一种新型净水装置及其控制方法与流程

文档序号:21637494发布日期:2020-07-29 02:48阅读:98来源:国知局
一种新型净水装置及其控制方法与流程

本发明涉及净水器技术领域,尤其涉及一种新型净水装置及其控制方法。



背景技术:

随着社会发展,现在越来越多的人对饮用的水质提出了更高的要求。现阶段的净水器在一定程度上可以改善水质,而且通过不同模块的添加,水的净化程度也不同。例如pp棉滤芯能过滤泥沙、铁锈等固体物质,活性炭可以吸附余氯及固体杂质,ro膜可以去除重金属离子、过滤细菌、病毒及有机物等。但是目前的净水机的制水效率并不高,特别是含有ro膜的高净化度的净水器,其制水效率更低,因此,为了在用户需要大量纯净水时可以快速提供,往往都会配备储水桶。众所周知,ro膜的净化程度并不是百分之百,所制得的水中可能还会含有许多微生物的等。如何进一步提高储水桶中水的净化度,是本领域亟待解决的技术难题。



技术实现要素:

本发明提供一种新型净水装置及其控制方法,其可以进一步提高储水装置中水的净化度,为用户提供更高品质的饮水。

本发明提供的技术方案是,一种新型净水装置,包括控制器、通过水管依次连接的初级过滤器组件和ro反渗透膜过滤器、进水口及直饮水口,所述初级过滤器组件与所述进水口连接,所述ro反渗透膜过滤器与所述直饮水口连接,所述ro反渗透膜过滤器的进水口侧设有增压泵,还包括与所述ro反渗透膜过滤器并联设置的储水装置,所述储水装置连接有微纳米气泡发生装置,所述储水装置、所述初级过滤器组件及所述ro反渗透膜过滤器通过电磁三通阀连接,所述储水装置与所述电磁三通阀之间设有第一tds探针,所述储水装置的出水口侧设有第二电磁阀,所述直饮水口的进水口侧设有第三电磁阀,所述增压泵、所述第一tds探针、所述电磁三通阀、所述第二电磁阀及所述第三电磁阀分别与所述控制器信号连接。

进一步的,所述ro反渗透膜过滤器的出水口侧设有第二tds探针。

进一步的,所述第二tds探针的出水口侧设有高压开关,所述高压开关与所述控制器信号连接,当所述储水装置中的水压达到系统设定值时,所述高压开关断开;当所述储水装置中的水压小于系统设定值时,所述高压开关闭合。

进一步的,所述储水装置连接有第一废水管,所述第一废水管连接有第一电磁阀,所述第一电磁阀与所述控制器信号连接。

进一步的,所述ro反渗透膜过滤器设置有第二废水管,所述第二废水管连接有废水比组合阀,所述废水比组合阀根据阀口的开口大小调节废水比,所述废水比组合阀与所述控制器信号连接。

进一步的,所述储水装置与所述微纳米气泡发生装置之间通过软管连接,所述软管上设有单向阀。

进一步的,所述初级过滤器组件包括依次连接的pp滤芯和前置活性炭滤芯,所述pp滤芯与所述进水口之间设有低压开关,所述pp滤芯和前置活性炭滤芯之间设有进水电磁阀,所述低压开关和所述进水电磁阀分别与所述控制器信号连接。

