一种通过纳米二氧化硅表面改性实现水相泡沫稳定化的方法

文档序号:26749629发布日期:2021-09-25 02:02阅读:192来源:国知局
一种通过纳米二氧化硅表面改性实现水相泡沫稳定化的方法

1.本发明涉及一种提高泡沫稳定性方法,涉及一种通过纳米二氧化硅表面改性实现水相泡沫稳定化的方法。


背景技术:

2.微泡沫又称胶质气体泡沫,起泡液主要由生物聚合物黄原胶和起泡剂组成,通过高速搅拌剪切将空气包裹起来即产生了微泡沫。微泡沫以其较小的粒径(小于100μm),较大的比表面积,良好的流动性,作为终端或中间产品在油气开采、日用洗涤化妆品、食品加工、超声造影和医药传递、矿物分离、多孔材料制备等领域有着广泛的应用价值,因而受到越来越多的重视。在上述工程应用过程中,微泡沫的稳定性起着制约性的重要作用。与普通泡沫相比,微泡沫由于其特殊的构造,液膜较厚,稳定性较好。但微泡沫的液膜厚度会随着静置时间的变长,最后出现气泡破裂,主要原因是重力排液作用,即液体由于重力作用导致液膜变薄,直至破裂。其次,液体流失、气泡因气液密度差增大加速气泡合并速率,致使气泡直径变大,间距缩小,逐渐向普通泡沫转变,此时压差排液和气泡合并才是诱导泡沫破裂的主要原因,为了提高泡沫的稳定性,许多研究者采用复合表面活性剂、蛋白质、聚合物等制备出稳定的泡沫。
3.表面活性剂是指加入少量能使其溶液体系的界面状态发生明显变化的物质。具有固定的亲水亲油基团,在溶液的表面能定向排列。表面活性剂的分子结构具有两性:一端为亲水基团,另一端为疏水基团。表面活性剂的种类很多,分为:阴离子表面活性剂、阳离子表面活性剂、两性离子表面活性剂、非离子表面活性剂。表面活性剂具有优良的发泡和稳泡效果,表面活性剂分子可以吸附在气

液界面上降低表面张力,减缓扩散速率,起到稳定泡沫的作用。当前针对泡沫的研究,大多集中在单组分表面活性剂或者多组分表面活性剂复配体系,这些体系主要存在以下缺陷:
4.1、泡沫存在的半衰期短;
5.2、泡沫的稳定性差。
6.聚合物是由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的化合物。聚合物一种性能优良的稳泡剂,聚合物类稳泡剂的稳泡机理主要是增加溶液黏度。较高的黏度会降低表面活性剂在界面排列的密度,因此会在一定程度上增加体系的界面张力,表面张力的增加不利于泡沫的稳定,但是影响程度不大。随着体系黏度增加,相同条件下液膜排液速度降低,气泡间的气体交换速度也降低,泡沫稳定性变好,但由于液相黏度的增加,起泡时需要克服的黏滞阻力相应变大,体系的发泡能力降低,产生的泡沫较大,且不均匀,会影响泡沫的稳定性,同时使用时受到成本等因素的限制,存在一个最佳的使用范围。聚合物的加入可以明显提高液体粘度,随着体系黏度增加,相同条件下液膜排液速度降低,气泡间的气体交换速度也降低,泡沫稳定性变好。但具有以下不足:
7.1、聚合物的加入会使体系的发泡能力下降;
8.2、聚合物的耐温耐盐和抗剪切性能较差,不能完全满足泡沫驱稳定性的要求。
9.颗粒稳泡是近年发展起来的新型稳泡方法,颗粒具有合适的亲水亲油性时能吸附在气

液界面上形成单层或多层吸附层,提高泡沫的聚并和歧化稳定性;颗粒在气泡间的薄液膜内形成层状结构,会提高泡沫的排液稳定性;与此同时颗粒稳定的泡沫与普通泡沫相比具有更好的耐温耐盐和抗剪切性能。纳米颗粒具有一定的固体颗粒特征,相比于表面活性剂,纳米颗粒吸附形成的膜具有较高的机械强度,从而增强了泡沫的稳定性。纳米颗粒作为一种新型稳泡剂应用于驱油、灭火器等领域,纳米sio2颗粒是其中最常见的一种,纳米sio2就其颗粒的维度,即粒径上来说,十分有利于其进入气泡的双重薄层,从而对泡沫的性质产生影响。
10.纳米二氧化硅(sio2)表面含有大量羟基,所以具有以下不足:
11.1、由于大分子间强大的作用力,使其既不溶于水又不溶于有机溶剂;
12.2、需要进行改性,才能实现其在有机溶剂或水中的相容性。


