生产低纯氧和高纯氮的低温精馏系统的制作方法

文档序号:4793626阅读:266来源:国知局
专利名称:生产低纯氧和高纯氮的低温精馏系统的制作方法
技术领域
本发明一般地涉及空气的低温精馏,更具体地涉及进料空气的低温精馏以生产氧和氮。它特别适用于高压生产的低纯氧和高纯氮产品。
在一些工业应用上需要使用低纯氧和高纯氮。如在玻璃制品中,在含氧燃料燃烧时使用低纯氧以加热和熔化玻璃制造物料而高纯氮对熔融玻璃则用作惰性气氛。此外,在高压时常需要氧和氮。
因此,本发明的一个目的是提供能有效生产低纯氧和高纯氮的低温精馏系统。
本发明的另一目的是提供能在高压时有效地生产低纯氧和高纯氮的低温精馏系统。
对于本领域技术人员而言,在阅读了本发明所获得的本公开后,上述及其它目的将变得显而易见。其一方面是一种生产低纯氧和高纯氮的方法,它包括(A)将进料空气送入高压塔,并在高压塔内通过低温精馏将进料空气分离成富氮蒸气和富氧液体;(B)将富氧液体送入低压塔;(C)通过与来自低压塔底部的液体进行间接热交换而冷凝富氮蒸气的第一部分,生成第一富氮液体,并将第一富氮液体送入低压塔;(D)汽轮膨胀富氮蒸气的第二部分并通过与来自低压塔底部上方的液体进行间接热交换而冷凝已汽轮膨胀的第二部分,以生成第二富氮液体,并将第二富氮液体送入低压塔;(E)通过低温精馏将送入低压塔内的各种流体分离成富氮流体和富氧流体;和(F)将低压塔的富氧流体作为产品低纯氧回收以及将来自至少一个塔的含氮流体作为产品高纯氮回收。
本发明的另一方面是生产低纯氧和高纯氮的设备,包括(A)第一塔、第二塔以及将进料空气送入第一塔的装置;(B)将来自第一塔下部的流体送入第二塔的装置;(C)用于第二塔的底部再沸器,用于将来自第一塔上部的流体送入所述底部再沸器的装置,以及用于将来自所述底部再沸器的流体送入第二塔的装置;(D)汽轮骤冷器以及用来将来自第一塔上部的流体送入汽轮骤冷器的装置;(E)用于第二塔的中间换热器,用于将来自汽轮骤冷器的流体送入中间换热器的装置以及用于将来自中间换热器的流体送入第二塔的装置;和(F)用于从第二塔下部回收产品低纯氧的装置,以及用于从第一塔和第二塔中的至少一个的上部回收产品高纯氮的装置。
此处所用的术语“塔盘”意指一接触段,它不必为平衡段,也可指其它接触设备如分离能力相当于一个塔盘的填料。
此处所用的术语“平衡段”意指一气-液接触段,离开该段的气体和液体藉以达至传质平衡,如一具有100%效率的塔盘或一高度等于理论塔板(HETP)的填料单元。
此处所用的术语“进料空气”意指主要包含氧和氮的混合物如环境空气。
此处所用的术语“低纯氧”意指氧含量在50-98.5%(摩尔)范围内的流体。
此处所用的术语“高纯氮”意指氮含量大于98.5%(摩尔)的流体。
此处所用的术语“塔”意指蒸馏塔或分馏塔或区,即接触塔或区,其中液相和气相逆流接触以完成流体混合物的分离,如通过气相和液相在一系列安置于塔内的垂直放置塔盘或塔板和/或在如结构或无规填料的填料单元上接触。对蒸馏塔的进一步讨论,请参见《化学工程师手册》第5版,R.H.Peey和C.H.Chilton编,Mc Graw Hill BookCompany出版,纽约,第13段,“连续蒸馏法”。使用术语“双塔”意指一高压塔其上端与一低压塔其下端处于热交换关系。对双塔的进一步讨论见述于Ruheman的“气体分离”,牛津大学出版社出版,1949年,第VII章,工业空气分离。
