一种用于工业溶剂脱水用管式膜材料的制备方法与流程

文档序号:17082654发布日期:2019-03-09 00:27阅读:118来源:国知局
本发明涉及一种膜材料的制备方法,特别涉及一种用于工业溶剂脱水用的管式陶瓷膜的制备方法。
背景技术
:在石油化工、精细化工、医药化工、日用化工和新能源等领域中无水级的有机溶剂是必不可少的,因此将有机溶剂中少量或微量的水分离,从而得到无水级有机溶剂是上述领域中最重要也是最常见的单元过程之一。当有机溶剂和水的混合物达到近沸点、恒沸点时,由于共沸平衡的制约,采用简单的蒸馏方法无法实现有机溶剂和水的进一步分离,传统工艺是采用恒沸蒸馏、萃取精馏、加压精馏或沸石吸附等技术将其中的水分离出去,进而获得无水级的有机溶剂,这些技术的共同点是都需要将待脱水的物料体系完全汽化,其消耗的相变潜热巨大,高能耗导致运行成本居高不下。近几十年发展起来的渗透汽化膜技术由于其在有机溶剂脱水应用中表现出来的低能耗、不引入第三组分、排污少等优势,得到了人们的普遍认同。而在目前已经工业化的渗透汽化膜中,naa沸石膜因其规整的孔道结构和良好的物化稳定性得到了越来越多的关注,国内外陆续有多家企业相继开展了此类沸石膜的研究开发和工业化应用。对于制备naa沸石膜来说,常见的制备方法有原位合成法和二次生长法,相对于原位合成法,二次生长法对于沸石膜的晶化过程可控性较高,可以在相对短的时间内制备出较为致密、平整的膜层,因此在工业应用多采用此类方法。但是采用二次生长法,需要在水热晶化前在载体上预先涂覆一层晶种然后干燥处理,因此在载体进入反应釜进行水热晶化前需要历经晶种涂覆容器和干燥容器以及多个容器之间的运输。然而,对于工业生产时候需要将多根管式或中空纤维载体一起操作,涂敷在载体上的晶种层极易因为磕碰等因素导致晶种层破裂甚至脱落,从而导致膜生成合格率的降低。因此,亟需一种新的制备方法以克服二次生长法制备naa沸石膜时的种种缺陷。技术实现要素:本发明提供了一种用于工业溶剂脱水用管式膜材料的制备方法,其特征在于其包括以下步骤:(1)将α-氧化铝粉体、naa沸石与造孔剂、粘结剂混合均匀后,经真空练泥后获得的泥料进行挤压成型,并在干燥后进行高温焙烧获得管式载体;(2)以硅源、铝源、氢氧化钠、水为原料制备铸膜液,其中铸膜液摩尔比为al2o3∶sio2∶na2o∶h2o=1∶1-5∶1-10∶100-1000;(3)将步骤(1)中制备的载体抛光处理,与铸膜液一起置于高压反应釜中进行连续流动法原位水热处理以获得管式膜材料。本发明的创新点在于将作为膜晶化晶种的沸石颗粒与制备载体的骨料及相应的添加剂进行混合制备具有诱导晶化成膜功能的特殊的载体。基于该创新点,本发明对骨料的种类进行了选择,在刚玉、高岭土、莫来石、α-氧化铝、γ-氧化铝等多种骨料进行了对比实验发现,α-氧化铝与沸石颗粒的结合度较好。将掺杂的骨料制备成了管式载体,并在其内部原位水热制备出了naa沸石膜。相对于采用晶种涂敷的二次生长,本发明省略了晶种涂敷步骤,有利于工业化方法,而相对于原位生长法,本发明的载体上(及其内部)具有沸石颗粒,有利于降低沸石膜的合成时间并可以有效的控制膜的晶化过程,采用本发明的载体及合成方法,naa沸石膜的晶化时间优选为4-12h,晶化温度优选为50-100℃。由于载体内部孔道内含有一定量的沸石颗粒,如果采用传统的静态水热合成法,在晶化过程载体内部一直浸入铸膜液,那么载体内部也容易生长出沸石从而堵塞载体内部通道减少膜的通量。为此采用连续流动法原位水热合成,即将管式载体的两端通过循环泵与合成液储罐相连以使合成液连续的通入和通出载体,此方法使得铸膜液在管式载体内部快速连续流过,避免铸膜液浸入载体内部从而避免载体孔被堵塞。优选的,所述的α-氧化铝粉体为球形粉体,平均粒径为500-800nm。优选的,所述的naa沸石的粒径为300-400nm。优选的,所述的α-氧化铝粉体与所述的naa沸石的质量比为20:1-5:1。