自动制冰装置的制作方法

文档序号:4793179阅读:373来源:国知局
专利名称:自动制冰装置的制作方法
技术领域
本发明涉及一种自动制冰装置及其方法,尤其涉及这样一种自动制冰装置和方法,即防止托盘因完成制冰操作及随后进行取冰操作时,使托盘交替进行正向/反向转动操作而产生的变形。
一般来说,自动制冰意味着一个步骤,其中向托盘自动供水,而后检测制冰操作是否已经完成,如果确定制冰操作已经完成,则从托盘中自动取走制成的冰,然后存放在冰箱的冷冻部分中的冰盒中。因此,能够非常方便地进行制冰而不用使用者分开操作。最近在这种设计中,自动制冰已是冰箱的基本功能,并和一个分配器一起使得使用者不用打开冰箱门就可得到饮用水。下面参照

图1说明这样一种普通的自动制冰装置。
参照图1,以框图形式表示了一种普通自动制冰装置的结构。如该图所示,该普通自动制冰装置包括一个用于向自动制冰装置供电的供电单元1;一个用于鉴别托盘(没有示出)转动位置的托盘位置鉴别器2;一个使使用者能够选择自动制冰功能的功能选择器3;一个用于控制取冰电机4转动操作的取冰电机转动控制器5,一个用于控制向托盘供水的供水电机6的供水电机转动控制器7;一个设置在托盘下面用于鉴别取冰状态的取冰鉴别器8;和一个用于控制自动制冰装置中上述构件的微机9。
下面说明具有上述构造的普通自动制冰装置的操作。
当使用者按功能选择器3上的一个自动制冰功能键以选择自动制冰功能时,相应的信号提供给微机9,供电单元1也提供一个驱动电压。
根据所接收的来自功能选择器3的自动制冰功能键信号,微机9向供水电机转动控制器7输出控制信号以驱动供水电机6,当供水电机6被驱动时,从供水箱向托盘供水。这时,托盘保持在水平状态。
然后,取冰鉴别器8检测制冰操作是否已经完成。如果检测到制冰操作已经完成,则取冰鉴别器8向微机9输出一个控制信号以通知微机9这种状态。情况响应来自取冰鉴别器8的控制信号,微机9向取冰电机转动控制器5输出一个控制信号以在所需方向转动取冰电机4。当取冰电机4转动时,托盘转动到一个冰盒处,此刻,托盘的一侧被挡块挡住,而其另一侧继续被施加取冰电机4的转动力。结果托盘会变形。
由于托盘变形,而从托盘上取下制成的冰并存放在冰盒中。然后,取冰鉴别器8检测取冰操作是否已经完成。如果检测到取冰操作已经完成,取冰鉴别器8则向微机9输出一个控制信号以通知这一情况。响应来自取冰鉴别器8的控制信号,微机9控制取冰电机转动控制器5以在反向转动取冰电机4。结果,托盘回到其初始状态。
然后,托盘位置鉴别器2检测托盘是否已经回到水平状态。如果检测到托盘已经回到其水平状态,托盘位置鉴别器2向微机9输出一个控制信号以通知这种情况。响应来自托盘位置鉴别器2的控制信号,微机9重复上述制冰操作。
当冰盒中装满制成的冰后,即使托盘在水平状态,冰满负荷开关(没有示出)也仍保持在其ON状态,在这种情况下,微机9停止自动制冰装置的整个操作。
但是,上述普通自动制冰装置具有以下缺点。
第一,由于托盘只在单独一个方向转动以进行取冰操作,所以,托盘在同一方向连续变形。为此,托盘很难恢复原始形状。这会降低托盘的寿命。
第二,由于托盘要变形以进行取冰操作,所以,使取冰电机过负荷,导致取冰电机的寿命降低并经常击穿。
第三,没有指示供水箱中的水位低于预定值的功能。其结果是,使用者必须自己检测供水箱中的水位。这对使用者是不方便的。
第四,当同时驱动具有自动制冰功能和分配器的冰箱中的这两者的时候,向它们同时提供由供电机泵抽的水。结果是降低分配器的排水量。为此,使用者必须长时间地使用分配器以获取所需数量的水。
第五,由于冰箱冷冻部分的温度而使留在向托盘供水软管中的水冻成冰。在这种情况下,水不能从供水箱提供给托盘。
在JP,A,92-111384中记载了另一种常规制冰装置。该装置包括安装在冷却装置中的一个制冰室,向该制冰室提供冷空气;一个可拆卸的制冰托盘;一个具有驱动装置以转动制冰托盘的制冰机;一个检查制冰操作是否已经完成的检查装置;一个用于鉴别制冰托盘转动位置的鉴别装置;一个用于检测存放在制冰托盘下面的冰盒中的冰的数量的检测装置;一个用来自检查装置,鉴别装置和检测装置的信号控制驱动装置的控制装置;一个把控制装置的信号线与检查装置,鉴别装置和检测装置的信号线相连的连接器;和一个当控制装置的全部信号线都接通时确定取冰机是否与制冰室分开的确定装置。按照以上所述的已有技术,提供一种制冰装置,其中通过确定制冰机是否已经与制冰盒分开来进行制冰操作。这种装置具有相同的缺点,即在取冰操作期间托盘在单独一个方向上变形,由此而减少托盘寿命。
因此,鉴于以上问题产生本发明,本发明的一个目的是提供一种自动制冰装置及其方法,其具有取冰电机转动控制功能,用于以这样的方式控制取冰电机的转动操作,即其能够交替进行正向取冰操作和反向取冰操作。
本发明的另一个目的是提供一种自动制冰装置及其方法,其具有取冰电机保护功能,用于在进行取冰操作时检测施加到取冰电机上的负荷量,并根据检测结果保护取冰电机以避免过载。
本发明的又一个目的是提供一种自动制冰装置及其方法,其具有供水报警/指示功能,用于检测供水箱中的水位,如果检测出水位低于预定值,则产生报警以自动指示在适当时间供水箱要重新加满水。
本发明的又一个目的是提供一种自动制冰装置及其方法,其具有供水状态控制功能,用于当同时驱动自动制冰和分配器时,停止自动制冰而优先向分配器供水。
本发明还有一个目的提供一种自动制冰装置及其方法,其具有供水电机控制功能,用于通过使供水电机反向转动,将留在供水软管中的水送回供水箱,来防止向托盘供水的的软管中存留的水发生冰冻。
根据本发明,通过一个自动制冰装置的设备来实现以上和其它目的,该装置包括一个用于向自动制冰装置供电的供电单元;一个用于在所需方向上转动托盘以进行自动制冰装置的取冰操作的取冰电机;一个从供水箱中泵抽水的供水电机;一个用于鉴别托盘转动位置的托盘位置鉴别器;一个用于使使用者能够选择自动制冰各种功能的功能选择器;一个用于向使用者提供饮用水的分配器和一个用于鉴别制冰状态的取冰鉴别器;其中改进之处在于还包括用于控制取冰电机的转动操作的取冰电机转动控制装置;用于控制供水电机转动操作的供水电机转动控制装置;用于控制经供水电机泵抽向托盘和分配器供水的供水状态控制装置;用于检测供水箱中水位的水位检测装置;用于响应水位检测装置所检测的水位发出警报的警报产生装置;和用于控制自动制冰装置整个操作的系统控制装置。
取冰电机转动控制装置包括正向和反向开关装置,用于从供电单元向取冰电机提供驱动电压,以控制取冰电机的转动方向;和开关控制装置,用于在系统控制装置的控制下,控制正向和反向开头装置的ON/OFF状态。
正向开关装置包括第一开关晶体管,用于从供电单元向取冰电机的一端提供驱动电压;和第二开关晶体管,用于向取冰电机的另一端提供接地电压。
反向开关装置包括一个第三开关晶体管,用于从供电单元向取冰电机的另一端提供驱动电压;和第四开关晶体管,用于向取冰电机的一端提供接地电压。
开关控制装置包括第一控制晶体管,用于响应来自系统控制装置的第一控制信号,控制正向开关装置的ON/OFF状态;和第二控制晶体管,用于响应来自系统控制装置的第二控制信号,控制反向开关装置的ON/OFF状态。