气液接触分离法基于各组分蒸气压的不同。高蒸气压(或易挥发或低沸点)组分易于浓缩于气相而低蒸气压(或难挥发或高沸点)组分易于浓缩于液相中。部分冷凝是一种分离方法,藉气体混合物的冷却以将易挥发组分浓缩于气相中而难挥发组分浓缩于液相中。精馏或连续蒸馏是一种结合由气液相的逆流处理获得的连续部分蒸发和冷凝的分离方法。气液相的逆流接触通常是绝热的,并可包括相之间的积分(阶段的)或微分(连续的)接触。利用精馏原理以分离混合物的分离法设备常可互换地称为精馏塔、蒸馏塔或分馏塔。低温精馏是至少部分在温度等于或低于150度开尔文(K)下进行的精馏法。
此处所用的术语“间接热交换”意指流体之间在没有任何物理接触或混合的情况下将两种流体导入热交换关系。
此处所用的术语“再沸器”意指从塔中液体产生塔上流蒸气的热交换装置。
此处所用的术语“汽轮膨胀”和“汽轮骤冷器”分别意指高压气流通过汽轮机以降低气体的压力和温度藉以产生制冷作用的方法和设备。
此处所用的术语“上部”和“下部”意指分别位于塔中点以上和以下的塔的部分。
此处所用的术语“底部”再谈及一塔时,意指在塔塔传质内件即塔盘或填料以下塔的部分。
此处所用的术语“底部再沸器”意指从塔底部使液体沸腾的再沸器。
此处所用的术语“中间换热器”意指从塔底上方使液体沸腾的再沸器。


图1是本发明一优选实施方案的示意图。
图2是本发明另一优选实施方案的示意图,其中送入底部再沸器和中间换热器的富氮蒸气从高压塔的不同位置中取出。
图3是本发明的又一优选实施方案的示意图,其中高压塔也有一底部再沸器。
图4是本发明再一优选实施方案的示意图,其中使用辅助塔额外生产一些高纯氧。
对于共同的单元图中的数字是相同的。
本发明将参照图详细加以描述。
现参照图1,已清除高沸点杂质如二氧化碳和水蒸气的进料空气50被分成主进料空气部分51和增压进料空气部分52。增压进料空气部分52通过压缩机31被压缩到绝对压力一般为60-500磅/平方英寸(绝对压)的高压。然后各进料空气部分通过主换热器1,其中通过与返回流进行间接热交换而将它们冷却。所得冷却的主进料空气部分53被送入压力一般为60-90磅/平方英寸(绝对压)并且是也包括第二或低压塔11的双塔系统的部分的第一或高压塔10。如需要,进料空气的一部分可经汽轮膨胀并直接送入低压塔11中。这将产生额外的制冷作用并生成更多的液体产品。
冷却的增压进料空部分54从主换热器1中出来送入产品锅炉23中,在其中它迎着蒸发着的低纯氧液而被冷凝,而这些将在下面详加描述。所得冷凝增压进料空气部分55被分成送入高压塔10的部分56和通过低温冷却器2而被过冷然后送入低压塔11的部分57。
在第一或高压塔10内通过低温精馏,将进料空气分离成富氮蒸气和富氧液体。氧含量一般为30-40%(摩尔)的富氧液体从高压塔10的下部导出,并在流58中通过低温冷却器2,在其中与一返回流进行间接热交换而得到过冷,然后被送入第二或低压塔11中。
富氮蒸气作为流59从高压塔10的上部导出。该富氮蒸气的第一部分60被送入主冷凝器或底部再沸器20,其中通过与沸腾的塔11底部液体进行间接热交换而得到冷凝。所得富氮液体61从低层塔底部再沸器20中导出。液体61的部分62作为回流重新回到高压塔10中。液体61的另一部分63通过低温冷却器3而得到过冷,然后被送入低压塔11的上部中。
富氮蒸气的第二部分64通过汽轮骤冷器30而得到汽轮膨胀以产生制冷作用,所得汽轮膨胀流65被送入中间换热器21中。优选汽轮膨胀流65的少部分(通常为约1-12%)为液体其余为蒸气。中间换热器21在位置上可低压塔11内或可以低压塔11外。当中间换热器21的位置在塔11内时,它位于在底部再沸器20一般为5-30个平衡段上方且在富氧液体58被送入塔11的点一般为5-30个平衡段下方的位置。
