金属泡沫负载型催化剂及其制备方法与流程

文档序号:30011013发布日期:2022-05-11 17:07阅读:241来源:国知局

1.本发明涉及制备负载型催化剂的方法,其包括以下步骤:用铝涂覆镍泡沫体,随后进行热处理以实现镍泡沫和铝之间的合金形成,随后对铝表面进行氧化处理,并施加包含至少一种载体氧化物和至少一种催化活性组分的催化活性层。本发明还涉及可通过该方法获得的负载型催化剂及其在化学转化中的用途。


背景技术:

2.金属泡沫用作催化活性涂层的载体是现有技术已知的。金属载体上的催化活性涂层通常由增加微观表面积的载体氧化物和施加到载体氧化物上的催化活性金属组成(参见例如wo 9511752 a1)。如此获得的整体负载型催化剂可用于多种应用,但它们的可用性受到主要由氧化组分组成的催化活性涂层对金属载体的极差粘附性的限制。在机械应力的情况下并且也可能在负载型催化剂在流通式反应器中运行时,不良的附着力会导致催化活性层的部分脱落,相应地减少催化剂的使用寿命,并可能通过脱落的固体颗粒破坏设备运作。
3.一种替代方法是使用溶胶-凝胶法来涂覆金属泡沫作为催化剂载体。然而,这些方法需要特殊的设备和使用具有高的潜在危险并且难以处理的昂贵试剂。
4.从现有技术已知的用于制备金属泡沫负载型催化剂的另一种方法利用通过原子层沉积(ald)在金属表面上产生相对稳定的氧化物层的能力。例如,us 20120329889 a1公开了一种制备用于fischer-tropsch合成的金属泡沫负载型催化剂的方法,其中通过在金属泡沫上进行原子层沉积(ald)来制备薄的al2o3膜,随后通过浸涂、干燥并然后煅烧施加氧化涂层。us 20120329889 a1明确提到难以在金属泡沫表面和氧化涂层之间实现稳定耦合(参见第[0068]和[0069]段),并且这通过ald施加氧化中间层来实现。然而,us 20120329889 a1中公开的方法确实需要极其复杂的设备。
[0005]
鉴于难以获得稳定的泡沫金属负载型催化剂,本发明的目的是提供一种尽可能简单且适合大量生产的方法,以便由催化惰性金属泡沫体制备具有催化涂层的负载型催化剂。在这种催化剂中,由泡沫基础结构提供的孔不应堵塞并且催化涂层应尽可能简单地施加,但仍然以对金属泡沫体的非常好的粘附性为特征。本发明的方法和通过这些方法可获得的产品满足这种需要。


技术实现要素:

[0006]
根据本发明的用于制备负载型催化剂的方法包括以下步骤:
[0007]
(a)提供由金属镍组成的金属泡沫体a,
[0008]
(b)将含铝粉末mp施加到金属泡沫体a,以获得金属泡沫体ax,
[0009]
(c)对金属泡沫体ax进行热处理,以实现金属泡沫体a与含铝粉末mp之间的合金形成,从而获得金属泡沫体b,
[0010]
其中金属泡沫体ax的热处理中的最高温度在680℃至715℃的范围内,
[0011]
并且其中在680℃至715℃的温度范围内的热处理的总持续时间在5秒和240秒之
间,
[0012]
(d)氧化处理金属泡沫体b,以获得金属泡沫体c,
[0013]
(e)将包含至少一种载体氧化物和至少一种催化活性组分的催化活性层施加到金属泡沫体c的至少一部分表面上,以获得负载型催化剂。
[0014]
在其上首先施加铝、合金化并然后再次部分浸出的镍泡沫体是现有技术中已知的经典raney型催化剂的替代物(参见例如ep 2764916 a1)。如此获得的泡沫体是通常用于氢化反应中的raney型的活化的全金属催化剂。
[0015]
从现有技术中还已知的是在其上首先施加铝并合金化,然后将其氧化的金属泡沫体(参见wen-wen zeng et al.“synthesis and compression property of oxidation-resistant ni-al foams”,acta metallurgica sinica,volume 30,no.10,october 1,2017,pages 965-972)。然而,在wen-wen zeng等人的方法中,最初存在的金属泡沫的整个横截面与铝形成合金(参见第972页,结论),而在本发明的方法中,合金形成仅限于金属泡沫的上层,因此未合金化的区域保留在金属泡沫的中心区域。
