烯属不饱和化合物转化为醇的加氢甲酰化方法

文档序号:4910247阅读:428来源:国知局
专利名称:烯属不饱和化合物转化为醇的加氢甲酰化方法
技术领域
本发明涉及一种通过在催化剂存在下烯属不饱和化合物与一氧化碳和氢反应而使烯属不饱和化合物加氢甲酰化的方法。
烯属不饱和化合物加氢甲酰化形成醇在工业上是相当重要的。这种方法在工业操作上已经进行了几十年,并且近年来已经做了很多开发工作,以优化反应条件、催化剂体系和设备。虽然对于希望反应产品的更高产率和选择性而言,已经取得了明显改善,但仍感觉到在某些方面需要进一步改进该方法。
正如US 3,418,351中所公开,传统的操作模式基于通过应用清洗物流的循环溶液回收羰基钴烃基叔膦复合物。按照这种方法,反应器的内容物流过一个汽提塔,在其中氢气、一氧化碳和烯属不饱和化合物被排放至循环压缩机并返回反应器。醇产品从汽提塔的塔顶采出,并且汽提塔的塔底为催化剂复合物和被称为重组分的高沸点副产品的溶液。塔底溶液循环至反应器,但是为了防止重组分的累积,这股物流的至少一部分进行排出过程,以使催化剂复合物与重组分分离。遗憾的是,这种排出过程会造成活性催化剂的大量损失,这是因为这种活性催化剂不能容易地与重组分完全分离。因为催化剂是该方法最昂贵的组分,因此需要一种方法来阻止活性催化剂复合物的这种损失。
因此本发明的目的是提供一种在循环过程中不会造成催化剂大量损失的方法,并且这种方法能尽可能地阻止重组分的形成。
因此本发明涉及一种烯属不饱和化合物转化为醇的加氢甲酰化方法,包括第一步,在高温下在反应器中使烯属不饱和化合物、一氧化碳、氢和溶解在溶剂中的含膦钴加氢甲酰化催化剂反应;第二步,使包含醇和重组分的混合物与包含催化剂和溶剂的溶液分离;和第三步,使所述溶液循环回反应器。在本发明的一个优选方法中,膦连接在非离子极性部分上,选择溶剂以溶解催化剂,并在比反应温度更低的温度下与醇形成两相液体体系。
按照本发明,应用一种溶剂在反应温度下与加氢甲酰化反应的所有反应组分形成均一的单液相,该液相包括烯属不饱和化合物、溶解的一氧化碳、溶解的氢、含膦的钴加氢甲酰化催化剂,以及在反应过程中形成的醇产品。但是,在反应混合物冷却至比反应温度低的温度,如室温或优选稍高的温度下,反应混合物形成两相液体体系,其中一相包含溶剂和催化剂,而另一相包含在加氢甲酰化反应过程中形成的醇产品和重组分。可以通过简单的试管评估试验容易地确定合适的溶剂,包括确定在室温下是否与醇形成两相体系,而当加热至反应温度时该体系是否转化为单相体系。合适的溶剂可以选自含酰胺-、酰亚胺-、砜-、吡咯烷-和咪唑-的溶剂、和含氮的芳族溶剂、以及它们的混合物。最优选为环丁砜和包含环丁砜的混合物。
用作原料的烯属不饱和化合物优选为每个分子具有2-100个碳原子的烯烃或其混合物。它们每个分子可以包含一个或多个双键。优选为具有5-60个碳原子的内烯烃,更优选为6-30个碳原子的内烯烃,或其混合物。这种烯烃混合物很容易商购得到,例如乙烯低聚方法的产品随后进行双键异构化和歧化反应而得到的烯烃混合物。在本发明的方法中,可以以较高速率且几乎完全转化使这些内烯烃加氢甲酰化,所述内烯烃通常为每个分子含2-100个碳原子的直链内烯烃的混合物,或者这种混合物的更接近的沸点馏分。其例子有直链C6-C8内烯烃的混合物,和直链C10-C14内烯烃的混合物。
也可以应用取代的烯烃,例如不饱和羧酸、这些酸的酯、或羧酸的不饱和酯如乙酸烯丙酯,或相应的腈、酰胺或其卤化物,以及类似物。
如果希望,可以应用支链烯烃如丙烯三聚物或异构的丁烯二聚物(如DIMERSOLTM),但是,加氢甲酰化产品当然也含有支链结构。
另外,烯属不饱和聚合原料,如无规聚烯烃如″Shube混合物″(C16烯烃低聚物的混合物),可以被转化为令人感兴趣的醇(用作合成润滑剂、官能化添加剂等的中间体)。
