实现有机硅氧烷无氧生物分解的方法

文档序号:4869087阅读:923来源:国知局
专利名称:实现有机硅氧烷无氧生物分解的方法
技术领域
本发明涉及线性或环状聚有机硅氧烷(如聚二甲基硅氧烷(PDMS)或有机官能化硅氧烷、有机硅烷、特别是有机硅烷醇、及这些化合物经化学解聚作用形成的片段)的无氧分解。
背景技术
每年有数十万吨的聚合物以基于-(Si-O-Si)-重复单元的聚二甲基硅氧烷(PDMS)为主要原料制成。这些硅氧烷中的大部分在使用期间或使用之后(纺织工业、洗衣洗涤剂、造纸工业、化妆品、建筑界、制药界、农化界、石化界等)排放至周围环境中。硅氧烷并非天然产生的聚合物。目前尚未发现形成或解离硅原子与甲基碳原子间的Si-C键的生物方法。废水(例如城市污水处理厂或化学工业废水处理设备、土壤、沉积物、污泥或其它环境隔间中的废水)中的硅氧烷的生物分解方法尚未知晓。
Gravier等人(2003)概述了如何用化学方法分解环境中的硅氧烷聚合物。不进行高分子量硅氧烷的富集,但是这些高分子量硅氧烷在水上或陆上的聚集地基本上通过水解作用分解,形成以有机硅烷醇为末端的低聚物。这些有机硅烷醇和低分子量PDMS及环状硅氧烷蒸发至大气中,在其中最后被大气中存在的羟基自由基氧化成硅酸盐、二氧化碳和水。
高分子量聚有机硅氧烷不溶于水。在水系统中或废水中发生相分离现象。聚有机硅氧烷基本上积聚在水中的颗粒组分上,或者由于比重<1.0g/cm3在表面上形成硅氧烷薄膜。因此,在污水处理厂中,即使存在有氧生物状态,聚有机硅氧烷也不会被破坏或分解,而是事实上定量地终止在污水污泥的固相中。对这种污泥的研究显示,随后该处的高分子量硅氧烷在平均20-30天内解聚(Gravier等人,2003),然后如上文所述进入大气中并在其中被氧化。
Grasset和Palla(美国专利US 6,020,184)曾述及聚合硅氧烷的分解也可以在水系统中发生。因此,将水性聚有机硅氧烷悬浮液与生物可利用的共底物(cosubstrate)如葡萄糖混合,并以白腐真菌(genusPhanaerochaete)或曲霉属(Aspergillus)的真菌接种,在无氧条件下孵育。在这些条件下,即使是在水系统中,60天内高达80%的聚合物PDMS业已分解。据了解,所用的真菌首先并不完全氧化葡萄糖,而是生成有机酸。在相应pH为2.5-4.5时,PDMS发生酸性水解,生成低分子量组分。并未述及PDMS的直接生物分解。
PDMS的挥发性低分子量分解产物最终主要在大气中被氧化;尽管描述了(Graiver等人,2003)无氧条件下的结合的生物和化学分解,但由于挥发性有机聚硅氧的蒸发速率比生物分解速率快2-20倍,其在实施中并不重要。因此,靠近表面且通风良好的土壤和沉积物中不会发生低分子量聚有机硅氧烷的积聚,而在较深的沉积层和不通风的突然中仍然会发生这些化合物的积聚。

发明内容
本发明的目的是提供一种使材料被生物分解的方法,所述的材料包括硅-碳单键,优选为聚有机硅氧烷,例如,PDMS或有机官能化硅氧烷、或有机硅烷,特别是有机硅烷醇,或其其化学解聚形成的片段。
实现该目的一种方法的特征在于加入交替电子受体,在无氧或微有氧条件下对包括硅-碳单键的材料和微生物种群的混合物进行孵育。
优选地,包括硅-碳单键的材料是包括聚有机硅氧烷、有机官能化硅氧烷、有机硅烷、或由这些化合物形成的片段的材料。优选地,材料为液体或固体。
优选通过本发明的方法分解的化合物优选为分子式(1-3)的化合物(1)HO(SiR2O)pH其中P≥1,(2)R3SiO(SiR2O)qSiR3其中q≥0,(3)(SiR2O)r其中r=3-10,或者分子式HOR2SiO1/2、R3SiO1/2、R2SiO、RSi(OH)O、RSiO3/2和HOSiO3/2单元的混合聚合物,或者分子式[R3SiO1/2]和[SiO4/2]的单元的有机硅氧烷树脂,其进一步包括附加的与Si结合的OH基,R、R2、R3各自可以相同或不同,是单价、线性或环状、支化或未支化、任选被取代的烃基。