本发明还提出一种应用于如上所述的新型净水装置的控制方法,所述新型净水装置包括储水过程、出水过程及储水净化过程,所述储水过程的控制方法为:所述电磁三通阀将所述初级过滤器组件与所述ro反渗透膜过滤器之间的通路打开、将所述ro反渗透膜过滤器与所述储水装置之间的通路关闭、所述第二电磁阀打开、所述第三电磁阀关闭,从所述进水口流入的自来水依次流经所述初级过滤器组件、所述增压泵、所述ro反渗透膜过滤器、所述第二电磁阀进入所述储水装置;所述出水过程的控制方法为:所述电磁三通阀将所述初级过滤器组件与所述ro反渗透膜过滤器之间的通路打开、将所述ro反渗透膜过滤器与所述储水装置之间的通路关闭,所述第二电磁阀和所述第三电磁阀打开,所述储水装置内的净化水经所述第二电磁阀和所述第三电磁阀从所述直饮水口流出;所述储水净化过程的控制方法为:所述电磁三通阀将所述初级过滤器组件与所述ro反渗透膜过滤器之间的通路关闭、将所述储水装置与所述ro反渗透膜过滤器之间的通路打开,所述废水比组合阀全开,所述储水装置中的净化水在所述增压泵的作用下流向所述ro反渗透膜过滤器,从所述第二废水管流出,只要所述第一tds探针检测到净化水的tds值,所述电磁三通阀就关闭所有通路,此时若所述第一tds探针检测的tds值超过系统设定值,则所述单向阀打开,所述微纳米气泡发生装置向所述储水装置中供给微纳米气泡。

进一步的,所述储水过程的控制方法还包括:当所述储水装置中的水压达到系统设定值时,所述高压开关断开,系统停止向所述储水装置内储水;当所述储水装置中的水压小于系统设定值时,所述高压开关闭合,系统向所述储水装置内储水。

进一步的,所述出水过程的控制方法还包括:当用户选择出水时,所述储水装置内的净化水经所述第二电磁阀和所述第三电磁阀向所述直饮水口供水,并且当所述储水装置内水压小于系统设定值时,所述高压开关闭合,从所述ro反渗透膜过滤器流出的净化水经所述第三电磁阀进入所述直饮水口。

进一步的,所述储水净化过程的控制方法还包括:设置所述储水净化过程的间隔启动时间t0,控制器每间隔t0时间会自动启动所述储水净化过程。

进一步的,所述储水净化过程的控制方法还包括:当所述微纳米气泡装置向所述储水装置内打t1时间的气泡后,所述控制器控制所述电磁三通阀将所述ro反渗透膜过滤器与所述储水装置之间的通路打开,所述废水比组合阀全开,所述储水装置中的净化水在所述增压泵的作用下流向所述ro反渗透膜过滤器,只要所述第一tds探针检测到净化水的tds值,所述电磁三通阀就关闭所有通路,此时若所述第一tds探针检测的tds值超过系统设定值,则所述单向阀打开,所述微纳米气泡发生装置继续向所述储水装置中供给微纳米气泡;若所述第一tds探针检测的tds值小于系统设定值,则所述单向阀关闭,所述微纳米气泡发生装置停止向所述储水装置中供给微纳米气泡。

进一步的,所述新型净水装置还包括自洗过程,所述自洗过程的控制方法为:当所述第二tds探针检测到的tds值超过系统设定值,则所述电磁三通阀将所述初级过滤器组件与所述ro反渗透膜过滤器之间的通路关闭、将所述储水装置与所述ro反渗透膜过滤器之间的通路打开,所述废水比组合阀全开,所述存储装置中的净化水在所述增压泵的作用下流向所述ro反渗透膜过滤器、并冲洗所述ro反渗透膜过滤器,再从所述第二废水管流出。

进一步的,所述自洗过程的控制方法还包括:所述储水装置内的净化水向所述ro反渗透膜过滤器供水t2时间后,所述控制器控制所述电磁三通阀将所述初级过滤器组件与所述ro反渗透膜过滤器之间的通路打开、将所述储水装置与所述ro反渗透膜过滤器之间的通路关闭,所述废水比组合阀处于一定废水比开口位置,所述第二tds探针检测到从所述ro反渗透膜过滤器流出净化水的tds值,此时若所述第二tds探针检测的tds值超过系统设定值,则所述控制器控制所述电磁三通阀将所述初级过滤器组件与所述ro反渗透膜过滤器之间的通路关闭、将所述储水装置与所述ro反渗透膜过滤器之间的通路打开,所述废水比组合阀全开,所述储水装置继续向所述ro反渗透膜过滤器供水;若所述第二tds探针检测的tds值小于系统设定值,则所述电磁三通阀就关闭所有通路,所述废水比组合阀处于一定废水比开口位置,所述储水装置停止向所述ro反渗透膜过滤器供水。