另外,可以应用α-烯烃如 1-辛烯和丙烯和二烯烃如降冰片二烯、二环戊二烯、1,5-己二烯和1,7-辛二烯。虽然二烯烃可以形成单加氢甲酰化的产品,但其(主要)产生二加氢甲酰化的产品。
一氧化碳和氢可以以等摩尔比率或非等摩尔比率提供,例如其比率可以为5∶1至1∶5,更典型地为3∶1至1∶3。它们优选以2∶1至1∶2的比率提供。
加氢甲酰化反应可以适当地在适中反应条件下实施。在整个说明书中所应用的术语″高温″指比室温高的任何温度。推荐的温度为50-200℃,优选的温度为70-160℃。反应压力为5-100bar是优选的。可以选择更低或更高的压力,但不认为其特别有利。另外,较高的压力需要特殊的设备条件。
本发明方法优选在具有通式Co-L的含膦钴加氢甲酰化催化剂存在下进行,其中L为配体,其代表R1R2-P-A-B,其中R1和R2独立地为具有C1-C12碳原子的烃基,或者与磷原子P一起形成具有C6-C20碳原子的环状烃基部分;所述配体可以被取代,并且A-B为具有包含非极性间隔基A和极性部分B的非离子极性部分的基团,其中所述间隔基A具有通式CnH2n,其中n为1-12,或为环状基团CnH2n-2,其中n为6-12,或为芳基CnHn-2,其中一个或多个碳原子可以被N、O和/或C=O替代。
在由R1R2表示的有机桥联基团中,优选所有桥联基团均为碳原子。R1和R2优选与磷原子P一起形成环状烃基部分。由R1和R2一起表示的二价(任选被取代)环状基团一般包含至少5个环原子,优选含有6-9个环原子。更优选地,环状基团包含8个环原子。如果有的话,所述取代基通常为具有1-4个碳原子的烷基。通常所有的环原子均为碳原子,但是也不排除在环中含有一个或两个杂原子如氧或氮的二价环状基团。合适二价环状基团的例子有1,4-亚环己基、1,4-亚环庚基、1,3-亚环庚基、1,2-亚环辛基、1,3-亚环辛基、1,4-亚环辛基、1,5-亚环辛基、2-甲基-1,5-亚环辛基、2,6-二甲基-1,4-亚环辛基、2,6-二甲基-1,5-亚环辛基和亚柠烯基(limonenylene)。R1和R2也可以独立地为烷基如乙基、异丙基、仲丁基和叔丁基、环烷基如环戊基和环己基、芳基如苯基和甲苯基,并且R1和R2可以为二价基团如亚己基。
优选的二价环状基团选自1,4-亚环辛基、1,5-亚环辛基及其甲基(二)取代衍生物。
也可以应用包含不同二价环状基团的配体的混合物,例如具有1,4-亚环辛基的配体和具有1,5-亚环辛基的配体的混合物。
A-B为具有包含非极性间隔基A的非离子极性部分的基团。对催化活性来说A的性质不是很关键,并且可以为任何的亚烷基、亚环烷基或芳基间隔基。所述间隔基可以被取代或者可以含有杂原子、羰基和类似物。优选的间隔基为CnH2n,其中n为1-12,或为环状基团CnH2n-2其中n为6-12,或为芳基CnHn-2,其中一个或多个碳原子可以被N、O和/或C=O替代。
B可以为任何的极性非离子基团。优选的B包括酰胺或酰亚胺基团,优选为邻苯二甲酰亚胺基团。最优选的为具有如下结构的配体 其中n为1-3。这种配体是一种新的化合物,也打算对其进行专利保护。
可以通过本领域中公知的方法来制备这些配体。例如,有机溴或碘B-A-Hal可以与膦H-PR1R2反应以得到R1R2-P-A-B,其中A和B具有前面给出的意义,并且Hal代表溴或碘,其中R1和R2也具有前面给出的意义。
作为非限定性实例,制备如下邻苯二甲酰亚胺配体,其中n=1,2,或3
所得到的HBr盐(即Hal为Br)用丙酮洗涤,在水中用碱中和,并用甲苯萃取。整个产品的产率约为50%。