供水电机转动控制装置包括正向和反向开关装置,用于从供电单元向供水电机提供驱动电压,以控制供水电机的转动方向;和开关控制装置,用于在系统控制装置的控制下,控制正向的反向开关装置的ON/OFF状态。
正向开关装置包括第一开关晶体管,用于从供电单元向供水电机的一端提供驱动电压;和第二开关晶体管,用于向供水电机的另一端提供接地电压。
反向开关装置包括第三开关晶体管,用于从供电单元向供水电机的另一端提供驱动电压;和第四开关晶体管,用于向供水电机的一端提供接地电压。
开关控制装置包括第一控制晶体管,用于响应来自系统控制装置的第一控制信号,控制正向开关装置的ON/OFF状态;第二控制晶体管用于响应来自系统控制装置的第二控制信号,控制反向开关装置的ON/OFF状态。
供水状态控制装置包括一个分配器开关,该开关以这样的方式设置在冰箱外侧的所需位置上,即使用者能够操作该开关;打开/关闭装置,响应来自供电单元的驱动电压而被驱动,以控制向自动制冰装置供水;开关装置,用于向打开/关闭装置提供接地电压,以控制打开/关闭装置的ON/OFF状态;和开关控制装置,用于按照分配器开关的ON/OFF状态,控制开关装置的开关操作。
响应开关装置的打开而打开/关闭装置,以打开供水箱和分配器之间水路,向分配器提供由供水电机泵抽的水,并响应开关装置的关闭而关闭打开/关闭装置,以打开供水箱和自动制冰装置之间的水路,向自动制冰装置提供由供水电机泵抽的水。
响应分配器开关的打开,开关控制装置打开开关装置,以打开供水箱和分配器之间的水路,并响应分配器开关的关闭,开关控制装置关闭开关装置,打开供水箱和自动制冰装置之间的水路。
水位检测装置包括一个限定在冰箱新鲜食品贮藏部分内给定位置上的小室,用于装放供水箱;一个固定安装在小室底部中央的水位传感器,水位传感器轴向开槽,由此在相对侧壁形成轴向通路;传感器安放装置竖直形成在供水箱的底部中央,以使供水箱平滑地滑入小室内部,传感器安放装置包括一对平行槽,槽在供水箱底部轴处延伸,并分别可滑动地安放水位传感器的相对侧壁;透明窗分别设置在槽的相对侧壁上;和设置在水位传感器中的光发射/接收装置,以发射和接收光信号。
光发射/接收装置包括一个光电二极管,其设置在水位传感器相对侧壁的一个壁上,以发射光信号;和一个光电晶体管,设置在水位传感器相对侧壁的另一个壁上,以从光电二极管接收光信号。
警报产生装置包括一个发光二极管,以产生一个光信号,发光二极管的负极端用于从供电单元输入驱动电压,其正极端用于从系统控制装置输入控制信号。
自动制冰装置还包取冰电机保护装置,用于检测施加到取冰电机上的负载量,并按照检测结果保护取冰电机不会过负载。
取冰电机保护装置包括与取冰电机相连的电压检测装置,用于当取冰电机正向和反向转动时,对施加到取冰电机上的电压进行检测;一对分压电阻,用于以所需比例对来自供电单元的驱动电压进行分压;和一个比较器,其非反相输入端用于输入由分压电阻分压的电压,其反相输入端用于输入由电压检测装置所检测的电压之一,该比较器对输入的两个电压进行比较,并向系统控制装置输出比较结果以控制取冰电机的操作。
电压检测装置包括与取冰电机一端相连的第一电压检测电阻器,用于当取冰电机正向转动时,对施加到取冰电机上的电压进行检测;和与取冰电机另一端相连的第二电压检测电阻器,用于当取冰电机反向转动时,对施加到取冰电机上的电压进行检测。
系统控制装置可编程,以执行取冰电机转动控制步骤,用于交替进行正向取冰操作和反向取冰操作;执行取冰电机保护步骤,用于响应来自取冰电机保护装置的控制信号,控制取冰电机的操作;执行供水报警/指示步骤,用于控制水位检测装置,以检测供水箱中的水位,如果检测到的水位低于预定值,则产生警报;执行供水状态控制步骤,用于当同时驱动自动制冰和分配器的时候,停止自动制冰操作并优先向分配器供水;和执行供水电机控制步骤,用于反向转动供水电机,以将留在供水软管中的水送回供水箱,由此防止留在供水软管中的水冻冰。
取冰电机转动控制步骤包括的步骤是,如果使用者选择自动制冰功能则预置一个数值,检验该数值是偶数还是奇数,根据检验结果交替进行正向取冰操作和反向取冰操作,以使托盘可以正向和反向重复转动。
取冰电机保护的步骤包括的步骤是,如果来自取冰电机保护装置的控制信号具有第一逻辑状态,正常负荷状态,则打开取冰电机转动控制装置,以正常驱动取冰电机,如果来自取冰电机保护装置的控制信号具有第二逻辑状态,过负荷状态,则关闭取冰电机转动控制装置,以停止取冰电机的操作。
供水报警/指示步骤包括的步骤是,计算供水箱的容量,蓄积供水量,计算所计算的供水箱容量和蓄积的供水量之间的差,以获得供水箱中存留水的量,如果获得的水量低于预定值,则控制警报产生装置以产生警报。
通过经累积使用时间来提高供水电机的供水能力,以实现供水量的蓄积,其中供水电机的供水能力是每秒泵抽水的量。
供水报警/指示步骤包括的步骤是,如果供水报警/指示模式处于初始状态,其中供水箱由使用者装满水,则预置一个计数操作;驱动供水电机和开始计数操作;当预定时间期限已经过去之后停止供水电机和计数操作,通过累积所用的时间计算供水量以提高供水电机的供水能力;计算供水箱的容量和计算的供水量之间的差,以获得存留在供水箱中的水的量;检验获得的水量是否低于预定值,如果获得的水量低于预定量,则控制警报产生装置以产生警报。
供水报警/指示步骤包括的步骤是,在完成取冰操作之后,检测托盘的初始温度,在从供水箱将水提供给自动制冰装置之后,检测托盘的现在的温度,计算所检测的托盘的初始温度和现在的温度之差,如果计算的差低于预定值,则控制警报产生装置产生警报。
供水报警/指示步骤包括的步骤是,在完成取冰操作的初始状态,检测托盘的初始温度;控制供水电机转动控制装置,以驱动供水电机一预定时间期限,然后检测托盘现在的温度;计算所检测的托盘初始温度和现在温度之间的差,如果计算的差低于预定值,则控制警报产生装置产生警报。
供水状态控制步骤包括的步骤是,检验设置在冰箱外侧所需位置上的分配器开关是否已被使用者打开;如果检查到分配器开关已被使用者打开,就打开电磁阀,并驱动供水电机以向分配器供水;如果分配器开关是关闭的,检查自动制冰是否处于供水模式;如果检查到自动制冰是处于供水模式,则关闭电磁阀,并驱动供水电机以向托盘供水一预定时间期限。
供水电机控制步骤包括的步骤是,如果自动制冰处于供水模式,向机盘供水,然后控制供水电机转动控制装置,从反向转动供水电机一预定时间期限;并当预定时间期限已经过去之后,控制供水电机转动控制装置以停止供水电机。
从下面结合附图的详细说明中将会更清楚地理解本发明的上述和其它目的,特点和优点,其中图1是说明普通自动制冰装置构造的示意框图;图2是说明按照本发明的自动制冰装置构造的示意框图;图3是图2中取冰电机转动控制器和取冰电机保护单元的仔细电路图;图4是图2中的供水电机转动控制器的详细电路图;图5是图2中的供水状态控制器的详细电路图;图6是图2中的警报发生器的详细电路图;图7A至C是按照本发明的自动制冰装置的构造的详细视图;图8A至8G是说明按照本发明的自动制冰装置的操作的视图;图9A至9B是说明图2中微机操作的流程图,其按照本发明实现自动制冰方法的正向取冰功能和反向取冰功能;图10是说明图2中的微机操作的流程图,其实现按照本发明的自动制冰方法的供水箱水位检测功能的第一个实施例;图11是说明图2中的微机操作的流程图,其实现按照本发明的自动制冰方法的供水箱水位检测功能的第二个实施例;