进一步的,所述新型净水装置还包括储水排废过程,所述储水排废过程的控制方法为:所述新型净水装置经过n次所述储水净化过程后,所述控制器自动开启所述储水排废过程,所述第一电磁阀打开,所述储水装置内上层含有杂质的废水从所述第一废水管流出。

进一步的,所述储水排废过程的控制方法还包括:设定排废时间t3,所述储水排废过程开启后经过排废时间t3后自动关闭。

与现有技术相比,本发明的优点和积极效果是:

本发明提出一种新型净水装置及其控制方法,ro反渗透膜过滤器并联设置的储水装置,储水装置连接有微纳米气泡发生装置,该净水装置包括储水过程、出水过程及储水净化过程。微纳米气泡发生装置对储水装置进行定期的净化,以进一步提高储水装置中水的净化度,为用户提供更高品质的饮水。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1为本发明实施例新型净水装置的原理结构示意图。

其中,01-水管,02-低压开关,03-第二废水管,04-pp滤芯,05-进水电磁阀,06-前置活性炭滤芯,07-电磁三通阀,08-第一废水管,09-第一电磁阀,10-第一tds探针,11-储水装置,12-单向阀,13-软管,14-微纳米气泡发生装置,15-第二电磁阀,16-后置活性炭滤芯,17-第三电磁阀,18-高压开关,19-第二tds探针,20-增压泵,21-ro反渗透膜过滤器,22-废水比组合阀。

具体实施方式

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

本发明公开一种新型净水装置,参照图1,包括控制器、通过水管01依次连接的初级过滤器组件和ro反渗透膜过滤器21、进水口及直饮水口,初级过滤器组件与进水口连接,ro反渗透膜过滤器21与直饮水口连接,ro反渗透膜过滤器21的进水口侧设有增压泵20。还包括有与ro反渗透膜过滤器21并联设置的储水装置11,储水装置11连接有微纳米气泡发生装置14。储水装置11、初级过滤器组件及ro反渗透膜过滤器21通过电磁三通阀07连接,储水装置11与电磁三通阀07之间设有第一tds探针10,储水装置11的出水口侧设有第二电磁阀15,直饮水口的进水口侧设有第三电磁阀17,增压泵20、第一tds探针10、电磁三通阀07、第二电磁阀15及第三电磁阀17分别与控制器信号连接。

电磁三通阀07用于控制初级过滤器组件与ro反渗透膜过滤器21之间、以及储水装置11与ro反渗透膜过滤器21之间的连通或关闭。第二电磁阀15用于控制储水装置11与直饮水口之间的连通或关闭。第三电磁阀17用于控制直饮水口的出水或停水。第一tds探针10用于检测从储水装置11流出的净化水的tds值。控制器用于控制整个净水装置内的阀、传感器等元器件的开启与关闭。

进一步的,ro反渗透膜过滤器21的出水口侧设有第二tds探针19,第二tds探针19用于检测从ro反渗透膜过滤器21流出的净化水的tds值。第二tds探针19的出水口侧设有高压开关18,高压开关18与控制器信号连接,当储水装置11中的水压达到系统设定值时,高压开关18断开;当储水装置11中的水压小于系统设定值时,高压开关18闭合。储水装置11连接有第一废水管08,第一废水管08连接有第一电磁阀09,第一电磁阀09与控制器信号连接,当储水装置11内的储水历经一段时间后,第一电磁阀09打开,储水装置11内上层含有杂质的废水从第一废水管08流出,以保证储水装置11内的水质。ro反渗透膜过滤器21设置有第二废水管03,第二废水管03连接有废水比组合阀22,废水比组合阀22根据阀口的开口大小调节废水比,废水比组合阀22与控制器信号连接。ro反渗透膜过滤器21本身内部需要有压力才能出净水,也就是说第二废水管03与外部水管是直接接通的,通过调节第二废水管03的开口大小来调节废水比,也就是净水与废水的比例,因此当废水比组合阀22全部打开时,水完全从第二废水管03流出来。储水装置11与微纳米气泡发生装置14之间通过软管13连接,软管13上设有单向阀12,以防止储水装置11内的净水回流至微纳米气泡发生装置14内。