技术实现要素:

13.为克服现有技术中的问题,本发明的目的是提供了一种通过纳米二氧化硅表面改性实现水相泡沫稳定化的方法。
14.为实现上述目的,本发明采用的技术方案如下:
15.一种通过纳米二氧化硅表面改性实现水相泡沫稳定化的方法,将表面疏水化改性纳米sio2与水混合,经过高速搅拌发泡,形成泡沫体系;其中,表面疏水化改性纳米sio2与油的接触角为70

110
°
;泡沫体系中表面疏水化改性纳米sio2的质量分数为1

20%。
16.本发明进一步的改进在于,表面疏水化改性纳米sio2通过以下过程制得:
17.将干燥后的纳米sio2加入到无水乙醇中,搅拌分散得到纳米sio2悬浮液;
18.向纳米sio2悬浮液中加入改性剂,得到混合物质,然后滴加改性助剂,滴加完毕后,升温至120~145℃,回流40~90min,得到反应物;将反应物离心、洗涤,干燥,得到表面疏水化改性纳米sio2。
19.本发明进一步的改进在于,纳米sio2悬浮液的质量分数为4.7

4.9%。
20.本发明进一步的改进在于,改性剂为二氯二甲基硅烷。
21.本发明进一步的改进在于,改性剂的质量为混合物质质量的10%~35%。
22.本发明进一步的改进在于,改性助剂为水。
23.本发明进一步的改进在于,改性助剂的质量为反应物质量的3%

5%。
24.本发明进一步的改进在于,纳米sio2干燥的条件为:在110

120℃下加热50

120min。
25.本发明进一步的改进在于,高速搅拌发泡的条件为:在8000rpm搅拌10

15分钟。
26.与现有技术相比,本发明具有的有益效果:
27.本发明通过表面疏水化改性纳米sio2颗粒发泡,将颗粒吸附至气液界面,形成一层致密的壳状结构膜,阻止了泡沫膜逐级分层,延缓泡沫变薄的速率,提高了泡沫的稳定性。由于表面疏水化改性纳米sio2颗粒较固体颗粒具有更好的耐温稳定性,纳米颗粒表面的疏水程度,即接触角的大小,决定解吸能的大小,接触角在50
°
以上,具有较大的解吸能,相应地也会最大程度地对泡沫稳定性产生积极的影响,可以应用于油气开采过程中的油气储层,保证泡沫更好的稳定性。采用本发明的改性纳米sio2颗粒泡沫体系,稳定性好以及耐
盐和耐温性好,不会产生储层污染,并且有封堵大孔道,提高波及效率至70%~85%,在油田开发应用中,尤其是泡沫驱替具有广阔的应用前景。本发明泡沫体系制备工艺简单,是适于油气井应用的泡沫体系,能显著提高采收率,增产环保,也为稳定泡沫的制备及在洗涤、功能新材料等领域的应用探索出一条新途径。
28.进一步的,相于其他改性剂,采用二氯二甲基硅烷通过硅烷偶联剂法改性后的纳米二氧化硅与有机相的亲和性、交联密度和反应活性提高了很多,在有机基体中的分布更加均匀。
29.进一步的,在120~145℃回流40~90min,温度较低以及反应时间过短,反应不完全。
附图说明
30.图1为改性纳米颗粒在气泡界面的微观构型。其中,(a)为用纳米颗粒起泡的微观显微镜图,(b)为杨氏方程中的亲疏水接触角图,亲水性表现为接触角小于90
°
,疏水性表现为接触角大于90
°

31.图2为实施例1~6中改性sio2纳米颗粒质量分数对发泡性能的影响。其中,(a)为改性纳米颗粒的加量与起泡体积的关系图,随着改性纳米颗粒加量的增加,发泡能力先增后降,出现一个最高临界发泡值,(b)为改性纳米颗粒的加量与半衰期的关系图,随着纳米颗粒的增加,半衰期先增加后趋于平缓。
32.图3为改性纳米sio2球形颗粒sem扫描图。
33.图4为纳米sio2颗粒改性前后接触角图,其中,(a)为改性前;(b)为改性后。
具体实施方式
34.下面结合附图对本发明进行详细描述。
35.本发明包括以下内容:
36.1、改性工艺:选用溶胶