图12A和12B是说明实现按照本发明的自动制冰装置的供水箱水位检测功能的第三个实施例的设计的局部透视图;图13B是在图12A和12B中的水位传感器的详细电路图;和图14是说明图2中的微机操作的流程图,其实现按照本发明的自动制冰方法的供水状态控制功能。
下面参照附图详细说明按照本发明的自动制冰装置及其方法的一个最佳实施例。
参照图2,以框图的形式表示了一种自动制冰装置的构造。该图中的一些部分与图1中的相应部分相同。因此,相同的参考标记表示相同的部分。
如图2所示,自动制冰装置包括一个用于向自动制冰装置供电的供电单元1;一个用于鉴别托盘转动位置的托盘位置鉴别器2;一个使使用者能够选择自动制冰功能的功能选择器3;一个用于控制取冰电机4的转动操作的取冰电机转动控制器5;一个用于控制向托盘供水的供水电机6的转动操作的供水电机转动控制器7;和一个设置在托盘下面用于检查取冰状态的取冰鉴别器8。
自动制冰装置还包括一个用于检测施加到取冰电机4上的负荷量和按照所检测的结果保护取冰电机4避免过负荷状态的取冰电机保护单元10;一个用于控制向托盘和分配器供水的供水状态控制器11;一个用于检测供水箱中水位的水位检测器12;一个用于当由水位检测器12检测的水位低于预定值的时候产生警报的警报发生器13;和一个微机9用于控制自动制冰装置中的上述部分。
参照图3,表示了图2中的取冰电机转动控制器5和取冰电机保护单元10的一个详细电路图。如该图所示,取冰电机转动控制器5包括多个用于从供电单元1向取冰电机4提供驱动电压V2以控制取冰电机4的转动方向的开关晶体管14-17;和一对在微机9控制下开关以控制开关晶体管14-17的开关操作的控制晶体管18和19。
开关晶体管15和17用于向取冰电机4提供接地电压,开关晶体管14和16用于从供电单元1向取冰电机4提供驱动电压V2。
还有,开关晶体管15和16响应控制晶体管18的ON和OFF状态互补驱动,开关晶体管14和17响应控制晶体管19的ON和OFF状态互补驱动。
还如图3所示,取冰电机保护单元10包括一个与取冰电机转动控制器5中的开关晶体管17的发射极相连的电压检测电阻器20,用于当取冰电机4正向转动时检测施加到取冰电机4的电压;一个与取冰电机转动控制器5中的开关晶体管15的发射极相连的电压检测电阻器21,用于当取冰电机4反向转动时检测施加到取冰电机4上的电压;一对用于以所需比例对来自供电单元1的驱动电压V1进行分压的分压电阻器22和23,以及比较器24,用于在其反相输入端(-)输入由电压检测电阻20或21所检测的电压,且在其非反相输入端(+)输入由分压电阻22和23分压的一个电压,对输入的两个电压进行比较并向微机9输出比较结果。
参照图4,表示了图2中供水电机转动控制器7的详细电路图。如该图所示,供水电机转动控制器7包括多个用于从供电单元1向供水电机6提供驱动电压V2以控制供水电机6转动方向的开关晶体体管25-28,和一对在微机9的控制下开关以控制开关晶体管25-28的开关操作的控制晶体管29和30。
开关晶体管26和28适于向供水电机6施加接地电压,开关晶体管25和27适于从供电单元1向供水电机6提供驱动电压V2。
而且,开关晶体管26和27响应控制晶体管29的ON和OFF状态被互补驱动,开关晶体管25和28响应控制晶体管30的ON和OFF状态被互补驱动。
参照图5,表示了图2中供水状态控制器11的详细电路图。如该图所示,供水状态控制器11包括一个以使用者能够操作的方式设置在冰箱外侧的所需位置上的分配器开关31;一个响应来自供电单元1的驱动电压V2而被驱动以控制向托盘的供水的电磁阀32;一个用于向电磁阀32提供接地电压以控制电磁阀32的ON/OFF状态的开关晶体管33;和一个根据分配器开关31的ON/OFF状态,在微机9的控制下进行开关以控制开关晶体管33的开关操作的控制晶体管34。
参照图6,表示了图2中报警发生器13的详细电路图。如该图所示,报警发生器13包括一个发光二极管35,该发光二极管35响应来自供电单元1的驱动电压V1而被驱动,以在微机9的控制下产生一个光信号。
图7是一个说明按照本发明的自动制冰装置构造的详细附图。如该图所示,取冰电机4设置在自动制冰装置外壳36中所需的位置上。取冰电机4的轴上固定安装有蜗轮装置37。第一到第三齿轮38-40以这样的方式顺序与蜗轮装置37啮合,即这些齿轮能够依次接受蜗轮装置37的旋转力。一个凸轮41与第三齿轮40相啮合,以使其能够响应第三齿轮40的旋转力而被驱动。
一个托盘42与凸轮41的轴41A相耦合以便和所说的凸轮41一起转动。一个制动部分60这样形成在凸轮41的圆周上,即如果托盘42处于水平状态,则一个水平正动槛61通过与制动部分60相接触而制止转动,如果凸轮41在取冰操作过转动,则防止过转动槛62通过与制动部分60相接触而制止转动。在制动部分60上形成一个凹形部分60A以增强制动部分60的作用。
在凸轮41下面设置一个水平开关43以探测托盘42的水平状态。一个水平开关调节肋44安装在凸轮41上以开关水平开关43。
靠近水平开关43设置一个冰满负荷开关45。当一个杆连接器47受安装在凸轮41上的冰满负荷杆调节肋46推压时,它同冰满负荷杆48整体转动,由此打开冰满负荷开关45。
一个取冰传感器(例如一个热敏电阻)49设置在托盘42下面所需的位置上,探测托盘42的温度变化,以检查制冰和取冰状态。取冰传感器49还安装在取冰鉴别器8上,以根据托盘42的温度变化检查电压变化,并向取冰鉴别器8提供检查结果,由此使取冰鉴别器8能够识别制冰和取冰状态。
下面将详细说明具有按照本发明的上述构造的自动制冰装置的操作。
第一,参照图8A至9B详细说明按照本发明的自动制冰装置的正向取冰功能和反向取冰功能。
图8A至8G是说明按照本发明的自动制冰装置操作的视图,图9A和9B是说明图2中微机9操作的流程图,其实现按照本发明的自动制冰装置的正向取冰功能和反向取冰功能。
首先,在图9A中,在步骤S1,微机9检查使用者是否已经选择了自动制冰功能。如果在步骤S1,使用者还没有选择自动制冰功能,则凸轮41的制动部分与水平止动槛61相接触,而且水平开关43位于安装在凸轮41上的水平开关调节肋44的凹形部分,如图8A所示。其结果是,水平开关43保持在OFF状态。仍如图8A所示,杆连接器47不受推压,而是位于安装在凸轮41上的冰满负荷调节肋46上的凹形部分中。其结果是,冰满负荷杆48不转动,而且冰满负荷开关45保持在OFF状态。
在步骤S1中检查到使用者已经选择了自动制冰功能的情况下,在步骤S2中,微机9预置一个数值(即C=0),并在步骤S3,向取冰鉴别器8输出一个控制信号,以检查制冰操作是否已经完成。如果在步骤S3检查到制冰操作还没有完成,则微机9返回步骤S2,以继续检查制冰操作是否已经完成。