初级过滤器组件包括依次连接的pp滤芯04和前置活性炭滤芯06,pp滤芯04与进水口之间设有低压开关02,pp滤芯04和前置活性炭滤芯06之间设有进水电磁阀05,低压开关02和进水电磁阀05分别与控制器信号连接。pp滤芯04主要用于过滤掉水中的铁锈、砂石等大颗粒杂质,前置活性炭滤芯06主要用于去除水质余氯、细微杂质及异味,ro反渗透膜过滤器21主要用于去除大部分的重金属离子、细菌、病毒及有机物等。在直饮水口的进水口侧还设有后置活性炭滤芯16,主要用于增加水的口感。

pp滤芯04与进水口之间设有低压开关02。当自来水停水或pp滤芯04堵塞等原因造成泵空吸时低压开关02断开,提供电信号给控制器,净水装置停止制水。

pp滤芯04和前置活性炭滤芯06之间设有进水电磁阀05,当净水装置开始制水时,进水电磁阀05开启,进水口端流入自来水;当净水装置停止制水时,进水电磁阀05关闭,切断系统水源。

上述净水装置包括有储水过程、出水过程、储水净化过程、自洗过程及储水排废过程,以下对各个过程的控制方法进行详述。

储水过程的控制方法为:储水过程是指经初级过滤器组件和ro反渗透膜过滤器21过滤后的净化水流向储水装置11内储水的过程。具体的,电磁三通阀07将初级过滤器组件与ro反渗透膜过滤器21之间的通路打开、将ro反渗透膜过滤器21与储水装置11之间的通路关闭、第二电磁阀15打开、第三电磁阀17关闭,从进水口流入的自来水依次流经初级过滤器组件、增压泵20、ro反渗透膜过滤器21、第二电磁阀15进入储水装置11。当储水装置11中的水压达到系统设定值时,高压开关18断开,系统停止向储水装置11内储水;当储水装置11中的水压小于系统设定值时,高压开关18闭合,系统向储水装置11内储水。储水装置11内的水压可以通过设于储水装置11内的压力传感器进行检测。

出水过程的控制方法为:出水过程是指从直饮水口出水供用户使用的过程。具体的,电磁三通阀07将初级过滤器组件与ro反渗透膜过滤器21之间的通路打开、将ro反渗透膜过滤器21与储水装置11之间的通路关闭,第二电磁阀15和第三电磁阀17打开,储水装置11内的净化水经第二电磁阀15和第三电磁阀17从直饮水口流出。当用户选择出水时,储水装置11内的净化水经第二电磁阀15和第三电磁阀17向直饮水口供水,并且当储水装置11内水压小于系统设定值时,高压开关18闭合,从ro反渗透膜过滤器21流出的净化水经第三电磁阀17进入直饮水口。当储水装置11内水压小于系统设定值时,说明此时储水装置11内的储水较少,不够用户的用水需求,那么此时从ro反渗透膜过滤器21流出的净化水起到了补充水源的作用,以满足用户的用水需求。

储水净化过程的控制方法为:储水净化过程是指对储水装置11内的水进行净化的过程,具体的,电磁三通阀07将初级过滤器组件与ro反渗透膜过滤器21之间的通路关闭、将储水装置11与ro反渗透膜过滤器21之间的通路打开,废水比组合阀22全开,储水装置11中的净化水在增压泵20的作用下流向ro反渗透膜过滤器21,从第二废水管03流出,只要第一tds探针10检测到净化水的tds值,电磁三通阀07就关闭所有通路,此时若第一tds探针10检测的tds值超过系统设定值,则单向阀12打开,微纳米气泡发生装置14向储水装置11中供给微纳米气泡。气泡在水中上升时与水产生摩擦,吸附水中的细菌、病毒及有机污染物等。水中悬浮物由于气泡的吸引与水产生分离,随着气泡上升到水的上部。随着气泡上升,气泡体积缩小,内压增大,破裂产生大量强氧化分解的自由基,去除重金属离子,杀死细菌、病毒及有机污染物等,从而对储水装置11内的水进行净化。