类似地,分别由吡咯烷醇和苯甲酰胺衍生物合成吡咯烷和苯甲酰胺衍生物,例如 n=2或3和 或 其中所应用的催化剂体系的量不是很关键,可以在很宽范围内变化。通常用量为每摩尔烯属不饱和化合物10-8-10-1、优选为10-7-10-2摩尔原子的钴金属基团。在催化剂体系中组分的量通常进行适当选择,从而每摩尔金属钴原子基团应用0.5-6摩尔双齿配体,优选为1-3摩尔。
在本发明方法中应用的溶剂的量可以在很宽范围内变化。在每一种情况下确定溶解催化剂和形成两相液体反应介质所需的溶剂最优量在本领域的熟练技术人员的能力范围之内。在下文中提供的实验结果也可以作为优选应用的溶剂量的指示。
本发明的方法特别适用于在高速率下由内烯烃制备醇,特别是通过应用上文定义的基于钴的催化剂体系来进行。
如下文所述,将通过非限定性例子描述本发明。
实施例在一个250ml的Hasteloy C高压釜中,向20ml C11/C12SHOP(Shell高级烯烃方法)链烯、10ml环丁砜和25ml EHA的溶液中加入0.5毫摩尔八羰基二钴(Co2(CO)8)和1.5毫摩尔配体L(参见下表)在5ml 2-乙基己醇(EHA)中的溶液。封闭高压釜,用50bar的氮气吹扫两次,随后加入20bar的CO和40bar的H2。加热高压釜至160℃,并在该温度下保持7小时。冷却高压釜至室温并泄压。产品用GC技术分析,并且针对环丁砜和醇/重产品层均实施钴分析,所述钴分析应用原子吸收光谱法(AAS)在配备有Varian Techtron汞中空阴极灯的PerkinElmer 3100上实施,所述设备在252.1nm下操作并应用乙炔/氧火焰。样品用甲醇稀释并用标定曲线定量分析。
得到如下结果表
*所观察的Co镀层配体1=环辛基=P-CH2-CH2-2-吡咯烷酮配体2=环辛基=P-CH2-CH2-N-邻苯二甲酰亚胺配体3=环辛基=P-CH2-CH2-N-苯甲酰胺配体4=环辛基=P-C20H42(现有技术中的配体)因此可知与现有技术的配体相比,用本发明的配体在类似的醇产生和重组分副产品生成条件下,在溶剂中保存的催化剂量比产品层中保存的量要更大一些。
合成实施例概述所有与空气敏感化合物或中间体的反应均应用Schlenk技术在氮气气氛下实施。所有原料均是商购的,并且不经过干燥就应用,除非另有说明。
最初产品9-磷杂双环[3.3.1]壬烷和9-磷杂双环[4.2.1]壬烷(SH/AH5)由Cytec作为2∶1(SH/AH5)的异构体混合物在甲苯(1)中的溶液购得。
实施例11-(9-磷杂环壬基)-3-N-嘧啶基丙烷(2)(配体2)的合成在回流条件下加热13.4g N-(3-溴丙基)苯邻二甲酰亚胺(50毫摩尔)、15ml(1)(60毫摩尔)和150ml脱气的乙腈的混合物12小时,所述混合物形成白色悬浮液。在加热的过程中,悬浮液逐渐变清,并慢慢形成(2)的HBr盐的沉淀。在玻璃粉上过滤悬浮液,并用丙酮(PA)洗涤三次以脱除过量(1)。将盐转移至一个锥形烧瓶中并在约100ml的次等水中溶解,这之后用NH4OH中和HBr盐,并用酚酞作指示剂。用30ml甲苯萃取白色沉淀物两次。混合的有机层用水洗涤,用Na2SO4干燥并在真空下浓缩。产品从甲苯/甲醇中结晶出来,并且白色固体(9.3g,产率56%)被确认为纯(2)。
实施例21-(2-氯乙基)-2-吡咯烷酮(pyrrolidinone)(3)(配体1)的合成15ml亚硫酰氯(201毫摩尔)在10℃下保持并搅拌,并在两小时内加入20ml 1-(2-羟基乙基)-2-吡咯烷酮(177毫摩尔)。形成非常粘稠的白色悬浮液,其被加热至25℃。将混合物在25℃下搅拌两小时,随后被加热至65℃,并在真空(125mbar)下搅拌以脱除所形成的SO2和未反应的亚硫酰氯。在加热过程中悬浮液变为棕色。悬液液用1M的NaOH/H2O中和,并且用30ml醚萃取(3)三次。混合的有机层用水洗涤,用Na2SO4干燥并在真空下浓缩。得到白色粉末(21.2g,产率81%),其用1H-NMR确认为纯(3)(9.3g,产率56%)。