当在步骤S3检查到制冰操作已经完成的时候,在步骤S4微机9检查数值是否是偶数。如果在步骤S4检查到数值是偶数,则在步骤S5,微机9控制取冰电机转动控制器5正向转动托盘42。与此相反,如果在步骤S4检查到数值是奇数,则在步骤S6,微机9控制取冰电机转动控制器5反向转动托盘42。
换句话说,微机9在其第一输出端OUT1输出一个低逻辑控制信号,在其第二输出端OUT2输出一个高逻辑控制信号。在取冰电机转动控制器5中,控制晶体管18在其基极从微机9的第一输出端OUT1输入低逻辑控制信号,控制晶体管19在其基极从微机9的第二输出端输入高逻辑控制信号。控制晶体管18和19最好是NPN型。其结果是,控制晶体管18响应来自微机9第一输出端OUT1的低逻辑控制信号而截止,控制晶体管19响应来自微机9第二输出端OUT2的高逻辑控制信号而导通。由于控制晶体管18截止,所以,开关晶体管15和16截止。
由于控制晶体管19导通,所以,它把驱动电压V1从供电单元1传送给开关晶体管17的基极,由此使开关晶体管17导通。由于开关晶体管17导通,所以,接地电压被传送给开关晶体管17的集电极,这样低逻辑信号就被施加给开关晶体管14的基极。开关晶体管14最好是PNP型。其结果是,开关晶体管14响应低逻辑信号而被导通。开关晶体管14的导通构成了由供电单元1,开关晶体管14,取冰电机4,开关晶体管17和接地端组成了回路。通过所形成的回路,驱动电压V2从供电单元1被施加到取冰电机4上以使其顺时针转动。由于取冰电机4转动,所以凸轮41转动而转动安装在其上的托盘42。
另一方面,如果微机9在其第一输出端OUT1输出高逻辑控制信号,而在其第二输出端OUT2输出低逻辑控制信号,那么,来自第一输出端OUT1的高逻辑控制信号被施加到控制晶体管18的基极,来自第二输出端OUT2的低逻辑控制信号被施加到控制晶体管19的基极。由于控制晶体管18和19是NPN型,所以,控制晶体管18响应来自微机9的第一输出端OUT1的高逻辑控制信号而导通,而控制晶体管19响应来自微机9第二输出端OUT2的低逻辑控制信号而被截止。由于控制晶体管19截止;所以,开关晶体管14和17截止。
由于控制晶体管18导通,所以,其将驱动电压V1从供电单元1传送给开关晶体管15的基极,由此使开关晶体管15导通。由于开关晶体管15导通,所以,接地电压被传送给开关晶体管15的集电极,低逻辑信号这样被施加到开关晶体管16的基极。开关晶体管16最好是PNP型。其结果是,开关晶体管16响应该低逻辑信号导通。开关晶体管16的导通形成由供电单元1,开关晶体管16,取冰电机4;开关晶体管15和接地端组成回路。通过这个形成的回路,驱动电压V2从供电单元1被施加到取冰电机4上,以使其逆时钟转动。由于取冰电机4转动,所以,凸轮41转动以转动与凸轮41的轴41A相耦合的托盘42。
如前所述,由于托盘42转动,所以,安装在凸轮41上的水平开关调节肋44以这样的方式转动,即其凹形部分能够推压水平开关43以使其打开。而且,杆连接器47被安装在凸轮41上的冰满负荷调节肋46的凹形部分所推压,以便转动冰满负荷杆48。还有,冰满负荷开关45被杆连接器47所打开。此刻,微机9在步骤S7检查到水平开关43和冰满负荷开关45处于其ON状态,由此确定自动制冰装置已经设置在取冰准备状态(见图8B和8E)。
之后,由于托盘42还要从取冰准备状态转动下去,所以,安装在凸轮41上的水平开关调节肋44以这样的方式转动,即其凹形部分能够接纳水平开关43。其结果是,水平开关43从其ON状态转变到OFF状态。杆连接器47仍被安装在凸轮41上的冰满负荷杆调节的46的凹形部分所推压,所以允许冰满负荷杆48保持在其转动状态,冰满负荷开关45也保持在其ON状态。此刻,微机9在步骤S8检查到水平开关43处于其OFF状态,而冰满负荷开关45处于其ON状态,由此确定自动制冰装置已被设置在取冰状态(见图8C和8F)。因此,在步骤S9中,微机9控制取冰电机转动控制器5停止取冰电机4。
如果取冰电机4已经过转动,则制动部分60与防止过转动槛62接触,以使凸轮41和托盘42不能继续转动。
然后,在步骤S10,微机9等待一预定时间期限,直到从托盘42上取走制成的冰。当预期时间期限已经过去之后,在步骤S11中,微机9控制取冰电机转动控制器5以使托盘42沿着取冰方向相反的方向转动。由于托盘42转动,所以,安装在凸轮41上的水平开关调节助44以这样的方式转动,即其凹形部分能够推压水平开关43使其打开。杆连接器47仍被安装在凸轮41上的冰满负荷杆调节肋46的凹形部分所推压,由此使冰满负荷杆48仍保持在其转动状态。其结果是,冰满负荷开关45保持在其ON状态。此刻,在S12微机9检查到水平开关43和冰满负荷开关45处在其ON状态,由此确定自动制冰装置已经设置在返回状态。
然后,由于托盘42继续转动,所以,水平开关43被定位于水平开头调节肋44的凹形部分中,杆连接器47位于冰满负荷杆调节肋46的凹形部分中。其结果是,水平开关43和冰满负荷开关45从ON状态转变到OFF状态。此刻,在步骤S13,微机9检查到水平开关43处于OFF状态,由此确定自动制冰装置已经返回到其初始状态(见图8D和8G)。因此,在步骤S14,微机9控制取冰电机转动控制器5使取冰电机4停止。要注意的是,由于冰盒中装有制成的冰,冰满负荷杆48上升,由此使冰满负荷开关45打开。在这种设计中,最好是,如果水平开关43截止,则不管冰满负荷开关45的ON/OFF状态,微机9都确定托盘42已返回其水平状态。
然后,在步骤S15,微机9检查使用者是否已经停止自动制冰功能。如果在步骤S15检查到使用者还没有停止自动制冰功能,则微机9在步骤S16使数值加1(即C=C+1),并返回前面的步骤S3,以重复该步骤及后继步骤。与此相反,在步骤S15检查到使用者已经停止自动制冰功能的情况下,微机9终止整个操作。
在连续执行自动制冰功能的情况下,数值从奇数变为偶数,反之亦然,在步骤S4,由于数值增加1,所以,导致托盘42的转动方向的变化。因此,托盘42能够交替进行正向取冰操作和反向取冰操作,从而能够防止托盘变形或损坏。
接下来详细说明按照本发明的自动制冰装置的取冰电机保护功能。按照本发明,取冰电机保护功能用于检测施加到取冰电机4上的负荷量,并根据检测的结果保护取冰电机4避免过负荷状态。
在取冰电机4正向转动的情况下,即开关晶体管14和17导通,与来自供电单元1的驱动电压V2成比例的驱动电流流向取冰电机4。驱动电流经电压检测电阻器20变换成电压,然后施加比较器24的反相输入端(-)。而且,来自供电单元1的驱动电压V1由两个分压电阻器22和23以所需比例分压,然后,施加到比较器24的非反相输入端(+)。
另一方面,在取冰电机4反向转动的情况下,即开关晶体管15和16导通,与来自供电单元1的驱动电压V2成比例的驱动电流流向取冰电机4。驱动电流经电压检测电阻器21变换成电压,然后,施加到比较器24的反相输入端(-)。而且,由两个分压电阻器22和23以所需比例对来自供电单元1的驱动电压V1进行分压,然后,施加到比较器24的非反相输入端(+)。