凝胶法所制纳米sio2颗粒粒径分布在30

40nm,以二氯二甲基硅烷为改性剂,经化学改性成功后,得到表面疏水化改性纳米sio2,与水的接触角由19.5
°
增大至141.7
°
,表现出强疏水特性。具体过程如下:
37.1)纳米sio2的表面疏水化改性
38.以纳米sio2为原料,乙醇为溶剂,二氯二甲基硅烷为改性剂,水为改性助剂,采用湿法工艺对纳米sio2表面进行改性;
39.步骤一、称取5~15g的纳米sio2于三口烧瓶中,搅拌加热至110

120℃,恒温干燥50

120min,目的是除去水分和杂质;
40.步骤二、干燥结束后,将纳米sio2加入到一定量的无水乙醇,配制成质量分数为4.7

4.9%的纳米sio2悬浮液,继续搅拌分散10min,得到混合物;
41.纳米sio2在无水乙醇中能够更好的分散,并且无水乙醇能够更好的溶解二氯二甲基硅烷。
42.步骤三、搅拌结束后,在三口烧瓶的中混合物中一次性加入二氯二甲基硅烷,得到混合物质,二氯二甲基硅烷的质量为混合物质质量的10%~35%,然后缓慢滴加一定量的蒸馏水,滴加完毕后,得到反应物,蒸馏水的质量为反应物质量的3%

5%,滴加完毕后,升
温至120~145℃,回流40~90min;
43.步骤四、待反应结束后,用无水乙醇离心洗涤悬浮液3~4次,经干燥至恒重即可,得到表面疏水化改性纳米sio2。
44.2、制备工艺:
45.1)改性纳米sio2制备泡沫的原料组成:按质量百分数计,表面疏水化改性纳米sio2质量分数为1

20%,表面疏水化改性纳米sio2与油的接触角在70

110
°
之间,其余为水。经过高速搅拌发泡,形成粒径在100μm以下的稳定泡沫,泡沫质量占整个溶液的30

76%,可维持可稳定一周以上,没有明显的消泡现象发生。
46.2)利用表面疏水化改性纳米sio2制备水相泡沫
47.步骤一、将表面疏水化改性纳米sio2加入100ml蒸馏水中,在常温(25℃)下采用2000rpm搅拌3分钟,得到混合物,混合物中表面疏水化改性纳米sio2的质量分数为1

20%,优选的,质量分数为1%,2%,5%,10%,15%或20%;
48.步骤二、待分散均匀后,以8000rpm高速搅拌10

15分钟,待发泡稳定后,即可,得到水相泡沫。
49.下面为具体实施例。
50.实施例1
51.本发明涉及一种纳米sio2表面改性实现对水相泡沫稳定化的方法,包括:
52.步骤一、将10g纳米sio2置于三口烧瓶中,搅拌加热至120℃,恒温干燥50min,得到干燥物;
53.步骤二、量取一定量的无水乙醇,加入到三口烧瓶中,与干燥物混合配制成质量分数为4.8%的纳米sio2悬浮液,继续搅拌10min;
54.步骤三、搅拌结束后,在三口烧瓶中一次性加入二氯二甲基硅烷,得到混合物质,二氯二甲基硅烷的质量为混合物质质量的10%,然后缓慢加入一定量的蒸馏水,得到反应物,滴加完毕后,蒸馏水的质量为反应物质量的4%,滴加完毕后,升温至120℃,回流40min;
55.步骤四、反应结束后,用无水乙醇离心洗涤悬浮液3~4次,经干燥至恒重即可,得到改性纳米sio2;
56.步骤五、将改性纳米sio2加入100ml蒸馏水中,在常温(25℃)下采用2000rpm搅拌3分钟,得到混合物,混合物中改性纳米sio2的质量分数为1%。
57.步骤六、待分散均匀后,以8000rpm高速搅拌10

15分钟,待发泡稳定后,即可。
58.实施例2
59.本发明涉及一种纳米sio2表面改性实现对水相泡沫稳定化的方法,包括:
60.步骤一、将10g的纳米sio2置于三口烧瓶中,搅拌加热至120℃,恒温干燥50min,得到干燥物;
61.步骤二、量取一定量的无水乙醇,加入到三口烧瓶中,与干燥物混合配制成质量分数为4.8%的纳米sio2悬浮液,继续搅拌10min;
62.步骤三、搅拌结束后,在三口烧瓶中一次性加入二氯二甲基硅烷,得到混合物质,二氯二甲基硅烷的质量为混合物质质量的15%,然后缓慢加入一定量的蒸馏水,得到反应物,滴加完毕后,蒸馏水的质量为反应物质量的4%,滴加完毕后,升温至125℃,回流50min;
63.步骤四、反应结束后,用无水乙醇离心洗涤悬浮液3~4次,经干燥至恒重即可,得
到改性纳米sio2;
64.步骤五、将改性纳米sio2加入100ml蒸馏水中,在常温(25℃)下采用2000rpm搅拌3分钟,得到混合物,混合物中改性纳米sio2的质量分数为2%。
65.步骤六、待分散均匀后,以8000rpm高速搅拌10