实施例31-(2-碘乙基)-2-吡咯烷酮(pyrrolididinone)(4)的合成制备15g NaI(100毫摩尔)在约100ml丙酮(PA)中的饱和溶液,并加入到13.9g(3)(94毫摩尔)中。在回流条件下使所得的已经过充分搅拌的溶液加热30分钟。形成NaCl沉淀,其被过滤掉。滤液在真空下蒸发,在过程中黄色粉末发生升华。这将造成不完全干燥,并造成不能准确确定产率。1H-NMR分析表明形成了纯度超过90%的(4)。
实施例41-(9-磷杂环壬基)-2-N-吡咯烷酮乙烷(5)的合成在回流条件下加热充分搅拌的如下物质的混合物12小时(4)(约90毫摩尔在约10ml丙酮中)、30ml(1)(120毫摩尔)和150ml脱气乙腈,该混合物形成白色悬浮液。在加热过程中悬浮液逐渐变清,并用慢慢形成(5)的H1盐的沉淀。在玻璃粉上过滤悬浮液,并用丙酮(PA)洗涤三次以脱除过量(1)。重复该过程,因为过滤后将会沉淀更多的盐。用1H-和31P-NMR分析盐的样品,确定为(5)的H1盐。盐被转移至一个充分搅拌的锥形烧瓶中并在约100ml次等水中溶解,随后H1盐用NH4OH中和,并用酚酞作指示剂。用30ml甲苯萃取白色沉淀物两次。混合的有机层用水洗涤,用Na2SO4干燥并在真空下浓缩。产品从甲苯/甲醇中结晶出来,并且白色固体(9.2g,产率40%)用1H-和31P-NMR分析确定为95%纯的(5)(5%氧化物)。
实施例5N-(2-碘乙基)-苯甲酰胺(6)的合成制备15g NaI(100毫摩尔)在约100ml丙酮(PA)中的饱和溶液,并加入到18.2g N-(2-氯乙基)-苯甲酰胺(100毫摩尔)中。所得的充分搅拌的溶液首先变蓝,但是在一分钟之内又变为亮黄,并在回流条件下加热一整夜。实施1H-NMR分析,其显示超过80%的物质转化为(6)。形成NaCl沉淀,其被过滤掉。滤液在真空下蒸发,在过程中黄色粉末发生升华。这将造成不完全干燥,并造成不能准确确定产率。1H-NMR分析表明形成了纯度超过90%的(6)。
实施例6N-(2-(9-磷杂环壬基)-乙基)-苯甲酰胺(7)的合成在回流条件下加热充分搅拌的如下物质的混合物16小时(6)(约75毫摩尔在约30ml丙酮中)、30ml(1)(120毫摩尔)和100ml脱气乙腈,该混合物形成白色悬浮液。所有溶剂用N2流蒸发,得到非常粘稠的黄棕色混合物。为了改善处理,用20ml正己烷稀释混合物,并随后用80ml热水萃取三次。萃取物的13C-和31P-NMR-分析显示存在有(7)的H1盐。混合的水层用20ml正己烷洗涤,所述盐用NH4OH中和,并用酚酞作指示剂。用醚和甲苯的混合物萃取所得的非常粘稠的白色液滴两次。混合的有机层用水洗涤,用Na2SO4干燥并在真空下浓缩。所得的非常粘稠的混浊白色液体用1H-、13C-和31P-NMR分析,随后其变清,形成1∶1(摩尔/摩尔)的未氧化(7)和甲苯的混合物。校正后,计算产量为18.4毫摩尔(24.5%)。
实施例7N-(3-氯丙基)-2-吡咯烷酮(8)的合成在10℃下保持并搅拌8.5ml亚硫酰氯(115毫摩尔),并在1.5小时内加入10ml N-(3-羟基丙基)-2-吡咯烷酮(70毫摩尔)。形成非常粘稠的白色悬浮液,其被加热至25℃。混合物在25℃下搅拌20分钟,随后被加热至65℃,以脱除所形成的SO2和未反应的亚硫酰氯。悬液液用1M的NaOH/H2O中和,并且用30ml醚萃取(8)三次。混合的有机层用水洗涤,用Na2SO4干燥并在真空下浓缩。得到白色粉末(7.4g,产率65%),其用1H-NMR被鉴定为纯(8)。