比较器24对在其反向输入端(-)的检测电压和在其非反相输入端(+)的基准电压的分压电压进行比较。然后,比较器24向微机9的第一输入端INI输出比较结果。
如果取冰电机4不处于过负荷状态,则流向取冰电机4的电流将保持在所需电平上。在这种情况下,由电压检测电阻器20和21检测的电压低于基准电压。其结果是,比较器24向微机9的第一输入端INI输出一个高逻辑控制信号。响应来自比较器24的高逻辑控制信号,微机9如上所述正向驱动取冰电机4。
但是,在因托盘长42长时间变形而使取冰电机4过负荷情况下,流向取冰电机4的电流上升到超过所希望的水平。在这种情况下,由电压检测电阻器20和21检测的电压变得高于基准电压。其结果是,比较器24向微机9的第一输入端INI输出一个低逻辑控制信号。响应来自比较器24的高逻辑控制信号,微机9在其第一和第二输出端OUT1和OUT2输出低逻辑控制信号,以强制停止取冰电机4。因此,取冰电机4在过负荷状态自动被停止,以使其能够避免因过负荷而被损害和击穿。
第三,下面将详细说明按照本发明的自动制冰装置的供水报警/指示功能。按照本发明,供水报警/指示功能用于检测供水箱中的水位,而且如果所检测的水位低于预定值则产生警报,以用适当的时间自动地指示供水箱要重新添水。
首先将参照图10详细说明按照本发明的自动制冰装置的供水箱水位检测功能的第一个实施例。在第一个实施例中,计算供水电机6的供水能力和供水箱的容量。供水电机6用于向自动制冰装置和分配器供水。
图10是图2中微机9操作的流程图,其实现按照本发明的自动制冰装置的供水箱水位检测功能的第一实施例。首先,在步骤S17,微机9检查水位检测功能是否已经设置在其初始状态。这里,水位检测功能的初始状态意味着由使用者向供水箱中添水的状态。如果在步骤S17,检查到水位检测功能还没有设置在其初始状态,则微机9返回到前面的步骤S17,继续检查水位检测功能是否已经设置在其初始状态。
在在步骤S17检查到水位检测功能已经设置在其初始状态的情况下,在步骤S18,微机9重新设置计时器(没有示出),并在步骤S19,检查供水电机6是否已经被驱动。
要注意的是,当使用者操作自动制冰装置或分配器的时候,驱动供水电机6。此刻,微机9识别供水电机已被驱动。如果供水电机6被驱动,在步骤S20,微机9向计时器输出一个控制信号,以开始计数操作。
然后,在步骤S21,微机9检查供水电机6是否已被停止。如果在步骤S21检查到供水电机6被停止,则微机9在步骤S22停止计时器的计数操作,并在步骤S23计算供水量。这里,通过把供水电机6的供水能力与累积使用时间相乘,就能够得到供水量,其中供水电机6的供水能力是每秒的泵水量,累积使用时间是供水电机6被驱动的总时间。
而且,在步骤S24,微机9计算在供水箱中存留的水量。这里,存留在供水箱中的水量能够通过从供水箱的容积中减去在步骤S23中所计算得出的供水量来获得。
然后,在步骤S25,微机9检查在前面步骤S24计算得出的存留水量是否小于一个预定值如果在步骤S25检查到,在前面步骤S24中计算得出的存留水量不小于预定值,微机9则识别在供水箱留有足够的水,并由此使其第二输入端IN2改变为高逻辑状态。然后,微机9返回前面的步骤S19,重复该步骤和后续步骤。
如果微机9的第二输入端IN2变成高逻辑状态,在警报发生器13中的发光二极管35正极和负极之间不产生电压差。其结果是,发光二极管35不被驱动。
另一方面,在在步骤S25中检查到在步骤S24中计算得出的存留水量小于预定值的情况下,微机9识别出在供水箱中存留的水少,由此使其第二输入入端IN2变为一个低逻辑状态。然后,微机9终止整个操作。
如果微机9的第二输入端IN2变为低逻辑状态,在警报器13中发光二极管35的正极和负极之间产生电压差,由此,使发光二极管35被驱动。其结果是,使用者能够有适当的时间向供水箱重新添水。
接着参照图11详细说明按照本发明的自动制冰装置的供水箱水位检测功能的第二个实施例。在第二个实施例中,安装在取冰鉴别器8上的取冰传感器49用于探测托盘42的温度变化。
图11是说明图2中微机9操作的流程图,其实现按照本发明的自动制冰装置的供水箱水位检测功能的第二个实施例。一般来说,冰箱新鲜食品贮藏部分的温度保持在约零上3℃到7℃的范围内,冰箱冷冻部分的温度保持在约零下12℃到20℃的范围内,在这种设计中,为说明方便,新鲜食品贮藏2部分的基准温度设为零上4℃,冷冻部分的基准温度设为零下18℃。
首先,在步骤S27,微机9检查在完成取冰操作之后,自动制冰装置是否已设置在初始状态。这里,自动制冰装置的初始状态意味着托盘42已返回其水平状态。如果在步骤S27,检查到自动制冰装置还没有被设置在其初始状态,那么微机9就返回前面的步骤S27,以继续检查自动制冰装置是否已被设置在其初始状态。
在步骤S27检查到自动制冰装置已被设置在其初始状态的情况下,在步骤S28,微机9向取冰鉴别器8输出一个控制信号,以由取冰传感器49检测托盘42的初始温度T1。由于冷冻部分的基准温度初始设置为零下18℃,所以,在没有水供给托盘42的情况下,托盘42的初始温度T1是零下18℃。
在步骤S29,微机9向供水电机转动控制器7输出一个控制信号,以驱动供水电机6一预定长的时间期限,然后使供水电机6停止。供水电机转动控制器7的结构和操作与取冰电机转动控制器5相同,所以,省去说明。
如果供水电机6被停止,则在步骤S30,微机9向取冰鉴别器8输出一个控制信号,以由取冰传感器49探测托盘42的现在温度T2。由于新鲜食品贮藏部分的基准温度初始设置为零上4℃,所以,存放在供水箱中的水的温度保持在零上4℃。其结果是,在完成向托盘42供水的情况下,托盘42的现在温度T2从零下18℃迅速上升到在零上4℃至零下18℃的范围内。
在步骤S31,微计9计算托盘42的初始和现在温度T1和T2的差T1-T2,并检查计算出的温度差T1-T2大于或等于预定值。如果在步骤S31检查出计算出的温度差T1-T2大于或等于预定值,则微机9识别出供给托盘42的水正常,由此在步骤S32控制自动制冰装置实现制冰模式。然后,微机9返回前面的步骤S27,重复该步骤和后续步骤。
另一方面,在步骤S31检查到计算出的温度差T1-T2小于预定值的情况下,微机9就识别为没有向托盘42供水并在供水箱中存留有少量的水,因此,在步骤S33,将其第二输入端IN2改变为低逻辑状态,以使警报发生器13产生警报。然后,微机9终止整个操作。
如果微机9的第二输入端IN2变成低逻辑状态,则在警报发生器13中的发光二极管35的正极和负极之间产生电压差,由此驱动发光二极管35。其结果是,使用者能够有适当的时间向供水箱重新加水。
现在,参照图12A到13详细说明按照本发明的自动制冰装置的供水箱水位检测功能的第三个实施例。在第三个实施例中,在供水箱50上安装一个水传感器51以探测供水箱中的水位。图12A和12B是说明实现按照本发明的自动制冰装置的供水箱水位检测功能和三个实施例的设计的局部透视图。
