以持续性的被冷媒带走,从而解决了现有的磁制冷系统中的停顿、交替等缺点,提高了热交换效率,降低了能耗。

图2为根据本发明的磁制冷换热装置的一个实施例的俯视结构图,该磁制冷换热装置包括磁工质床201、换热腔202、冷媒管203、第一磁体204、第二磁体205、驱动器206和连接杆207,如图2所示的,磁工质床201为圆环形中空筒体,磁工质填充在所述筒体中。第一磁体204和第二磁体205固定在磁工质床的一个扇面区域中,如图2所示,在此是内侧和外侧相对各设置一个磁体,以强化磁场的强度,提高励磁的效率;也可以是沿着磁工质床201的圆环面,在圆环的轴向上设置,即,当磁工质床201水平放置时,磁体固定在磁工质床201的上侧或下侧,也可以上侧和下侧分别相对的固定一块磁体。换热腔202为包围磁工质床201部分区域的中空腔体,磁工质床201与换热腔202相互贴近但不接触。所述冷媒管203连通换热腔202,所述驱动器206通过连接杆207与磁工质床201连接,并驱动磁工质床201以其圆环形的中轴为轴心旋转,该驱动器206设置在磁工质床201的轴心处,而连接杆207由驱动器206沿径向延伸到磁工质床201处,连接杆207与磁工质床201的连接点可以是在磁工质床201的内环侧壁上,也可是在磁工质床207的圆环面的顶面或底面上,甚至也可以连接到磁工质床207的外环侧壁上,但是,无论连接杆207与磁工质床201如何连接,换热腔202处都要相应的开设通路,使磁工质床201在旋转时,同步旋转的连接杆207不会受到任何阻碍。在磁工质体201在驱动器206的驱动下以圆环中心为轴旋转时,换热腔202仍保持静止,虽然在此换热腔202固定的位置是励磁区,该换热腔202中的冷媒将连续的吸收因磁工质床201旋转而连续励磁的磁工质释放出的冷量,从而通过冷媒管203将低温冷媒输送出去;但是应当理解,该换热腔202也可以固定在退磁区,这时,换热腔202中的冷媒将连续的吸收因磁工质床201旋转而连续退磁的磁工质释放出的热量,从而通过冷媒管203将高温冷媒输送出去。也可以设置一可控制的支架,该支架固定连接换热腔202,在需要低温冷媒时,将换热腔202定位在励磁区,在需要高温冷媒时,再控制支架将换热腔202定位到退磁区。本方案是通过将磁体固定静止,磁工质相对于磁体进行旋转运动,所述磁工质床201接近磁体的区域为励磁区,磁工质床远离磁体的区域为退磁区,设置管路,管路中有冷媒,冷媒可能连续的通过管道循环的流经进入换热腔与励磁区的磁工质进行热交换,将其释放的冷量带走,从而实现制冷效果;也可以将换热腔202设置在退磁区,将退磁区的磁工质释放的热量带走,从而实现制热的效果。这样不需要通过设置阀体控制冷媒的流动,磁工质释放的冷量或热量可以持续性的被冷媒带走,从而解决了现有的磁制冷系统中的停顿、交替等缺点,提高了热交换效率,降低了能耗。

图3为根据本发明的磁制冷换热装置的磁工质床的一个实施例的内部结构图。磁工质床为圆环形的中空筒体301,在中空筒体301中填充有磁工质,例如纳米gd3ga5o12纳米合金、gdsige系合金、gd二元合金和钙钛矿氧化物等。如图3所示,在此实施例中,中空筒体301中还均布有多个隔板302,将中空筒体分隔成若干径向均匀排列的间室303,而磁工质则填充在该间室303中。由于间室303使磁工质之间区域性隔离,从而一方面可以减少热量在磁工质之间的散失,另一方面又可以提升热量的利用率,降低能耗。