[0016]
结合本发明获得的实验结果表明,用于合金形成的热处理的温度条件的选择对结果有相当大的影响。根据本发明的方法可以将合金形成限于金属泡沫的上层,使得非合金化的区域保留在金属泡沫的中心区域。这些未合金化的区域的存在尤其影响所获得的负载型催化剂的机械稳定性。断裂强度/抗压强度随着合金化程度的增加而显著降低,金属泡沫的完全合金化导致在机械应力下趋于断裂的非常脆的负载型催化剂。这一事实具有相当重要的实际意义,因为在工业规模上使用的连续操作的固定床反应器可以具有高达100m3的固定床体积,这意味着,取决于所用固定床的堆积密度和高度,可能存在数公吨的重量压在其下层上。如果用于形成固定床的负载型催化剂在数千小时的操作时间内没有足够的机械稳定性和耐用性来承受这样的重量,这会导致载体结构的破损,并且因此导致催化活性区域的机械故障(催化剂破损)。损坏的材料可能与流体一起从反应器排出到相邻的装置部件中和/或导致固定床结块。在这两种情况下,都会导致设备操作严重中断。
[0017]
结合本发明,金属泡沫体a被理解为是指泡沫形式的金属体。例如在2012年7月15日在线出版的ullmann's encyclopedia of industrial chemistry,section“metallic foams”,doi:10.1002/14356007.c16_c01.pub2中描述了泡沫形式的金属体。具有不同形态特性(孔径和形状、层厚、面密度、几何表面积、孔隙率等)的金属泡沫原则上是合适的。金属泡沫a优选具有400g/m2至1500g/m2范围内的密度,400μm至3000μm、优选400μm至800μm的孔径,和0.5mm至10mm范围内、优选1.0mm至5.0mm的厚度。可以以本身已知的方式进行生产。例如,由有机聚合物制成的泡沫可以首先用镍涂覆,然后通过热解去除聚合物,产生镍泡沫。为了用镍涂覆,由有机聚合物制成的泡沫可以与含有镍的溶液或悬浮液接触。这可以例如通过喷涂或浸渍来完成。也可以通过化学气相沉积(cvd)进行沉积。适用于以泡沫形式生产成型体的聚合物泡沫优选具有在100μm至5000μm、更优选450μm至4000μm、特别是450μm至3000μm范围内的孔径。合适的聚合物泡沫优选具有0.5mm至10mm、更优选1.0mm至5.0mm的层厚。合适的聚合物泡沫优选具有300kg/m3至1200kg/m3的密度。比表面积优选在100m2/m3至20000m2/m3、更优选1000m2/m3至6000m2/m3的范围内。孔隙率优选在0.50至0.95的范围内。
[0018]
在根据本发明的方法的步骤(a)中使用的金属泡沫体a可以具有任何所需的形状,例如立方体、长方体、圆柱体等。金属泡沫体可以替代地形成为例如整块材料。
[0019]
在根据本发明的方法的步骤(b)中可以以多种方式施加含铝粉末mp,例如通过滚压或浸渍使金属泡沫体a与含铝粉末mp的组合物接触,或通过喷涂、散布或倾倒来施加含铝粉末mp的组合物。为此目的,含铝粉末mp的组合物可为悬浮液形式或粉末形式。
[0020]
在根据本发明的方法的步骤(b)中将含铝粉末mp的组合物实际施加到金属泡沫体a之前,优选地通过用粘合剂预先浸渍金属泡沫体a。浸渍可以例如通过喷洒粘合剂或将金属泡沫体a浸入粘合剂中来完成,但不限于这些选择。然后可以将含金属粉末mp的组合物施加到由此制备的金属泡沫体a上。
[0021]
可选地,可以在一个步骤中施加粘合剂和含铝粉末mp的组合物。为此,将含铝粉末mp的组合物在施加之前悬浮在液体粘合剂本身中,或者将含铝粉末mp的组合物和粘合剂悬浮在辅助流体f中。
