液氮气化制液化天然气的工艺与系统的制作方法

文档序号:16792929发布日期:2019-02-01 19:43阅读:1143来源:国知局
液氮气化制液化天然气的工艺与系统的制作方法

本发明涉及废气回收利用领域,特别是涉及一种液氮气化制液化天然气的工艺与系统。



背景技术:

数据统计,2017年我国天然气供应增速8.5%,消费增速17%,进口天然气增加27.6%。一方面市场供销两旺,天然气产业正处在发展黄金期。另一方面,供需两端失衡,对外依存度逼近40%。相关从业专家认为,在此背景下,边远井和孤井井口气资源合理开发利用重要性凸显,或将成为天然气供需缺口的良好补充。

受制于气源条件波动大、传统工厂周期长、气井场地有限、运输条件差等原因,我国边远井和孤井井口气资源应用发展相对缓慢。

我国存在储量巨大的非常规偏散天然气资源,其产地偏远而分散,传统的固定式液化工厂及管网集输模式不适合。由于缺乏合适的集输方式,此类气源大都直接放空或燃烧,一方面造成了宝贵的能源浪费,另一方面增加了温室气体排放。发展针对此类偏散天然气集输的小型撬装液化装置,既可满足我国天然气开发的迫切需求,又避免了排放或燃烧带来的环境污染;此外,小型撬装液化装置还可以用于管输天然气的再分配及车用天然气加气站等,具有显著的社会和经济效益。



技术实现要素:

本发明要解决的技术问题是提供一种可以有效利用边远井和孤井井口气资源的液氮气化制液化天然气的工艺与系统。

本发明的液氮气化制液化天然气系统,包括:

用于对井口气纯化处理,使井口气中的二氧化碳、硫化氢、水脱除的纯化装置;

用于对纯化处理后的井口气冷却降温处理的一级换热器,与纯化装置通过第一管路连通;

用于对冷却降温后的井口气气液分离处理,使井口气分离出气相以及液相的气液分离器,与一级换热器通过第二管路连接;

用于对气液分离器分离出的气相进行冷却降温处理,得到液化天然气的二级换热器,与气液分离器的气相出口通过第三管路连接;

液氮管路,所述液氮管路的一端连接液氮源,所述液氮管路的另一端连接氮气容器,所述液氮管路依次经过二级换热器、一级换热器,以使液氮管路中的液氮依次为二级换热器、一级换热器提供冷量后气化为氮气。

本发明的液氮气化制液化天然气系统,其中,气液分离器的液相出口与液化石油气储罐通过第四管路连接,第四管路经过一级换热器,以使第四管路中的液相复温后输入液化石油气储罐。

本发明的液氮气化制液化天然气的工艺,包括:

步骤一、对井口气纯化处理,使井口气中的二氧化碳、硫化氢、水脱除;

步骤二、对纯化处理后的井口气冷却降温处理,利用液氮对纯化处理后的井口气进行冷却降温处理;

步骤三、对冷却降温后的井口气气液分离处理,使井口气分离出气相以及液相;

步骤四、利用液氮对气液分离处理分离出的气相进行冷却降温处理,得到液化天然气。

本发明的液氮气化制液化天然气的工艺,其中,对气液分离处理分离出的液相进行复温处理,得到液化石油气。

本发明的技术方案的优点是:可以有效利用边远井和孤井井口气资源,工艺流程简单易操作,再生气采用氮气,避免置换不彻底造成安全隐患,系统节能环保。

附图说明

图1为本发明的液氮气化制液化天然气的系统的结构示意图。

具体实施方式

如图1所示,本发明的液氮气化制液化天然气系统,包括:

用于对井口气纯化处理,使井口气中的二氧化碳、硫化氢、水脱除的纯化装置v1;

用于对纯化处理后的井口气冷却降温处理的一级换热器e1,与纯化装置通过第一管路1连通;

用于对冷却降温后的井口气气液分离处理,使井口气分离出气相以及液相的气液分离器v2,与一级换热器通过第二管路2连接;

用于对气液分离器分离出的气相进行冷却降温处理,得到液化天然气的二级换热器e2,与气液分离器的气相出口通过第三管路3连接;

液氮管路10,液氮管路10的一端连接液氮源,液氮管路10的另一端连接氮气容器,液氮管路依次经过二级换热器、一级换热器,以使液氮管路中的液氮依次为二级换热器、一级换热器提供冷量后气化为氮气。

本发明的液氮气化制液化天然气系统,其中,气液分离器的液相出口与液化石油气储罐通过第四管路4连接,第四管路4经过一级换热器,以使第四管路中的液相复温后输入液化石油气储罐。

本发明的液氮气化制液化天然气的工艺,包括:

步骤一、对井口气纯化处理,使井口气中的二氧化碳、硫化氢、水脱除;

步骤二、对纯化处理后的井口气冷却降温处理,利用液氮对纯化处理后的井口气进行冷却降温处理;

步骤三、对冷却降温后的井口气气液分离处理,使井口气分离出气相以及液相;

步骤四、利用液氮对气液分离处理分离出的气相进行冷却降温处理,得到液化天然气。

本发明的液氮气化制液化天然气的工艺,其中,对气液分离处理分离出的液相进行复温处理,得到液化石油气。

本发明的技术方案特别是适用于偏远气井或储量偏少的气井,其特点是:井口天然气经过纯化脱出杂质后,进入换热器与储存的液氮进行换热得到-162℃的液化天然气,气化复温后的氮气一部分进入干燥作为再生气,一部分作为全场公用氮气,本发明的技术方案具有工艺简单,操作简便出液时间短,装置方便移动等优点。

本发明的技术方案利用液氮气化冷量直接液化天然气,液化流程简单易操作,液氮气复温后可用于干燥流程,作为再生气使用。本发明的技术方案可重复利用。

本发明的技术方案具体工作过程如下:

1)纯化:将井口气中含有的二氧化碳、硫化氢、水等脱除,防止损坏后续设备。

2)一级换热:脱酸后的井口气进入一级换热器,通过后续设备气液分离器中的液相和二级换热器过来的氮气冷量,使其温度降到-50℃。

3)分离:在-50℃下,井口气中部分烃类液化,通过气液分离器分离,液相为一级换热器提供冷能,气相进入二级换热器继续降温。

4)二级换热:通过气液分离器的气相与液氮气换热到-160℃经减压阀进入储罐,成为lng产品。

本发明的技术方案的优点是:

1)工艺流程简单易操作;

2)再生气采用氮气,避免置换不彻底造成安全隐患;

3)再生气循环利用,损耗小,系统节能环保;

4)设备少,装置易于移动。

利用本发明的液氮气化制液化天然气的系统进行液氮气化制液化天然气的具体实施方式为:

井口气进入纯化装置v1,脱除其中的酸性成分,随后进入一级换热器e1降温,然后通过气液分离器v2分离为气相和液相,液相回到一级换热器e1为其提供冷量,复温后成为lpg产品,气相进入二级换热器e2降温成为lng产品,lng产品降压后进入储罐,液氮气首先为二级换热器e2提供冷量,然后进入一级换热器e1提供冷量,最后复温成氮气作为再生气。

以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1