图4为根据本发明的磁制冷换热装置的另一个实施例的结构示意图,该磁制冷换热装置包括磁工质床401、驱动器(未示出)、第一换热腔402、第一冷媒管403、第二换热腔404、第二冷媒管405和磁体(未示出),如图2所示的,磁工质床401为圆环形中空筒体,磁工质填充在所述筒体中。磁体(未示出)固定在磁工质床轴心的一个扇面区域中,可以是沿着磁工质床401的径向设置,如固定在中磁工质床401圆环的内侧或外侧,也可以是内侧和外侧相对各设置一个磁体,以强化磁场的强度,提高励磁的效率;也可以是沿着磁工质床401的圆环面,在圆环的轴向上设置,即,当磁工质床401水平放置时,磁体固定在磁工质床401的上侧或下侧,也可以上侧和下侧分别相对的固定一块磁体。第一换热腔402和第二换热腔404分别为包围磁工质床401相对的两个区域的中空腔体,磁工质床401与换热腔402之间、磁工质床401和第二换热腔404之间均相互贴近但不接触。第一换热腔403固定在砺磁区,第一冷媒管403连通制冷管路,而第二换热腔404固定在退磁区,第二冷媒管405连通制热管路。驱动器驱动磁工质床401旋转,因而磁工质床401中的磁工质不断的进入励磁区释放冷量,从而使第一换热腔402中的冷媒可以连续的进行热交换,从而输出低温冷媒;同时,励磁后的磁工质又随着磁工质体401的旋转而不断的离开磁场进入退磁区,从而又使第二换热腔404中的冷媒可以抽第一冷媒管403连续的进行热交换,从而向第二冷媒管405输出高温冷媒。因此,无论是制冷管路还是制热管路中,其中的冷媒都可以在对应的换热腔分别进行连续的热交换,提高了热交换的效率,有效降低系统能耗。进一步地,磁工质床表面设置有沿着圆环的弧形的凹槽和凸块,对应的换热腔朝向磁工质床的表面设置有凸块和凹槽,这样,可以增大比表面积,提升热交换的效率。

本发明还提供了一种磁制冷换热系统,该磁制冷换热系统包括:上述的制冷换热装置、冷媒管路和换热器;冷媒管路分别连接所述磁制冷换热装置和换热器并形成循环回路。图5所示为根据本发明的磁制冷换热系统的一个示例性实施例,如图5所示的,磁工质床501分别与第一换热腔502、第二换热腔504进行换热。第一换热腔502固定在励磁区,从而第一换热腔502中的冷媒可以不断的吸收励磁区的磁工质释放的冷量,从而使第一冷媒管503输出低温冷媒,而低温冷媒进入制冷循环管路506,并在制冷换热器507处进行换热,换热后温度升高的冷媒再沿着制冷循环管路506回到第一换热腔502。同时,第二换热腔504固定在退磁区,从而第二换热腔504中的冷媒可以不断的吸收退磁区的磁工质释放的热量,从而使第二冷媒管505输出高温冷媒,而高温冷媒进入制热循环管路508,并在制热换热器509处进行换热,换热后温度降低的冷媒,再沿着制热循环管路508回到第二换热腔504。上述磁制冷换热系统中冷媒可以连续的在对应的换热腔中进行热交换,无需在制冷、制热之间进行频繁的切换,可以有效的提升热交换的效率,降低了系统能耗。

进一步地,还可以设置控制器,所述控制器分别与设置在制冷换热器中的第一冷媒泵、设置在制热换热器中的第二冷媒泵以及所述磁制冷换热装置的驱动器电连接。从而,通过控制第一冷媒泵和第二冷媒泵的开启或关闭来实现制冷或制热功能,并且通过控制驱动器调整磁工质床的旋转速率冷媒管中的冷媒流动速率中的一个或两个控制制冷或制热的温度和效率。

本发明的磁制冷换热装置的电器可以应用在多种电器中,包括但不限于空调、冰箱和空调风扇等。

如图6-图9所示,本发明提供了一种自清洁换热器601,自清洁换热器601包括多个间隔排布的换热管611,在实施例中,多个换热管611以相同的间距平行排布,这里,相邻的换热管611之间通过端部的u形管或者弯管相连通,每一换热管611除端部的u形管或者弯管之外,其它管段可视为直管段,在本实施例,主要是将相邻的两个换热管611的直管段之间的空间定义为气流通道612,空气气流可自由的沿该气流通道612内流动。