同样的,为保证骨料和沸石颗粒之间的结合程度,本发明对两者之间的粒径大小和含量进行优化选择,发现当α-氧化铝粒径在500-800nm、naa沸石颗粒在300-400nm时制备出的载体效果最佳。优选的,所述的naa沸石是通过微波水热法制备。而传统的水热合成法制备的naa沸石颗粒一般大于2μm,因此优选采用微波水热法制备的naa颗粒,该法制备的颗粒相较于普通水热法,粒径更加均以且粒径较小,通过合理的合成步骤可以将其粒径控制在300-400nm。优选的沸石颗粒合成液以硅酸钠、偏铝酸钠、氢氧化钠和水为原料,配制成组成为1sio2:xal2o3:yna2o:zh2o,其中x=1~6,y=5~60,z=2000-10000,晶化时间为50-110℃,晶化时间为5-20min,更优选的合成液配比为x=1~5,y=10~30,z=5000-10000,晶化时间为50-110℃,晶化时间为5-10min。在此处,合成液的营养物质相对较稀,其有利于制备出较为均一、合适粒径(300-400nm)的naa沸石颗粒(需要指明,在此处微波功率采用500-1500w),该沸石颗粒有利于和骨料混合。但是在载体高温烧结阶段,naa颗粒骨架结构容易坍塌,在sem下呈现“坑”状,不过采用此法制备的沸石膜表面相对平整,可能是坍塌处由于颗粒诱导合成的沸石层更厚,从而导致膜通量相对一般。优选的,所述的naa沸石是通过将原位水热合成的沸石进行球磨,并经沉积筛选后获得。除微波水热外,还可以采用机械破碎的方式将水热合成的naa颗粒(平均粒径2.5μm)粒径缩短至合成的粒径范围。传统的机械破碎方式有研磨、球磨等方式,优选的机械破碎方式为湿法球磨,球磨时间为2-4h,转速为100-500rpm,颗粒溶剂的质量比为1:10-1:200,溶剂优选为乙醇、水。该法制备的颗粒含有大量的无定形物质,其不利于与骨料的结合,可采用沉降方式除去无定形物质,即将球磨悬浮液置于容器静置4h-5h,取下层沉淀物烘干备用,容器水平表面积为0.01-1m2,悬浮液高度为10-50cm。此法制备的沸石颗粒由于骨架结构已经坍塌,因此载体烧结后不会出现“坑”,而且坍塌的沸石颗粒依然具有诱导沸石生长能力。优选的,所述的造孔剂为碳粉、炭黑、聚乙烯醇中一种或多种;所述的粘结剂为石蜡、糊精和纤维素中的一种或多种。具体实施方式为使本发明实现的技术手段、创新特征、达成目的与功效易于明白了解,下面结合实施例对本发明进一步说明。对比例1(1)以微波法合成naa沸石,合成液以硅酸钠、偏铝酸钠、氢氧化钠和水为原料,配制成组成为1sio2:2al2o3:10na2o:5000h2o,晶化时间为80℃,晶化时间为10min,水热合成后,将合成液离心过滤,并水洗干燥,粒径检测其平均粒径为300nm。(2)将平均粒径为800nm的α-氧化铝球形粉体与步骤(1)制备的naa沸石按照质量比为10:1进行混合,并添加造孔剂炭黑、粘结剂石蜡继续混合均匀,在真空练泥机经真空练泥后获得的泥料进行挤压成型,并在干燥后进行高温焙烧获得管式载体,焙烧温度为1350℃。(3)以硅源、铝源、氢氧化钠、水为原料制备铸膜液,其中铸膜液摩尔比为al2o3∶sio2∶na2o∶h2o=1∶2∶5∶200。(4)将步骤(2)中制备的载体抛光处理,并用特氟龙胶带将载体外表面包裹后与铸膜液一起置于高压反应釜中进行原位水热处理,合成温度为100℃,合成时间为3h制备出管式膜材料。(5)合成结束后,将反应釜自然降温,取出管式膜材料,用水清洗、浸泡、干燥。对比例2将自制的naa沸石颗粒(普通水热法制备,粒径3μm)与乙醇以1:100质量比例混合,加入至球磨容器中,设定球磨时间3h,转速为300rpm。球磨结束后将球磨液立即倒入表面积为0.1㎡的柱形容器中使其自然沉降,4h后除去上清液后干燥处理,粒径测试显示其为340nm。(2)将平均粒径为800nm的α-氧化铝球形粉体与步骤(1)制备的naa沸石按照质量比为10:1进行混合,并添加造孔剂炭黑、粘结剂石蜡继续混合均匀,在真空练泥机经真空练泥后获得的泥料进行挤压成型,并在干燥后进行高温焙烧获得管式载体,焙烧温度为1350℃。