[0022]
所述粘合剂是通过在100℃至400℃的温度范围内的热处理可以完全转化为气态产物的组合物,其包含促进含铝粉末mp的组合物粘附在金属泡沫体上的有机化合物。所述有机化合物优选地选自:聚乙烯亚胺(pei)、聚乙烯吡咯烷酮(pvp)、乙二醇、这些化合物的混合物。特别优选pei。聚乙烯亚胺的分子量优选在10,000g/mol至1,300,000g/mol的范围内。聚乙烯亚胺(pei)的分子量优选在700,000g/mol至800,000g/mol的范围内。
[0023]
辅助流体f必须能够形成含铝粉末mp的组合物和粘合剂的悬浮液,并通过在100℃至400℃的温度范围的热处理完全转化为气态产物。辅助流体f优选地选自:水、乙二醇、pvp和这些化合物的混合物。当使用辅助流体时,粘合剂通常以1重量%至10重量%范围内的浓度悬浮在水中,随后将含铝粉末mp的组合物悬浮在该悬浮液中。
[0024]
在根据本发明的方法的步骤(b)中使用的含铝粉末mp包含粉状铝,但也可含有有助于增加流动性或水稳定性的添加物。这种添加物必须能够通过在100℃至400℃的温度范围内的热处理完全转化为气态产物。
[0025]
含铝粉末mp优选具有在80重量%至99.8重量%范围内的铝含量。优选的是其中铝颗粒具有不小于5μm且不大于200μm的粒度的粉末。特别优选的是其中95%的铝颗粒的粒度不小于5μm且不大于75μm的粉末。可能的情况是含铝粉末mp除了元素形式的铝组分之外还含有氧化形式的铝组分。该氧化部分通常呈氧化化合物的形式,例如氧化物、氢氧化物和/或碳酸盐。基于含铝粉末mp的总质量,氧化铝的质量比例通常在0.05重量%至10重量%的范围内。
[0026]
在根据本发明的方法的步骤(c)中,进行热处理以实现一种或多种合金的形成。
[0027]
结合本发明获得的实验结果表明,用于合金形成的热处理的温度条件的选择对合金形成的过程有相当大的影响。根据本发明的方法可以将合金形成限于金属泡沫的上层,使得非合金化的区域保留在金属泡沫的中心区域。
[0028]
在根据本发明的方法的步骤(c)中,对金属泡沫体ax进行热处理,以实现金属泡沫体a与含铝粉末mp之间的合金形成,从而获得金属泡沫体b,金属泡沫体ax的热处理中的最高温度在680℃至715℃的范围内,并且在680℃至715℃的温度范围内的热处理的总持续时间在5秒和240秒之间。
[0029]
热处理包括通常逐渐加热金属泡沫体ax和随后冷却至室温。热处理在惰性气体或还原条件下进行。还原条件应理解是指存在包含氢气和至少一种在反应条件下呈惰性的气体的气体混合物。合适的实例是包含50%体积的n2和50%体积的h2的气体混合物。所用惰性
气体优选为氮气。加热可以例如在带式炉中完成。合适的加热速率在10k/min至200k/min,优选20k/min至180k/min的范围内。在热处理期间,温度通常首先从室温升高到约300℃至400℃,在该温度下从涂层中去除水分和有机成分约2分钟至30分钟。然后将温度升高到680℃至715℃的范围内,导致金属泡沫体a和含铝粉末mp之间的合金形成。然后通过与惰性气体环境在约200℃的温度下接触而将金属泡沫体淬火。
[0030]
对于根据本发明涉及的金属,为了将合金形成限制在金属泡沫的上部区域并且在金属泡沫内留下未合金化区域,有必要使步骤(c)中的金属泡沫体ax的热处理中的最高温度是在680℃至715℃的范围内,而且在680℃至715℃的温度范围内的热处理的总持续时间在5秒和240秒之间。热处理的持续时间可以在一定程度上补偿最高处理温度的水平,反之亦然,但发现当热处理中的最高温度在680℃至715℃的温度范围之外和/或在680℃至715℃的温度范围内的热处理的持续时间在5秒至240秒之外时,在金属泡沫的上部区域实现合金形成、同时在金属泡沫内留下未合金化区域的实验频率显著下降。如果最高温度太高和/或金属泡沫体在最高温度范围内停留太长时间,这引起合金形成进入到金属泡沫的最低的层,从而没有保留未合金化区域。如果最高温度太低和/或金属泡沫体没有在最高温度范围内停留足够长的时间,则根本不会开始形成合金。