实施例8N-(3-碘丙基)-2-吡咯烷酮(9)的合成制备7.5g NaI(50毫摩尔)在约50ml丙酮(PA)中的饱和溶液,并加入到7.4g(8)(45毫摩尔)中。在回流条件下加热所得的充分搅拌的悬浮液,并且1小时后的1H-NMR分析表明只有少量物质转化为(9),在回流条件下在整个周末对其加热。实施1H-NMR分析,其结果显示超过80%的物质转化为(6)。形成NaCl沉淀,其被过滤掉。滤液在真空下蒸发,并得到白色粉末(10g,87%)。
实施例91-(9-磷杂环壬基)-3-N-吡咯烷酮(pyrrolidon)丙烷(10)的合成在回流条件下加热充分搅拌的如下物质的混合物16小时10g(9)(40毫摩尔)、15ml(1)(60毫摩尔)和150ml脱气乙腈,该混合物形成白色悬浮液。没有检测到沉淀,但是在CDCl3和D2O中的31P-NMR分析表明在溶液中存在有(10)的盐(信号表明为+12ppm)。因而当所有溶剂用N2物流蒸发时,得到非常粘稠的褐色悬浮液。为了改善处理,用20ml正己烷稀释混合物,并随后用60ml热水萃取三次。混合的水层用20ml正己烷洗涤,所述盐用NH4OH中和,并用酚酞作指示剂,并且用醚萃取三次。混合的有机层用水洗涤,用Na2SO4干燥并在真空下浓缩,留下清亮的黄色液体(5.1g,48%)。13C-和31P-NMR显示形成了纯的(10)。
权利要求
1.一种使烯属不饱和化合物转化为醇的加氢甲酰化方法,包括第一步,在高温下在反应器中使烯属不饱和化合物、一氧化碳、氢和溶解在溶剂中的含膦钴加氢甲酰化催化剂反应;第二步,使包含醇和重组分的混合物与包含催化剂和溶剂的溶液分离;和第三步,使所述溶液循环回反应器。
2.权利要求1的方法,其中所述含膦钴加氢甲酰化催化剂中的膦连接在非离子极性部分上,并且其中所述溶剂能够在比升高的反应温度更低的温度下溶解催化剂,并与醇形成两相液体体系。
3.权利要求1或2的方法,其中所述含膦钴加氢甲酰化催化剂具有通式Co-L,其中L为代表R1R2-P-A-B的配体,其中R1和R2独立地为具有C1-C12碳原子的烃基,或与磷原子P一起形成具有C6-C20碳原子的环状烃基部分;所述配体可以被取代,并且A-B为具有包含非极性间隔基A和极性部分B的非离子极性部分的基团,其中所述间隔基A具有通式CnH2n,其中n为1-12,或为环状基团CnH2n-2,其中n为6-12,或为芳基CnHn-2,其中一个或多个碳原子可以被N、O和/或C=O替代。
4.权利要求3的方法,其中R1和R2与磷原子P一起形成环状烃基部分,并且B包含酰胺或酰亚胺基团,优选为邻苯二甲酰亚胺基团。
5.权利要求1-4中任一项的方法,其中所述含膦钴加氢甲酰化催化剂具有如下结构的配体 其中n为1-3。
6.权利要求1-5中任一项的方法,其中所述第一步在温度为50-200℃且压力为5-100bar下实施。
7.权利要求1-6中任一项的方法,其中所述溶剂选自酰胺、酰亚胺、砜、吡咯烷、咪唑和含N芳族溶剂或其混合物。
8.权利要求7的方法,其中所述溶剂为环丁砜或包含环丁砜的混合物。
9.一种具有如下结构配体的环状含磷酰基钴加氢甲酰化催化剂 其中n为1-3。
全文摘要
本发明涉及一种烯属不饱和化合物转化为醇的加氢甲酰化方法,包括第一步,在高温下在反应器中使烯属不饱和化合物、一氧化碳、氢和溶解在溶剂中的含膦钴加氢甲酰化催化剂反应;第二步,使包含醇和重组分的混合物与包含催化剂和溶剂的溶液分离;和第三步,使所述溶液循环回反应器。
文档编号B01J23/75GK1729152SQ200380106676
公开日2006年2月1日 申请日期2003年12月16日 优先权日2002年12月17日
发明者E·德伦特, J·C·L·J·苏克拜克 申请人:国际壳牌研究有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1