(3)以硅源、铝源、氢氧化钠、水为原料制备铸膜液,其中铸膜液摩尔比为al2o3∶sio2∶na2o∶h2o=1∶2∶5∶200。(4)将步骤(2)中制备的载体抛光处理,并用特氟龙胶带将载体外表面包裹后与铸膜液一起置于高压反应釜中进行原位水热处理,合成温度为100℃,合成时间为3h制备出管式膜材料。(5)合成结束后,将反应釜自然降温,取出管式膜材料,用水清洗、浸泡、干燥。实施例1(1)以微波法合成naa沸石,合成液以硅酸钠、偏铝酸钠、氢氧化钠和水为原料,配制成组成为1sio2:2al2o3:10na2o:5000h2o,晶化时间为80℃,晶化时间为10min,水热合成后,将合成液离心过滤,并水洗干燥,粒径检测其平均粒径为300nm。(2)将平均粒径为800nm的α-氧化铝球形粉体与步骤(1)制备的naa沸石按照质量比为10:1进行混合,并添加造孔剂炭黑、粘结剂石蜡继续混合均匀,在真空练泥机经真空练泥后获得的泥料进行挤压成型,并在干燥后进行高温焙烧获得管式载体,焙烧温度为1350℃。(3)以硅源、铝源、氢氧化钠、水为原料制备铸膜液,其中铸膜液摩尔比为al2o3∶sio2∶na2o∶h2o=1∶2∶5∶200。(4)将步骤(2)中制备的载体抛光处理,并将载体装入动态水热合成釜中,使管式载体两端通过管路与铸膜液储罐(具有保温和加热功能)相连,管路上设置循环泵,使合成液按照铸膜液储罐—循环泵-合成釜-铸膜液储罐的方式连续的进出管式载体,设定合成温度为100℃,合成时间为3h制备出管式膜材料。(5)合成结束后,将反应釜自然降温,取出管式膜材料,用水清洗、浸泡、干燥。实施例2(1)将自制的naa沸石颗粒(普通水热法制备,粒径3μm)与乙醇以1:100质量比例混合,加入至球磨容器中,设定球磨时间3h,转速为300rpm。球磨结束后将球磨液立即倒入表面积为0.1㎡的柱形容器中使其自然沉降,4h后除去上清液后干燥处理,粒径测试显示其为340nm。(2)将平均粒径为800nm的α-氧化铝球形粉体与步骤(1)制备的naa沸石按照质量比为10:1进行混合,并添加造孔剂炭黑、粘结剂石蜡继续混合均匀,在真空练泥机经真空练泥后获得的泥料进行挤压成型,并在干燥后进行高温焙烧获得管式载体,焙烧温度为1350℃。(3)以硅源、铝源、氢氧化钠、水为原料制备铸膜液,其中铸膜液摩尔比为al2o3∶sio2∶na2o∶h2o=1∶2∶5∶200。(4)将步骤(2)中制备的载体抛光处理,并将载体装入动态水热合成釜中,使管式载体两端通过管路与铸膜液储罐(具有保温和加热功能)相连,管路上设置循环泵,使合成液按照铸膜液储罐—循环泵-合成釜-铸膜液储罐的方式连续的进出管式载体,设定合成温度为100℃,合成时间为3h制备出管式膜材料。(5)合成结束后,将反应釜自然降温,取出管式膜材料,用水清洗、浸泡、干燥。性能试验将对比例1-2和实施例1-2所得的管式膜材料进行渗透汽化实施,试验条件是:操作温度70℃,分离体系是5wt.%的乙醇/水溶液。所得结果如表1所示。表1实施例1-4所合成的管式膜材料的渗透汽化实验结果表1实施例1-4所合成的管式膜材料的渗透汽化实验结果样品选择性通量(kg·h-1·m-2)对比例121101.82对比例222451.68实施例120552.35实施例219562.21从表中可以看出,本发明提供的管式膜材料用于工业醇水分离的选择性〉1900,通量〉1.6kg•h-1•m-2,兼具有高的选择性和渗透通量,具有较好的应用价值,而且采用连续流动法制备的膜相较于静态法制备的膜选择性差距不大,但是通量得到大幅度增加。除上述优选实施例外,本发明还有其他的实施方式,本领域技术人员可以根据本发明作出各种改变和变形,只要不脱离本发明的精神,均应属于本发明所附权利要求所定义的范围。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1