如图12A所示,在新鲜食品贮藏部分内的给定位置上限定一小室,以在其中安放供水箱50。在这种情况下,上述供水箱50以这样的方式可移动地安装在小室52中,即使箱50能够根据需要从小室52中移出。
水位传感器51固定安装在小室52的底部中央。上述传感51轴向开槽,以由相对侧侧壁形成侧面轴向通道。这样,传感器51具有一般的U型截面。为了使箱50平滑地滑入具有上述传感器51的小室52,供水箱50的底部如图12B所示压制形成传感器接纳装置53。上述传感器接纳装置53具有适于接纳传感器51侧壁的构造。由于箱50的底部具有如上所述与具有U型截面的传感器51相匹配的构造,所以,箱50能够平滑地滑入小室52并在小室52中移动。
上述传感器接纳装置53包括一对在箱50底部轴向延伸的槽54并分别可滑动接纳传感器51的侧壁。在上述槽54的相对侧壁上设置有能够透光的透明窗55。
在水位传感器51中设置有一个光电耦合器,该光电耦合器包括分别设置在水位传感器51相对侧壁上的一个光电二极管56和一个光电晶体管57。光电二极管56适于产生一个光信号,而光电晶体管57适于接收来自光电二极管56的光信号。
当小室52中安放有供水箱50时,水位传感器51的侧壁由供水箱50的传感器接纳装置53所接纳。在这种情况下,来自安装在水位传感器51上的光电二极管56的光信号被安装在水位传感器51上的光电晶体管57经设置在槽54上的透明窗55所接收。
图13是图12A和12B中的水位传感器51的详细电路图。如该图所示,将驱动电压V1从供电单元1施加到光电二极管56上,然后由光电二极管56产生光信号。光电晶体管57响应来自光电二极管56的光信号而被开关,以控制从供电单元1向微机9的第三输入端IN3提供驱动电压VI。
在操作中,当存留在供水箱50中的水量高于预定值的时候,来自水位传感器51中的光电二极管56的光信号虽经供水箱50的透明窗55发射出去,但却被供水箱50中的水所漫反射。其结果是,来自水位传感器51中的光电二极管56的光信号不能到达水位传感器51中的光电晶体管57。由于光电晶体管57没有收到来自光电二极管56的光信号,所以其保持在OFF状态。由于光电晶体管57处于OFF状态,所以来自供电单元1的驱动电压V1不能施加到微机9的第三输入端IN3而是被中断。因此,微机9的第三输入端IN3保持在低逻辑状态。
然后,微机9将其第二输入端IN2变为高逻辑状态,以使警报发生器13不能产生警报。
另一方面,在供水箱50中存留的水量低于预定值时,即在供水箱50中存留少量的水,则来自水位传感器51中光电二极管56的光信号经供水箱50中的透明窗55发射到水位传感器51中的光电晶体管57。由于光电晶体管57接收到来自光电二极管56的光信号,所以,光电晶体管57被打开。其结果是,驱动电压V1经打开的光电晶体管57从供电单元1施加到微机9的第三输入端1N3,由此,使第三输入端1N3变为高逻辑状态。
响应第三输入端1N3的高逻辑状态,微机9识别为在供水箱50中存留的水少,由此,将其第二输入1N2变为低逻辑状态。其结果是,如上面参照图6所述的那样,警报发生器13被驱动,以使使用者能够有适当的时间向供水箱50重新加水。
要注意的是,警报发生器13可以包括任何可见显示装置来代替发光二极管35。另一种是警报发生器13可以包括产生声音信号的声音发生装置,如蜂鸣器。
第四,下面参照图5和14详细说明按照本发明的自动制冰装置的供水状态控制功能。根据本发明,供水状态控制功能用于在自动制冰装置和分配器同时被驱动时停止自动制冰装置的操作,优先向分配器供水。
图14是说明图2中微机9操作的流程图,其实现按照本发明的自动制冰装置的供水状态控制功能。首先,在步骤S34,微机9检查分配器开关31是否处在ON状态,用户打开分配器开关31使用分配器。这时,微机9检测到分配器开关31为ON状态,则在其第五输出端OUT5输出一个高逻辑控制信号。来自微机9的第五输出端OUT5的高逻辑控制信号被施加到控制晶体管34的基极,由此,使控制晶体管34打开。由于控制晶体管34导通,将驱动电压V1从供电单元1传送给开关晶体管33的基极,以使开关晶体管33导通。当开关晶体管33导通时,电磁阀32在其一端接收供电单元1的驱动电压V2,在其另一端接受接地电压。其结果是,打开电磁阀32,以关闭到自动制冰装置的水路而打开到分配器的水路。而且,微机9向供水电机转动控制器7输出一个控制信号以驱动供水电机6。由于供水电机6被驱动,所以,其从供水箱泵抽出水并将泵抽出的水提供给分配器(步骤S35)。
然后,在步骤S36,微机9检查分配器开关31是否已经关闭。如果在步骤S36检查到分配器开关31还没有关闭,则微机9返回前面的步骤S35,以控制电磁阀32和供水电机6,以继续向分配器供水。
另一方面,在步骤S36检查出分配器开关已经关闭的情况,微机9在步骤S37检查自动制冰装置是否已经改变供水模式。如果在步骤S37检查到自动制冰装置已经变换供水模式,则微机9在其第五输出端OUT5输出一个低逻辑控制信号。来自微机9第五输出端OUT5的低逻辑控制信号被施加到控制晶体管34的基极,由此使控制晶体管34截止。由于控制晶体管34截止,所以,其中断向开关晶体管33的基极施加来自供电单元1的驱动电压V1,以使开关晶体管33截止。开关晶体管33截止时,电磁阀32不导通。其结果是,关闭电磁阀32以打开到自动制冰装置的水路,而关闭到分配器的水路。而且,微机9向供水电机转动控制器7输出一个控制信号,以驱动供水电机6。由于供水电机6被驱动,其从供水箱中泵抽出水并将泵抽出的水提供给自动制冰装置(步骤S38)。然后,微机9返回前面的步骤S34,重复该步骤S34和后续步骤。
在步骤S37检查到自动制冰装置还没有变换供水模式的情况下,则在步骤S39,微机9关掉供水电机6,并返回前面的步骤S34,重复该步骤和后续步骤。
另一方面,如果在步骤S34检查到分配器开关31处于OFF状态,则微机9直接进入前面的步骤S37,重复该步骤和后续步骤。
因此,当自动制冰装置和分配器同时变换供水模式的时候,优先驱动分配器。
最后,参照图4详细说明按照本发明的自动制冰装置的供水电机控制功能。按照本发明供水电机控制功能适于通过反向转动供水电机6,使存留在供水软管中的水流回供水箱,来防止存留在到自动制冰装置的供水软管中的水冻冰。
首先,微机9在其第三输出端OUT3输出一个低逻辑控制信号,并在第四输出端OUT4输出一个高逻辑控制信号。在供水电机转动控制器7中,控制晶体管29在其基极输入来自微机9第三输出端OUT3低逻辑控制信号,控制晶体管30在其基极输入来自微机9第四输出端OUT4的高逻辑控制信号。控制晶体管29和30最好是NPN型。其结果是,控制晶体管29呼应来自微机9第三输出端OUT3的低逻辑控制信号而被截止,控制晶体管30响应来自微机9第四输出端OUT4的高逻辑控制信号而导通。由于控制晶体管29截止,所以,开关晶体管26和27截止。