[0031]
在根据本发明的方法的步骤(c)中对金属泡沫的热处理导致含铝相的形成。金属泡沫体b与金属泡沫体a的质量比v,v=m(金属泡沫体b)/m(金属泡沫体a),是在根据本发明的方法的步骤(c)中有多少铝被合金化到泡沫中的量度。
[0032]
在优选的实施方案中,金属泡沫体b与金属泡沫体a的质量比v,v=m(金属泡沫体b)/m(金属泡沫体a),在1.1:1至1.5:1的范围内。在进一步优选的实施方案中,金属泡沫体b与金属泡沫体a的质量比v,v=m(金属泡沫体b)/m(金属泡沫体a),在1.2:1至1.4:1的范围内。
[0033]
在根据本发明的方法的步骤(d)中,进行金属泡沫体b的氧化处理以获得金属泡沫体c。
[0034]
在根据本发明的方法的步骤(d)中氧化处理金属泡沫体b的目的是为存在于金属泡沫体b的表面上的铝提供外部氧化铝层。该目的可以例如通过将处于加热状态的金属泡沫体b暴露于氧化性气体气氛(例如空气),或者通过在金属泡沫体b上初始表面形成氢氧化铝(例如通过与碱性溶液接触),然后通过氧化条件下的热处理将氢氧化铝转化为氧化铝来实现。
[0035]
为了将处于加热状态的金属泡沫体b暴露于氧化性气体气氛,例如在通入空气的炉子中将金属泡沫体加热到合适的温度是足够的。
[0036]
如果在通入空气的情况下加热金属泡沫体b而不预先形成氢氧化铝,则所选温度应在200℃和1200℃之间,或在200℃和1000℃之间,或在200℃和750℃之间。根据本发明,优选的是热氧化在200℃至680℃的温度下在空气中进行1分钟至60分钟的时间段。
[0037]
如果首先在金属泡沫体b上表面形成氢氧化铝,例如通过与碱性溶液接触,然后再进行热处理,则表面上存在的至少一些铝最初转化为氢氧化铝,并且在表面上形成的至少一些氢氧化铝随后转化为氧化铝。
[0038]
至少部分的表面上存在的铝转化为氢氧化铝优选通过使金属泡沫体与碱性水溶液接触来实现。
[0039]
碱性水溶液特别优选含有浓度为0.05重量%至30重量%、优选0.5重量%至5重量%的氢氧化钠、氢氧化钾、氢氧化锂或它们的组合,并且金属泡沫体b与碱性水溶液接触5分钟至120分钟,优选不超过30分钟,更优选不超过10分钟。该处理可以在10℃和110℃之间的温度范围内进行。优选20℃(室温)下的处理。
[0040]
随后在氧化气氛中将至少部分的表面形成的氢氧化铝热转化为氧化铝。这是通过在通入空气的情况下加热到20℃(室温)至700℃的温度持续1分钟至8小时来完成的。根据本发明,优选的是,热氧化在200℃至680℃的温度下在空气中进行1分钟至60分钟的时间段。
[0041]
金属泡沫体c用作合适催化剂的载体,该催化剂可以针对待催化的特定反应进行专门选择。
[0042]
在根据本发明的方法的步骤(e)中,将包含至少一种载体氧化物和至少一种催化活性组分的催化活性层施加到金属体c的至少一部分表面上,以获得负载型催化剂。
[0043]
根据本发明的金属泡沫体c可以特别容易地提供有根据本发明的催化活性层,因为在金属泡沫体c的表面上产生的氧化铝皮确保了载体氧化物的极好结合,并且提供了长的耐久性和使用寿命以及极高的机械稳定性,特别是耐磨性。
[0044]
可以将包含至少一种载体氧化物和至少一种催化活性组分的催化活性层施加到金属泡沫体c,例如,通过使涂层悬浮液抽吸或泵送通过开孔金属泡沫体c的连续空腔。这是可能的,因为在连续空腔和高尺寸稳定性方面,金属泡沫体c类似于汽车尾气催化中使用的整体基材。还可以通过浸渍(称为“浸涂”)或通过喷洒(称为“喷涂”)来施加涂层悬浮液。现有技术中原则上已知的施加方法中的哪一种是优选的,首先取决于涂层悬浮液的组成和流动特性,其次取决于根据本发明的金属泡沫体的实际结构。浸涂对涂层悬浮液的不同特性具有最大可能的耐受性,因此适用于涂覆本发明的所有金属泡沫体。