交替电子受体是指除氧之外的电子受体。交替电子受体可以是有机化合物或无机化合物。它的作用是转移Si-R键(R为单价有机基,优选为单价的烷基或芳基)的氧化中微生物种群所吸收的电子,从而使微生物种群能够在厌氧呼吸的情况下从底物的氧化产生能量。
例如,有机的交替电子受体为富马酸盐(酯)或琥珀酸盐(酯)。例如,无机的交替电子受体是氧化的铁离子、硫酸盐或硝酸盐。优选地,本发明的方法使用硫酸盐或硝酸盐,特别优选使用硝酸盐。
混合物中交替电子受体的浓度优选为0.1-100mM。特别优选地,以存在浓度为0.1-100mM的方式加入电子受体。
微有氧条件是指混合物中自由氧或溶解氧少于5%的条件。优选混合物中自由氧或溶解氧少于1%的条件。尤其优选混合物中自由氧或溶解氧少于250ppm的条件。
例如,通过技术方法(如气体交换或化学消耗余氧)可以实现微有氧或无氧条件。优选地,通过氧被微生物种群消耗并抑制进一步供氧来制造微有氧或无氧条件。特别优选地,在密闭容器中(例如污水处理厂中的消化塔)通过实施本发明的方法来实现微有氧或无氧条件。
微生物种群优选为诸如污水污泥中或污水处理厂中或土壤沉积物中存在的种群。优选地,微生物种群为无氧条件下生长的微生物种群,特别优选为在这些条件下表现最佳生长的微生物种群。
在本发明的方法种,微生物种群可以从外部加入,或者可以使用已经存在于混合物(污水污泥、土壤等)中的微生物。
与美国专利US 6,020,184所公开的方法相反,本发明的方法不需要任何其它的可氧化底物(共底物),例如碳水化合物,如葡萄糖。
优选不加入共底物的方法。特别优选批次中不存在共底物,从而批次由所述的成分组成的方法。
该方法优选在20℃至80℃的温度下实施,更优选30℃至70℃的温度,特别优选40℃至60℃的温度。
孵育时间优选为1-200小时,更优选为10-150小时,特别优选为24-100小时。
本发明的方法适用于分解聚有机硅氧烷,例如,PDMS或有机官能化硅氧烷、和有机硅烷、特别是有机硅烷醇,连续进行(即连续流入新的底物、同时排出分解产物)或者分批进行(即在不继续流入新的底物的批次中进行)。
本发明的方法中,可以在无氧分解的上游对聚有机硅氧烷或有机硅烷通过水解(例如通过酸处理或碱处理)进行预水解。
本发明可以在,例如,污水处理厂中、沉积物中、或其它水上或陆上聚集地中发挥作用。例如,本发明的方法可以用于废水处理厂的无氧处理阶段,或者,它可以用于分解聚有机硅氧烷或有机硅烷或其经化学解聚在陆地或水上的低氧或无氧分隔间中形成的片段。
具体实施例方式
下文的实施例用于进一步对本发明进行说明。
实施例1二甲基硅烷二醇(DMSD)的分解在无氧条件(包括N2的样品容器)下,从运转操作中取得来自城市污水处理厂的污水污泥。为除去干扰底物,将细胞团块再悬浮在5倍体积的无氧缓冲液内中(50mmol/l磷酸钾,pH 6.8),进行离心。对溶液进行脱气、并用氮气吹扫,制得无氧溶液。
将该操作(再悬浮/离心)重复3遍。
在无氧条件下,将洗过的无氧细胞团块转移至包括培养基(10g湿细胞团块/100ml培养基)的摇瓶内。作为对照批次,将污水污泥用高压灭菌器消毒并由此使其失活。在不加入复合养分的情况下,在基本培养基(SM1)中进行培养。培养基由下列成分组成盐 [g/l]CaCl2·2H2O 0.0147MgSO4·7H2O 0.3KH2PO43.0K2HPO412.0(NH4)2SO45.0NaCl0.1
FeSO4·7H2O 0.002柠檬酸钠·2H2O 1.0痕量元素[g/l]Na2MO4·2H2O 0.15CoCl2·6H2O 0.7CuSO4·5H2O 0.25MnCl2·4H2O 1.6ZnSO4·7H2O 0.3此外,加入5g/l作为电子给体的KNO3。作为唯一的碳源,最后向培养基中加入二甲基硅氧烷-二醇(水溶性;摩尔量为92g/l)。批次中的浓度为1mmol/l。培养在温度30℃的无氧条件下在轨道摇动器上进行。总的培养时间为11天。定期采集培养基样品并立即进行分析。样品同样在无氧条件下(手套操作箱,N2气氛)直接自摇瓶中采集。