图1显示了本发明一优选实施方案,其中高纯氮在高压下被回收。在该实施方案中,富氮蒸气的部分66从高压塔10的上部经过,通过主换热器1,其中通过与冷却进料空气进行间接热交换而得到加热。所得加压氮气(一般为高压塔操作时的压力)在流67中作为加压高纯氮产品得到回收。或者一些汽轮膨胀流65可作为产品高纯氮回收。这就增加了通过汽轮骤冷器30而得到汽轮膨胀的富氮蒸气的数量,增加了产生的制冷作用的量以及使得更多地回收液体产品。
汽轮膨胀的富氮蒸气65在中间换热器21中通过与来自低压塔部上方的液体进行间接热交换而得到冷凝,所得富氮液体在流68中经过换热器21通过低温冷却器3并被送入低压塔11中。如图1所示,优选流68和63汇合形成流69然后送入低压塔11中。
低压塔11在低于高压塔10的压力下操作,通常为15-30磅/平方英寸(绝对压)在低压塔11内进入塔的各种流体通过低温精馏被分离成富氮流体和富氧流体。富氮流体作为蒸气流70从低压塔11的上部导出,经过低温冷却器3和2以主换热1而得到加热。所及流71可作为高纯氮产品得到回收。
富氧流体从低压塔11的下部导出并作为产品低纯氧得到回收。图1显示了本发明的一优选实施方案,其中产品低纯氧在加压下得到回收。在示于图1的实施方案中,富氧流体作为液流72从塔11的下部导出。流72在通过液体泵32时压力增加到25-350磅/平方英寸(绝对压)的范围以得到加压液流73。若需要,可将流73的部分74作为液体低纯氧产品回收。然后在流73的加压流体低纯氧被送入产品锅炉23,在其中它通过与冷凝进料空气(先前已描述过)进行间接热交换而得到蒸发。
然后所得蒸发加压低纯氧流75迎着冷却进料空气通过主换热器1得到加热,而所得流76作为加压低纯氧产品回收。
图2、3和4显示了本发明的其它优选实施方案。共同单元具有相同的数字并将不再加以详述。
在于示图2的实施方案中,送入汽轮骤冷器30的富氮蒸气在流77中从高压塔10的顶部下方取出。比起流67中作为产品回收的富氮蒸气来,该流77中的富氮蒸气含较大量的杂质。流77通过汽轮骤冷器30并如上述进行处理。在作为产品回收的氮气部分需纯化至产品水平的一些情况下,示于图2的实施方案是有利的。
当低压塔在大致高于环境压力如在60-90磅/平方英寸(绝对压)的范围内操作时示于图3的本发明实施方案特别有利于氧的生产。在该实施方案中,增加进料空气部分54被送入高压塔10的底部再沸器22,在其中它通过与富氧液体进行间接热交换而得到冷凝。所得冷凝进料空气流55如上述进行处理。富氧流体作为蒸气流78从低压塔11的下部导出,然后通过主换热器1并作为低纯氧产品回收。高纯氮产品从低压塔11的上部取出。
示于图4的本发明实施方案类似于示于图3的情况,只是增加了生产纯度超过98.5%(摩尔)的高纯氧的旁塔12。在该实施方案中,在流79中的富氧液体从低压塔11的底部出来进入旁塔12的上部并在其中通过低温精馏被分离为低氧蒸气(在流80中从塔12的上部导出并优选加到流78中)和高纯氧液体(在流81中从塔12的下部导出并回收)。旁塔12通过底部再沸器24驱动。含氮蒸气82从高压塔10出来送入再沸器24,在其中它通过与沸腾的塔12底部液体进行间接热交换而得到冷凝。在流83中的所得含氮液体从底部再沸器24中出来进入高压塔10中。若需要,为产生增加的制冷作用,冷却的主要进料空气部分53在被送入高压塔10之前可经轮骤冷器33进行汽轮膨胀。