应当理解的是,本发明所应用的自清洁换热器601不限于上述提及的管式自清洁换热器601,其它的诸如片式自清洁换热器601类型也可以采用类似的技术方案。

自清洁换热器601还包括至少一组限位构件和清洁件602。其中,每一组限位构件将相邻的两个或多个换热管611及其之间的气流通道612限定成清洁空间613,限位构件可供流经清洁空间613的气流通过;一个或多个清洁件602限定于清洁空间613内,清洁件602可由气流带动在限定空间内运动。

因此,在气流流经在清洁空间613时,清洁件602可由气流的风力带动在清洁空间613内无规律的运动,在清洁件602与自清洁换热器601的外表面运行接触时,清洁件602可以摩擦自清洁换热器601的外表面,以将粘附在外表面的脏东西摩擦清楚,可以起到类似“抹布”的作用,这样,在空调器603正常送风运行的同时,就可以利用清洁件602实现对自清洁换热器601的自清洁操作。

在一种可选的实施例中,以相邻的两根换热管611为例,限位构件包括设于气流通道612的延伸方向的两端、并在每一端与气流通道612的两侧的换热管611相固定的滤网,两端的滤网与两侧的换热管611围设成清洁空间613。

这里,滤网不仅限于围设在气流通道612的两侧的换热管611处,两侧的换热管611之间如存在其它可能导致清洁件602脱离的间隙也可以另外加装滤网进行遮挡,以保证清洁件602的运动范围始终在清洁空间613内。

在又一种可选的实施中,限位构件包括独立罩壳,独立罩壳罩设于相邻的两个或多个换热管611及其之间的气流通道612的外侧以形成清洁空间613;例如,针对一个自清洁换热器601,可以将独立罩壳设计为外轮廓略大于该自清洁换热器601的独立罩壳,独立罩壳外套在该自清洁换热器601上,这样,该罩壳是将整个自清洁换热器601的所有换热管611及其之间的气流通道612锁构成的空间作为清洁空间613。

清洁件602设于独立罩壳内,独立罩壳的壳壁开设有多个供气流通过的通孔,以保证气流可以从独立罩壳内流入流出。

这里,通孔的开孔面积小于清洁件602的最小截面面积,以防止清洁件602从通孔脱离该独立罩壳,保障空调器603的运行安全,避免清洁件602对空调器603其它器件的干扰影响。

在一种可选的实施例中,清洁件602为由轻质材料制成的中空结构,轻质材料包括但不限于橡胶或者其它质量较轻的材料制成,中空结构可以减少清洁件602的单个重量,以使其能够更加容易的被气流带动进行不规则运动。

这里,清洁件602的形状不限于球形,也可以设计为方形、椭圆形等形状。

较佳的,为提高摩擦除尘效果,清洁件602的外表面可以形成不规则的凸起结构或者设计有绒毛、刷毛等。

在图6和图7所示出的自清洁换热器601的结构中,清洁空间613内所设置均为大小相同的清洁件602;而在图8和图9所示出的自清洁换热器601的结构中,清洁空间613内也可以设置大小不相同的清洁件602,这里,由于清洁件602的大小体积不相同,因此,不同大小的清洁件602与自清洁换热器601外表面接触时的接触位置和接触面积也会有所不同,体积较小的清洁件602可以将自清洁换热器601的一些小缝隙、小空间内的灰尘进行摩擦清楚,以保证对自清洁换热器601整体的清洁效果。

图10是根据一示例性实施例所示出的本发明空调器703的结构示意图。

如图10所示,本发明还提供了一种空调器703,空调器703包括壳体731、形成于壳体731内部的风道732、设于风道732内的风扇733以及出风口734,该空调器703还设有如前述实施例中所公开的任意一种自清洁换热器,该自清洁换热器设于风道732内。

在一种可选的实施例中,清洁空间713的底部设有与清洁空间713相连通的储球箱,储球箱可用于作为在空调停机时的多个清洁件的容置空间,以及作为清洁件所清楚的灰尘的收集箱。