由于控制晶体管30导通,其将驱动电压V1从供电单元1传送给开关晶体管28的基极,由此使开关晶体管28导通。由于开关晶体管28导通,接地电压被传送给开关晶体管28的集电极,由此向开关晶体管25的基极施加一个低逻辑信号。开关晶体管25最好是PNP型。其结果是,开关晶体管25响应低逻辑信号而导通。开关晶体管25的导通形成一个由供电单元1,开关晶体管25,供水电机6,开关晶体管28和接地端组成的回路。通过形成的回路,驱动电压V2从供电单元1传送给供水电机6,以使其顺时针转动。
由于供水电机6经供水电机转动控制器7的上述操作而顺时针转动,其从供水箱50中泵抽水一预定时间期限,以把泵抽出的水提供给自动制冰装置中的托盘42。
此刻,由于水没有完全从供水箱50提供给自动制冰装置中的托盘42,所以,在供水软管中存留有水。由于冷冻部分的温度很低,所以,存留在供水软管中的水可能发生冰冻。在这种情况下,水不能正常地从供水箱50提供给自动制冰装置的托盘42,从而导致自动制冰装置的错误操作。为解决这样的问题,存留在供水软管中的水必须流回供水箱50。
因此,在从供水箱50向自动制冰装置中的托盘42提供水的预定时间期限过去之后,微机9在其第三输出端OUT3输出一个高逻辑控制信号,并在第四输出端OUT4输出一个低逻辑控制信号。把来自微机9第三输出端OUT3的高逻辑控制信号施加给控制晶体管29的基极,把来自微机9第四输出端OUT4的低逻辑控制信号提供给控制晶体管30的基极。由于控制晶体管29和30的NPN型,控制晶体管29响应来自微机9第三输出端OUT3的高逻辑控制信号而导通,控制晶体管30响应来自微机9第四输出端OUT4的低逻辑控制信号而截止。由于控制晶体管30截止,所以,开关晶体管25和28截止。
由于控制晶体管29导通,所以,驱动电压V1从供电单元1传送给开关晶体管28的基极,由此使开关晶体管28导通。由于开关晶体管28导通,所以,接地电压被传送给开关晶体管26的集电极,由此向开关晶体管27的基极提供一个低逻辑信号。开关晶体管27最好是PNP型。其结果是,开关晶体管27响应低逻辑信号而导通。导通的开关晶体管27,供水电机6,开关晶体管26和接地端组成的回路。通过形成的回路,将驱动电压V2从供电单元1提供给供水电机6,以使供水电机6逆时针转动。
由于供水电机6经供水电机转动控制器7的上述操作而逆时针转动,所以,存留在供水软管中的水流回供水箱50。
此后,微机9在其第三和第四输出端OUT3和OUT4输出低逻辑控制信号,以关掉供水电机6。
因此,能够防止留存在供水软管中的水冻冰。
从以上说明可以清楚地看出,本发明具有以下优点。
第一,托盘交替进行正向取冰操作和反向取冰操作,从而能够防止托盘变形或损害。因此,能够提高托盘的寿命。
第二,当在进行取冰操作期间取冰电机过负荷时,能够自动检测,而使取冰电机停止。因此,能够提高取冰电机寿命并防止击穿。
第三,当供水箱中的水位低于预定值时,自动产生警报,以使使用者能够很容易地具有适当的时间向供水箱中重新加水。
第四,当具有自动制冰功能和分配器的冰箱中的这两者同时被驱动时,停止自动制冰装置的操作,并优先向分配器供水。因此,使用者不必长时间操作分配器以从分配器获得所需数量的水。
最后,存留在到托盘的供水软管中的水流回供水箱。因此,能够防止存留在供水软管中的水冰冻。这具有稳定供水功能的作用,并由此防止其误操作。
虽然为理解起见说明了本发明的最佳实施例,但是本领域的普通技术人员知道会有各种变化,附加和替代,而这些变化,附加和替代是离不开由所附的权利要求披露的本发明的范围和实质的。
权利要求
1.一种自动制冰装置,包括一个用于向所说的自动制冰装置供电的供电单元,一个用于使托盘在所需方向转动以实现所说的自动制冰装置的取冰操作的取冰电机,一个用于从供水箱中泵抽水的供水电机,一个用于鉴别所说托盘转动位置的托盘位置鉴别器,一个用于使使用者能够选择所说的自动制冰装置的各种功能的功能选择器,一个用于向使用者提供饮用水的分配器和一个用于检查制冰状态的取冰鉴别器,其特征在于还包括取冰电机转动控制装置,用于控制所说取冰电机的转动操作;供水电机转动控制装置,用于控制所说供水电机的转动操作;供水状态控制装置,用于向所说的自动制冰装置和所说的分配器提供由所说供水电机泵抽的水;水位检测装置,用于检测所说供水箱中的水位;警报发生装置,用于响应所说水位检测装置检测的水位产生警报;和系统控制装置,用于控制所说自动制冰装置的整个操作。
2.如权利要求1所述的一种自动制冰装置,其特征在于所说的取冰电机转动控制装置包括正向和反向开关装置,用于向所说的取冰电机提供来自所说供电单元的驱动电压,以控制所说取冰电机的转动方向;和开关控制装置,用于在所说的系统控制装置的控制下,控制所说的正向和反向开关装置的ON/OFF状态。
3.如权利要求2所述的一种自动制冰装置,其特征在于所说的正向开关装置包括第一开关晶体管,用于向所说的取冰电机的一端施加来自所说供电单元的驱动电压;和第二开关晶体管,用于向所说的取冰电机的另一端施来接地电压。
4.如权利要求3所述的一种自动制冰装置,其特征在于所说的反向开关装置包括第三开关晶体管,用于向所说的取冰电机的所说另一端施加来自所说的供电单元的驱动电压;和第四开关晶体管,用于向所说取冰电机的所说一端提供接地电压。
5.如权利要求2所述的一种自动制冰装置,其特征在于所说的开关控制装置包括第一控制晶体管,用于响应来自所说的系统控制装置的第一控制信号,控制所说的正向开关装置的ON/OFF状态。
6.如权利要求1所述的一种自动制冰装置,其特征在于所说的供水电机转动控制装置包括正向和反向开关装置,用于向所说的供水电机提供来自所说供电单元的驱动电压,以控制所说的供水电机的转动方向;和开关控制装置,用于在所说的系统控制装置的控制下,控制所说的正向和反向开关装置ON/OFF状态。
7.如权利要求6所述的一种自动制冰装置,其特征在于所说的正向开关装置包括第一开关晶体管,用于向所说的供水电机的第一端施加来自所说供电单元的驱动电压;和第二开关晶体管,用于向所说的供水电机的另一端施加接地电压。
8.如权利要求6所述的一种自动制冰装置,其特征在于所说的反向开关装置包括第三开关晶体管,用于向所说供水电机的所说另一端施加来自所说的供电单元的驱动电压;和第四开关晶体管,用于向所说供水电机的所说一端施加接地电压。
9.如权利要求6所述的一种自动制冰装置,其特征在于所说的开关控制装置包括第一控制晶体管,用于响应来自所说的系统控制装置的第一控制信号,控制所说的正向开关装置的ON/OFF状态;和第二控制晶体管,用于各应来自所说的系统控制装置的第二控制信号,控制所说的反向开关装置的ON/OFF状态。
10.如权利要求1所述的一种自动制冰装置,其特征在于所说的供水状态控制装置包括一个分配器开关,以使用者能够操作的方式设置的冰箱外侧所需的位置上;打开/关闭装置,响应来自所说供电单元的驱动电压而被驱动,以控制向所说的自动制冰装置供水;开关装置,用于向所说的打开/关闭装置提供接地电压,以控制所说的打开/关闭装置的ON/OFF状态;和开关控制装置,用于按照所说的分配器开关的ON/OFF状态,控制所说开关装置的开关操作。