分析在使用DMSD作为底物的实验中,通过质子核磁共振谱(1H-NMR)测定液相中DMSD的浓度变化。0.164ppm处的强信号非常合适。来自该培养批次的样品(0.9ml)直接(经塞子)从容器中采集,并将其与标准液(D2O中的TSP;TSP=3-(三甲基硅烷基)丙酸-D4钠盐)混合,在光谱仪中进行分析。DMSD的信号可以通过已知的标准信号进行精确定量。
包括DMSD的批次的结果(mg/l)

与对照批次(11天内-9%)相比,发现在包括污水污泥、在无氧条件下孵育的批次中DMSD的量显著减低(11天内-39%)。
实施例2八甲基环硅氧烷(D4)的分解根据实施例1的方法进行实验。
在各个情况下,5个烧瓶装以污水污泥,5烧瓶装以失活的污水污泥。向培养基中加入作为碳源的八甲基环硅氧烷(D4)。硅氧烷与水不互溶,首先在培养物表面上形成油膜。随着培养时间的进展,硅氧烷油状物乳化在培养基中。形成较大的细胞聚集体形式。
根据实施例1的方法进行培养,在其中所列的基础培养基(SM1)中包括5g/l作为电子受体的KNO3。作为唯一的碳源,向批次中加入八甲基环硅氧烷(D4)(1ml/100ml培养基)。孵育不同的时间后,测定批次中D4的量。
D4的分析将整个批次用50ml戊烷萃取3次,为了促进相分离,每次进行离心。合并戊烷相,通过气相色谱(Hewlett Packard instrumenthp5890_li)直接对D4进行定量。气相色谱测定使用30m毛细管(Hewlett Packard HP-1 No.59026323),并使用氮气作为载气。温度程序50℃(5分钟)-270℃(升温速率为20℃/分钟)。在300℃下通过FID进行检测。使用相应的标准溶液对得到的信号峰进行定量。
包括D4的批次的结果(ppm)

与对照批次(11天内-6.2%)相比,发现在包括污水污泥、在无氧条件下孵育的批次中D4的量显著减低(11天内-16.3%)。
权利要求
1.一种包括硅-碳单键的材料的生物分解方法,其特征在于加入交替电子受体,在无氧或微有氧条件下对所述材料和微生物种群的混合物进行孵育。
2.根据权利要求1所述的方法,其特征在于所述的包括硅-碳单键的材料是包括聚有机硅氧烷、有机官能化硅氧烷、有机硅烷、或其片段的材料。
3.根据权利要求1或2的方法,其特征在于所述的交替电子受体选自富马酸盐、琥珀酸盐、氧化的铁离子、硫酸盐或硝酸盐。
4.根据权利要求1-3中任意一项的方法,其特征在于所述的无氧或微有氧条件作如下选择批次中存在的自由氧或溶解氧少于5%。
5.根据权利要求4的方法,其特征在于批次中存在的自由氧或溶解氧少于1%,优选少于250ppm。
6.根据权利要求1-5中任意一项的方法,其特征在于所用的所述交替电子受体的浓度为0.1-100mM。
7.根据权利要求1-6中任意一项的方法,其特征在于所述的方法在20-80℃的温度下实施,优选为30-70℃的温度,特别优选为40-60℃的温度。
8.根据权利要求1-7中任意一项的方法,其特征在于所述的孵育进行1-200小时,优选为10-150小时,特别优选为24-100小时。
全文摘要
一种包括硅-碳单键的物质的生物分解方法,其特征在于加入交替电子受体,在无氧或微有氧条件下对由所述物质和微生物种群组成的混合物进行孵育。
文档编号C02F3/34GK1930298SQ200580007735
公开日2007年3月14日 申请日期2005年3月10日 优先权日2004年3月11日
发明者A·坎杜西奥, M·阿曼, G·维希 申请人:瓦克化学有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1