[0045]
根据本发明,在与涂层悬浮液接触之后,在步骤(e)中煅烧涂覆的金属泡沫体以获得负载型催化剂。
[0046]
根据本发明的催化活性层包含至少一种载体氧化物。出于本发明的目的,载体氧化物是具有通常在50m2/g和200m2/g之间的高比表面积的无机氧化物。这些载体氧化物在成品催化剂中具有多种功能:首先,它们用于在微观水平上增加由本发明的金属泡沫体提供的宏观表面积(即,几何表面积),在本发明的上下文中将其称为催化剂与反应介质的接触面积。其次,它们本身可以与催化活性物质相互作用,并且因此影响反应过程。例如,载体氧化物的选择影响复杂氢化反应(其中有机底物分子的多个官能团可以与氢反应)的选择性。此外,它们提供了催化活性组分分散在其上的微观表面。它们还形成了其中可以分散更多的功能组分和添加剂的基质,这用于在针对特定应用调整催化剂时调节特定的催化剂功能。
[0047]
载体氧化物优选地选自氧化铝、二氧化硅、氧化钛及它们的混合物。
[0048]
用作催化活性层的催化活性组分的是过渡金属或过渡金属化合物,过渡金属优选地选自铁、钌、锇、钴、铑、铱、镍、钯、铂、铈、铜、银、金及它们的混合物。
[0049]
作为其他功能组分和添加剂,催化活性层可以包括无机氧化物,优选地选自碱土金属的氧化物、过渡金属的氧化物、稀土的氧化物、铝和镓的氧化物、硅、锗和锡的氧化物,和/或它们的混合物。
[0050]
根据本发明的催化活性层可包含一种或多种载体氧化物、一种或多种催化活性组分和任选存在的其他功能组分和添加剂。
[0051]
为了将催化剂应用于本发明的金属泡沫体,通过将成分引入水中来制备涂层悬浮液。将催化组分施加到载体氧化物上是通过用适当的金属盐溶液(前体溶液)预先浸渍载体氧化物,或通过将前体溶液直接添加到涂层悬浮液,和任选存在的沉淀或化学诱导沉积或者分解已经悬浮的载体氧化物上的前体化合物。功能组分和添加剂也可以以这种方式引入或以氧化固体的形式直接添加。可选地,可以在将载体氧化物施加到本发明的金属泡沫体之后,通过再浸渍方法添加由可溶性前体产生的催化剂的所有成分。制备方法的选择取决于目标组成和为所得催化剂设定的性质。
[0052]
在根据本发明的方法的步骤(e)中施加到金属泡沫体上的催化活性层的固定优选地通过在空气中煅烧来实现。
[0053]
根据本发明,所述煅烧在200℃至800℃的温度下在空气中进行1分钟至8小时的时间段。根据本发明,优选地,所述煅烧在200℃至680℃的温度下在空气中进行1分钟至480分钟的时间段。特别优选地,所述煅烧在300℃至650℃的温度下在空气中进行1分钟至480分钟的时间段。
[0054]
根据本发明优选的是,步骤(d)中的热氧化在200℃至680℃的温度下在空气中进行1分钟至60分钟的时间段,并且步骤(e)中的煅烧在200℃至680℃的温度下在空气中进行1分钟至480分钟的时间段。
[0055]
根据本发明的用于制备负载型催化剂的方法比现有方法成本低得多。此外,仅由金属组分镍和铝组成的金属泡沫体由于其在表面处的过量al而形成纯氧化铝层,其代表载体材料和催化层之间的扩散屏障。
[0056]
基于氧化铝作为载体氧化物的催化层和金属泡沫体的表面处的氧化铝是相同类型的体系。因此,膨胀系数相似,热应力下的剥落低,并且作为煅烧操作的结果的化合物稳定性非常好。
[0057]
除了根据本发明的用于制备负载型催化剂的方法之外,本发明还提供了本身可通过这些方法获得的负载型催化剂,以及所述催化剂在化学转化中的用途。
[0058]
根据本发明的负载型催化剂可例如有利地用于化学固定床方法中。
实施例
[0059]
1.提供金属泡沫体