通过使用本发明人们可有效地生产低纯氧和高纯氮,并且两者皆可在加压下制得。本发明的中间换热器利用了在低压塔的汽提段可获得的过量推动力以提供制冷作用从而使在塔的上精馏段的推动力不受危害的情况下维持了循环。通过来自高压塔的富氮蒸气的汽轮膨胀得到制冷作用。该制冷作用取代了常规一般通过进入低压塔中点的加压进料空气流的膨胀产生的制冷作用。结果,相当数量的高纯氮可从塔系统中导出并在加压下回收。这就降低了投资需求,减少了方法的不可逆性,以及对一给定的输入功提高了常规实践所可能获得的产品回收率。
虽然通过参照特定的优选实施方案详细描述了本发明,但本领域技术人员将会理解在权利要求书的精神和范畴内本发明的其它实施方案。
权利要求
1.生产低纯氧和高纯氮的方法,它包括(A)将进料空气送入高压塔,并在高压塔内通过低温精馏将进料空气分离成富氮蒸气和富氧液体;(B)将富氧液体送入低压塔;(C)通过与来自低压塔底部的液体进行间接热交换而冷凝富氮蒸气的第一部分,生成第一富氮液体,并将第一富氮液体送入低压塔;(D)汽轮膨胀富氮蒸气的第二部分并通过与来自低压塔底部上方的液体进行间接热交换而冷凝已汽轮膨胀的第二部分,以生成第二富氮液体,并将第二富氮液体送入低压塔;(E)通过低温精馏将送入低压塔内的各种流体分离成富氮流体和富氧流体;和(F)将低压塔的富氧流体作为产品低纯氧回收,并将来自至少一个塔的含氮流体作为产品高纯氮回收。
2.权利要求1的方法,其中高纯氮产品从高压塔中得到回收。
3.权利要求1的方法,其中富氧流体从低压塔中以液体形式导出,加压并在作为产品低纯氧回收前通过与进料空气流进行间接热交换而得以蒸发。
4.权利要求1的方法,还包括通过与富氧液体进行间接热交换冷凝进料空气流,并将所得冷凝的进料空气送入高压塔和低压塔中的至少一个塔中。
5.权利要求1的方法,还包括将液体形式的富氧流体从低压塔中导出,将所述富氧流体送入一旁塔,并通过低温精馏将旁塔内的富氧液体分离以生成高纯氧。
6.生产低纯氧和高纯氮的设备,包含(A)第一塔、第二塔以及将进料空气送入第一塔的装置;(B)将来自第一塔下部的流体送入第二塔中的装置;(C)用于第二塔的底部再沸器,用于将来自第一塔上部的流体送入所述底部再沸器的装置,以及用于将来自所述底部再沸器的流体送入第二塔的装置;(D)汽轮骤冷器以及将来自第一塔的上部流体送入汽轮骤冷器的装置;(E)用于第二塔的中间换热器、用于将来自汽轮骤冷器的流体送入中间换热器的装置以及用于将来自中间换热器的流体送入第二塔的装置;和(F)用于从第二塔下部回收产品低纯氧的装置,以及用于从第一塔和第二塔中的至少一个的上部回收产品高纯氮的装置。
7.权利要求6的设备,其中用于回收产品高纯氮的装置与第一塔的上部相连接。
8.权利要求6的设备,其中用于从第二塔的下部回收产品低纯氧的装置包括液体泵和产品锅炉。
9.权利要求6的设备,还包含用于第一塔的底部再沸器、用于将进料空气送入第一塔的所述底部再沸器的装置以及用于装来自第一塔的所述底部再沸器的进料空气送入第一塔和第二塔中的至少一个塔中的装置。
10.权利要求6的设备,还包括一旁塔、用于将来自第二塔下部的液体送入旁塔的上部的装置以及用于从旁塔的下部回收产品的装置。
全文摘要
用于生产低纯氧和高纯氮(优选在加压下)的双塔低温精馏系统,其中来自高压塔的富氮蒸气在进入低压塔前被汽轮膨胀并迎着低压塔中间液体而得到冷凝。
文档编号F25J3/04GK1173627SQ9711405
公开日1998年2月18日 申请日期1997年6月26日 优先权日1996年6月27日
发明者D·P·波纳奎斯特, S·M·萨顿 申请人:普拉塞尔技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1