系统设置储水净化过程的间隔启动时间t0,控制器每间隔t0时间会自动启动储水净化过程,以对储水装置内的水进行定期净化。本实施例t0设置为3天。

净化过程中,当微纳米气泡装置14向储水装置11内打t1时间的气泡后,控制器控制电磁三通阀07将ro反渗透膜过滤器21与储水装置11之间的通路打开,废水比组合阀22全开,储水装置11中的净化水在增压泵20的作用下流向ro反渗透膜过滤器21,只要第一tds探针10检测到净化水的tds值,电磁三通阀07就关闭所有通路,此时若第一tds探针10检测的tds值超过系统设定值,说明储水装置11内的水不符合净化要求,则单向阀12打开,微纳米气泡发生装置14继续向储水装置11中供给微纳米气泡;若第一tds探针10检测的tds值小于系统设定值,说明储水装置11内的水符合净化要求,则单向阀12关闭,微纳米气泡发生装置14停止向储水装置11中供给微纳米气泡。

自洗过程的控制方法为:自洗过程是指利用储水装置11内的储水对ro反渗透膜过滤器21进行冲洗的过程,具体的,当第二tds探针19检测到的tds值超过系统设定值,说明从ro反渗透膜过滤器21流出的水质不满足净化要求,需要对ro反渗透膜过滤器21进行冲洗净化,电磁三通阀07将初级过滤器组件与ro反渗透膜过滤器21之间的通路关闭、将储水装置11与ro反渗透膜过滤器21之间的通路打开,废水比组合阀22全开,储水装置11中的净化水在增压泵20的作用下流向ro反渗透膜过滤器21、并冲洗ro反渗透膜过滤器21,冲洗后的废水再从第二废水管03流出。

在自洗过程中,储水装置11内的净化水向ro反渗透膜过滤器21供水t2时间后,控制器控制电磁三通阀07将初级过滤器组件与ro反渗透膜过滤器21之间的通路打开、将储水装置11与所述ro反渗透膜过滤器21之间的通路关闭,废水比组合阀22处于一定废水比开口位置,第二tds探针19检测到从ro反渗透膜过滤器21流出净化水的tds值,此时若第二tds探针19检测的tds值超过系统设定值,说明从ro反渗透膜过滤器21流出的水不满足净化要求,仍需要对ro反渗透膜过滤器21继续进行冲洗,控制器控制电磁三通阀07将初级过滤器组件与ro反渗透膜过滤器21之间的通路关闭、将储水装置11与ro反渗透膜过滤器21之间的通路打开,废水比组合阀22全开,储水装置11继续向ro反渗透膜过滤器21供水,继续对ro反渗透膜过滤器21进行冲洗;若第二tds探针19检测的tds值小于系统设定值,说明从ro反渗透膜过滤器21流出的水满足净化要求,电磁三通阀07就关闭所有通路,废水比组合阀22处于一定废水比开口位置,储水装置11停止向ro反渗透膜过滤器21供水,停止对ro反渗透膜过滤器21的冲洗。

储水排废过程的控制方法为:储水装置11内的水在历经一段时间后,其上层会堆积一些杂质,储水排废过程是指将含有杂质的上层废水排掉,以保证储水装置11内水的净化度。具体的,新型净水装置经过n次储水净化过程后,控制器自动开启储水排废过程,第一电磁阀09打开,储水装置11内上层含有杂质的废水从第一废水管08流出。储水排废过程的停止实现方法为:设定排废时间t3,储水排废过程开启后经过排废时间t3后自动关闭

最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1