11.如权利要求10所述的一种自动制冰装置,其特征在于所说的打开/关闭装置的响应所说的开关装置的打开而打开,以打开所说供水箱和所说分配器之间的水路,从而向所说的分配器提供由所说的供水电机泵抽出的水,其响应所说的开关装置的关闭而关闭,以打开所说的供水箱和所说的自动制冰装置之间的水路,从而向所说的自动制冰装置提供由所说的供水电机泵抽出的水。
12.如权利要求10所述的一种自动制冰装置,其特征在于所说的开关控制装置响应所说的分配器开关的打开而打开所说的开关装置,以打开所说的供水箱和所说的分配器之间的水路,其响应所说的分配器开关的关闭而关闭所说的开关装置,以打开所说的供水箱和所说的自动制冰装置之间的水路。
13.如权利要求1所述的一种自动制冰装置,其特征在于所说的水位检测装置包括一个小室,限定在冰箱新鲜食品贮藏部分内的给定位置上,用于安放所说的供水箱;一个水位传感器,固定安装在所说小室的底部中央,所说的水位传感器轴向开槽,并由此形成由相对侧壁形成的侧面轴向通道;传感器接纳装置,竖直形成在所说供水箱的底部中央,以使所说的供水箱平滑地滑入所说小室的内部,所说的传感器接纳装置包括一对在所说供水箱底部轴向延伸的平行槽,用于分别可滑动地接纳所说水位传感器的相对侧壁;透明窗,分别设置在所说槽的相对侧壁上;光发射/接收装置,设置在所说的水位传感器上,用于发射和接收光信号。
14.如权利要求13所述的一种自动制冰装置,其特征在于所说的光发射/接收装置包括一个光电二极管,设置在所说水位传感器相对侧壁的一个侧壁上,用于发射光信号;和一个光电晶体管,设置在所说水位传感器相对侧壁的另一个侧壁上,用于接收来自所说光电二极管的光信号。
15.如权利要求1所述的一种自动制冰装置,其特征在于所说的警报发生装置包括一个用于产生光信号的发光二极管,所说的发光二极管具有的负极用于输入来自所说供电单元的驱动电压,其正极用于输入来自所说的系统控制装置的控制信号。
16.如权利要求1所说的一种自动制冰装置,其特征在于还包括取冰电机保护装置,用于检测施加到所说取冰电机的负荷量,并根据检测的结果保护所说的取冰电机避免过负荷。
17.如权利要求16所述的一种自动制冰装置,其特征在于所说的取冰电机保护功能包括电压检测装置,与所说的取冰电机相连,用于在所说的取冰电机正向和反向转动时,检测施加到所说取冰电机上的电压;一对分压电阻器,用于以所需比例对来自所说供电单元的驱动电压进行分压;和一个比较器,其非反相输入端用于输入由所说的分压电阻器所分压的电压,其反相输入端用于输入由所说的电压检测装置检测的电压中的一个,所说的比较器对输入的两个电压进行比较,并向所说的系统控制装置输出比较结果,以控制所说取冰电机的操作。
18.如权利要求17所述的一种自动制冰装置,其特征在于所说的电压检测装置包括第一电压检测电阻器,与所说取冰电机的一端相连,用于当所说取冰电机正向转动时,检测施加给所说取冰电机的电压;和第二电压检测电阻器与所说取冰电机的另一端相连,用于当所说取冰电机反向转动时,检测施加给所说取冰电机的电压。
19.一种自动制冰方法,其特征在于包括取冰电机转动控制步骤,用于交替进行所说取冰电机的正向取冰操作和反向取冰操作;取冰电机保护步骤,用于响应过负荷状态的信号,控制所说取冰电机的操作;供水报警/指示步骤,用于检测所说供水箱中的水位,如果检测的水位低于预定值,则产生警报;供水状态控制步骤,用于当同时驱动所说的自动制冰装置和所说的分配器的时候,停止所说的自动制冰功能,优先向所说的分配器供水;和供水电机控制步骤,用于使存留在供水软管中的水流回所说的供水箱。
20.如权利要求19所述的一种自动制冰方法,其特征在于所说的取冰电机保护步骤包括的步骤是,如果来自所产取冰电机保护装置的控制信号是正常状态信号,则打开所说的取冰电机转动控制装置,正常驱动所说的取冰电机,如果来自所说取冰电机保护装置的控制信号是过负荷状态信号,则关掉所说的取冰电机转动控制装置,以停止所说的取冰电机的操作。
21.如权利要求19所述的一种自动制冰方法,其特征在于所说的供水报警/指示步骤包括的步骤是,计算所说供水箱的容量,累积供水量,计算所计算的所说供水箱的容量与累积的供水量之间的差,以获得存留在所说供水箱中的水的数量,如果所获得的水量低于预定值,则产生警报。
22.如权利要求21所述的一种自动制冰方法,其特征在于通过把所说供水电机的供水能力与累积所用时间相乘来得出累积的供水量,其中所说供水电机的供水能力是每秒泵抽的水量。
23.如权利要求21所述的一种自动制冰方法,其特征在于所说的供水报警/指示步骤包括的步骤是,如果所说的供水报警/指示模式处于初始状态,其特征在于由使用才向所说的供水箱加水,则预置一个计数操作;在驱动所说供水电机其期间累积计数的所用时间;当所说的供水电机停止时,通过累积计数的所用时间和所说供水电机的供水能力来计算总的供水量;计算所说供水箱的容量与所计算的总的供水量之间的差,以得出存留在所说供水箱中水的数量;和如果以上计算的水量低于预定值,则产生警报。
24.如权利要求19所述的一种自动制冰方法,其特征在于所说的供水报警/指示步骤包括的步骤是,在完成取冰操作之后检测所说托盘的初始温度,在向所说托盘供水之后检测所说托盘的现在温度,计算所说托盘检测出的初始和现在温度之差,如果计算的差低于预定值,则产生警报。
25.如权利要求24所述的一种自动制冰方法,其特征在于所说的总供水量计算包括的步骤是在完成取冰操作的初始状态,检测所说托盘的初始温度;在完成取冰操作并向所说的托盘供水之后,检测所说托盘的现在温度;和计算所说托盘检测出的初始和现在温度之间的差,如果计算的差低于预定值,则产生警报。
26.如权利要求19所述的一种自动制冰方法,其特征在于所说的供水状态控制步骤包括的步骤是检查使用者是否已经打开设置在冰箱外侧所需位置上的分配器开关;如果检查出所说的分配器开关已被使用者打开,则向所说的分配器供水;当关掉所说的分配器开关时,检查所说的自动制冰是否处于供水模式;和如果检查出所说的自动制冰处于供水模式,则向所说的托盘供水。
27.如权利要求19所述的一种自动制冰方法,其特征在于所说的供水电机控制步骤包括的步骤是如果所说的自动制冰处于供水模式,则向所说的托盘供水,然后,反转转动所说的供水电机一预定时间期限。
全文摘要
一种自动制冰装置及其方法,包括取冰电机转动控制功能,取冰电机保护功能,供水报警/指示功能,供水状态控制功能和供水电机控制功能。为实现上述功能,自动制冰装置包括一个用于控制取冰电机转动操作的取冰电机转动控制器,一个用于控制供水电机转动操作的供水电机转动控制器,一个用于控制向自动制冰装置和分配器提供由供水电机泵抽出的水的供水状态控制器,一个用于检测供水箱中水位的水位检测器,一个响应水位检测器所检测的水位而产生警报的警报发生器,和一个用于控制自动制冰装置全部操作的微机。
文档编号F25C1/10GK1153278SQ9612003
公开日1997年7月2日 申请日期1996年10月10日 优先权日1995年12月8日
发明者李建斌 申请人:三星电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1