具体的,前述实施例中所示出的限位构件所限定出的其一种清洁空间713近似为矩形空间,在在该矩形空间的底部设有顶部开口的储球箱;在空调运行时,气流从清洁空间713内流经,风力带动清洁件从储球箱运动至清洁空间713中,并在运动过程中对自清洁换热器的外表面进行摩擦除尘;在空调停机时,清洁件在重力作用下,重新运动至处于下方的储球箱中。

较佳的,储球箱的箱壁开设于多个与空调器703的风道732相连通的气孔,这样,在空气气流流经风道732时,一部分气流可以经营该气孔进入箱壁内,这样,可以使得清洁件可以更加容易的从储球箱运动至清洁空间713。

这里,气孔的开孔面积小于清洁件的最小截面面积,以防止清洁件从气孔脱离出该储球箱,保障空调器703的运行安全,避免清洁件对空调器703其它器件的干扰影响。

在一种可选的实施例中,空调器703还设有储球通道,储球通道设于空调器703的内部并延伸至空调器703的机壳的维修口,储球箱设于储球通道内,并可经由该储球通道和维修口移入或移出机壳。

具体的,空调器703的机壳上设有维修口,沿维修口向空调器703的内部延伸成成该储球通道,储球通道内设有滑轨,储球箱在滑轨上进行移动,这样,储球箱可以以类似“抽屉”的结构形式实现其移入和移除操作,从而方便用户对清洁件的更换以及收集的灰尘的清理。

在一种可选的实施例中,空调器703还包括:可控的用于导通或者阻断储球箱与清洁空调器703的连通路径的遮挡件;在本实施例中,遮挡件为一设置于储球箱的顶部开口处的遮挡板,遮挡板由驱动装置控制可以在不遮挡该顶部开口的第一位置以及遮挡该顶部开口的第二位置之间进行运动,以实现对连通路径的导通或者阻断操作。

空调器还包括控制遮挡件执行导通或者阻断的操作的控制器。在本实施例中,控制器主要是通过控制驱动装置的运转实现对遮挡件的操作的控制。

例如,遮挡板上设有沿第一位置和第二位置之间的连线方向延伸的齿条,驱动装置为一电机,电机的机轴端部设有与齿条啮合的齿轮,在电机以正向运转时,则电机通过齿轮和齿条的啮合配合,带动遮挡板从第一位置向第二位置移动;而在电机以反向运转时,则遮挡板从第二位置相第一位置移动。这样,控制器通过控电机的运转方向,即可实现对遮挡件的操作控制。

在本实施例中,控制器的具体运行可根据用户所输入的指令运行,例如,在空调停机状态,清洁件全部处于储球箱内,此时,遮挡件阻断连通路径;而在空调运行过程中,如果未接收到开启自清洁的第一指令,则遮挡件仍是阻断该连通路径,此时,虽然有气流流经清洁空间,但是由于清洁件被限定在储球箱内,因此清洁件此时并不会对自清洁换热器进行清洁;而当接收到开启自清洁的第一指令时,遮挡件导通该连通路径,此时,气流可带动清洁件运动至清洁空间中,以利用清洁件的不规则运动清除自清洁换热器上的灰尘等杂质。

在当接收到退出自清洁的第二指令时,空调器可利用两种方式回收清洁空间内的清洁件:一种是控制空调的风机暂停运转,此时由于没有风机驱动的气流通过,清洁件会逐渐在重力作用下沉降回储球箱内,待清洁件回收完毕之后,遮挡件阻断连通路径,并控制重启风机的运行;另一种是暂不响应该第二指令,空调仍维持正常运行,在空调关机并风机停止运行之后,响应该第二指令,此时,清洁件已经沉降回储球箱内,遮挡件阻断连通路径。