[0060]
提供了六个由镍制成的金属泡沫体(a-f)(生产商:aatm,尺寸:100mm
×
100mm
×
2mm,单位面积重量:1000g/m2,平均孔径580μm),它们是通过在聚氨酯泡沫上电解沉积镍并随后对塑料组分进行热解而产生的。
[0061]
2.施加铝
[0062]
然后首先将粘合剂溶液(水中的聚乙烯亚胺(2.5重量%))喷涂到金属泡沫体a、b、c、d、e上,随后施加干粉形式的粉状铝(约400g/m2)(生产商:amg,平均粒径:《63μm,含有3重量%添加的亚乙基双(硬脂酰胺))。
[0063]
3.热处理
[0064]
然后在氮气氛下在炉子中对金属泡沫体a、b、c、d、e进行热处理。首先,在约15分钟
的时间段内将炉子从室温加热至最高温度,保持一定的时间,随后通过在200℃下与氮气气氛接触进行淬火。
[0065]
金属泡沫体a、d、e的最高温度:
[0066]
700℃ 2分钟
[0067]
金属泡沫体b的温度进程:
68.600℃2分钟
[0069]
金属泡沫体c的温度进程:
[0070]
750℃2分钟
[0071]
4.合金化程度的确定
[0072]
然后确定金属泡沫体中合金形成的程度。这是通过在显微镜和扫描电子显微镜下检查金属泡沫体的横截面来完成的。然而在金属泡沫体a、d、e中发生了表面合金形成,但在金属泡沫内保留了未合金化区域,在金属泡沫体b中没有发生合金形成,并且在金属泡沫体c中合金形成进展程度太高而在金属泡沫内没有保留未合金化区域。
[0073]
5.氧化处理
[0074]
然后进行金属泡沫体a和d的氧化处理。
[0075]
将金属泡沫体a在加热状态下暴露于氧化性气体气氛中。这是通过在通入空气的炉子中将金属泡沫体加热到700℃来完成的。
[0076]
首先使金属泡沫体d与碱性溶液接触(5重量%naoh水溶液,在20℃下10分钟)。然后在空气中干燥金属泡沫体d。
[0077]
6.对比处理
[0078]
如现有技术(参见wo95/11752a1,实施例3)中所述,为先前保持未处理的金属泡沫体f提供氧化铝层。这是通过将金属泡沫体f完全浸入饱和铝酸钠溶液中3小时,然后在去离子水中来回倾斜直到水解反应平息,最后在通入空气的情况下在500℃下加热3小时来完成的。
[0079]
7.施加催化活性层
[0080]
然后通过喷涂将催化活性层施加到金属泡沫体a、d、e和f上。这是通过用水润湿金属泡沫体来完成的。然后将2.5%聚乙烯亚胺悬浮液与高表面积χ-氧化铝一起搅拌。喷涂水/聚乙烯亚胺和氧化铝的混合物。喷涂之后在干燥炉中在空气中在140℃下进行干燥30分钟的过程。对于煅烧,将样品在炉子中在650℃下烘烤5小时。多次重复涂覆、干燥和煅烧的过程,直到施加了所需量的涂层。
[0081]
8.所获得的负载型催化剂的研究
[0082]
最后,研究了获得的负载型催化剂,尤其包括研究金属泡沫体上的催化活性层对机械应力的耐受性。在许多情况下,可以进行划痕测试以确定氧化、催化活性层对载体泡沫的附着质量。然而,在目前的情况下,由于泡沫的不规则结构,该测试是不可能的。因此,通过温度变化测试研究催化活性层的机械稳定性,这提供了氧化层对载体泡沫的附着质量的量度。这是通过将金属泡沫体a、d、e和f加热到500℃,然后在冷水中淬火来完成的。然后通过过滤、干燥和称量已经剥落的材料来确定损失的量,即从每个样品剥落的催化层的质量。
[0083]
这给出了以下结果:
[0084]
金属泡沫体a和d:3mg损失
[0085]
金属泡沫体f:10mg损失
[0086]
金属泡沫体e:50mg损失
[0087]
尽管金属泡沫体a和d上的催化活性层对机械应力具有高耐受性,但金属泡沫体f上的催化活性层的耐受性明显较低,并且在金属泡沫体e上非常低。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1