这里,控制器的具体运行也可以根据空调自身的运行状态进行调整,例如,可控制上述的自清洁操作仅在空调运行制冷模式下以设定的周期执行,这样的原因在于,制冷模式运行的夏季高温天气下,自清洁换热器粘附的灰尘较多,因此,空调通过设定周期生成执行清洁自清洁换热器的第一指令,可以有效的保证自清洁换热器的清洁度,提高用户的使用体验,同时也自清洁换热器的外表面的低温环境对清洁件的损害影响也较小。

以及,控制上述的自清洁操作在空调运行制热模式下不执行,原因在于,空调运行制热模式时,自清洁换热器的外表面的温度较高,对于橡胶等材质制成的清洁件而言,高温容易导致清洁件出现融化变形等问题,因此,自清洁操作在空调运行制热模式下不执行,以保证清洁件的使用寿命,也可以避免融化的清洁件粘附在自清洁换热器的外表面的问题。

图11是根据一示例性实施例所示出的本发明的磁制冷换热系统的控制方法的流程示意图。

如图11所示,本发明还提供了一种可应用于前文中所公开的磁制冷换热系统的控制方法,具体,控制方法的主要步骤包括:

s1101、获取磁工质的温度;

在本实施例中,磁制冷换热系统设置有温度传感器,温度传感器用于检测磁工质的温度;因此,步骤s1101即可通过该温度传感器检测磁工质的温度;

s1102、基于磁工质的温度,调节磁工质床的旋转转速。

在一个可选的实施例中,步骤s1102中基于磁工质的温度,调节磁工质床的旋转转速,包括:当磁工质的温度小于目标温度时,控制磁工质床以最大转速旋转。

这里,目标温度为磁制冷换热系统在当前工况下所设定的使磁工质能够满足与冷媒进行换热的温度要求的温度值。

当磁工质的温度小于目标温度,则磁工质的温度暂不能达到与冷媒进行换热器的温度要求,因此控制磁工质床以最大的转速旋转,磁工质的温度变化是与磁工质床的旋转运动相关联的,而磁工质的温度又能够决定与其进行换热的冷媒的温度变化,这样通过磁工质床的运行来提升磁工质的温度,进而可以使与磁工质进行热交换的冷媒的温度升高,以尽快达到对冷媒换热的温度要求。

在一个可选的实施例中,步骤s1102中基于磁工质的温度,调节磁工质床的旋转转速,还包括:当磁工质的温度大于或等于目标温度时,控制磁工质床从当前转速进行降速。

当磁工质的温度大于或等于目标温度时,磁工质的当前温度已能够满足与冷媒进行换热的温度要求,因此,可以控制磁工质床从当前转速进行降速,以减少驱动磁工质床进行旋转的功耗。

在一种可选的实施例中,控制方法还包括:基于目标温度,确定磁工质床进行降速时的降速速率。可选的,磁制冷换热系统预设有目标温度与降速速率的关联关系,这里,目标温度与降速速率呈正相关的关系,即目标温度越高,则降速速率越高;而目标温度越低,则降速速率越低。

在一种可选的实施例中,控制方法还包括:基于磁工质的温度,调节循环回路的冷媒流量参数。可选的,磁制冷换热系统还预设有磁工质的温度与循环回路的冷媒流量的关联关系,这里,目标温度与降速速率呈正相关的关系,即磁工质的温度越高,则循环回路的冷媒流量越高;而目标温度越低,则循环回路的冷媒流量越低。

这里,本发明的磁制冷换热系统还包括控制器,磁制冷系统可用于控制该磁制冷换热系统执行上述实施例中所公开的控制步骤。具体的,控制器用于:

获取磁工质的温度;

基于磁工质的温度,调节磁工质床的旋转转速。

在一种可选的实施例中,控制器具体用于:

当磁工质的温度小于目标温度时,控制磁工质床以最大转速旋转。

在一种可选的实施例中,控制器还用于:

当磁工质的温度大于或等于目标温度时,控制磁工质床从当前转速进行降速。

在一种可选的实施例中,控制器还用于:

基于目标温度,确定磁工质床进行降速时的降速速率。

在一种可选的实施例中,控制器还用于:

基于磁工质的温度,调节循环回路的冷媒流量参数。

应当理解的是,本发明并不局限于上面已经描述并在附图中示出的流程及结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1