15分钟,待发泡稳定后,即可。
66.实施例3
67.本发明涉及一种纳米sio2表面改性实现对水相泡沫稳定化的方法,包括:
68.步骤一、将10g纳米sio2置于三口烧瓶中,搅拌加热至120℃,恒温干燥50min,得到干燥物;
69.步骤二、量取一定量的无水乙醇,加入到三口烧瓶中,与干燥物混合配制成质量分数为4.8%的纳米sio2悬浮液,继续搅拌10min;
70.步骤三、搅拌结束后,在三口烧瓶中一次性加入二氯二甲基硅烷,得到混合物质,二氯二甲基硅烷的质量为混合物质质量的20%,然后缓慢加入一定量的蒸馏水,得到反应物,滴加完毕后,蒸馏水的质量为反应物质量的4%,滴加完毕后,升温至130℃,回流60min;
71.步骤四、反应结束后,用无水乙醇离心洗涤悬浮液3~4次,经干燥至恒重即可,得到改性纳米sio2;
72.步骤五、将改性纳米sio2加入100ml蒸馏水中,在常温(25℃)下采用2000rpm搅拌3分钟,得到混合物,混合物中改性纳米sio2的质量分数为5%。
73.步骤六、待分散均匀后,以8000rpm高速搅拌10

15分钟,待发泡稳定后,即可。
74.实施例4
75.本发明涉及一种纳米sio2表面改性实现对水相泡沫稳定化的方法,包括:
76.步骤一、将10g纳米sio2置于三口烧瓶中,搅拌加热至120℃,恒温干燥50min,得到干燥物;
77.步骤二、量取一定量的无水乙醇,加入到三口烧瓶中,与干燥物混合配制成质量分数为4.8%的纳米sio2悬浮液,继续搅拌10min;
78.步骤三、搅拌结束后,在三口烧瓶中一次性加入二氯二甲基硅烷,得到混合物质,二氯二甲基硅烷的质量为混合物质质量的25%,然后缓慢加入一定量的蒸馏水,得到反应物,滴加完毕后,蒸馏水的质量为反应物质量的4%,滴加完毕后,升温至135℃,回流70min;
79.步骤四、反应结束后,用无水乙醇离心洗涤悬浮液3~4次,经干燥至恒重即可,得到改性纳米sio2;
80.步骤五、将改性纳米sio2加入100ml蒸馏水中,在常温(25℃)下采用2000rpm搅拌3分钟,得到混合物,混合物中改性纳米sio2的质量分数为10%。
81.步骤六、待分散均匀后,以8000rpm高速搅拌10

15分钟,待发泡稳定后,即可。
82.实施例5
83.本发明涉及一种纳米sio2表面改性实现对水相泡沫稳定化的方法,包括:
84.步骤一、将5g纳米sio2置于三口烧瓶中,搅拌加热至120℃,恒温干燥70min,得到干燥物;
85.步骤二、量取一定量的无水乙醇,加入到三口烧瓶中,与干燥物混合配制成质量分数为4.8%的纳米sio2悬浮液,继续搅拌10min;
86.步骤三、搅拌结束后,在三口烧瓶中一次性加入二氯二甲基硅烷,得到混合物质,
二氯二甲基硅烷的质量为混合物质质量的30%,然后缓慢加入一定量的蒸馏水,得到反应物,滴加完毕后,蒸馏水的质量为反应物质量的4%,滴加完毕后,升温至140℃,回流80min;
87.步骤四、反应结束后,用无水乙醇离心洗涤悬浮液3~4次,经干燥至恒重即可,得到改性纳米sio2;
88.步骤五、将改性纳米sio2加入100ml蒸馏水中,在常温(25℃)下采用2000rpm搅拌3分钟,得到混合物,混合物中改性纳米sio2的质量分数为15%。
89.步骤六、待分散均匀后,以8000rpm高速搅拌10

15分钟,待发泡稳定后,即可。
90.实施例6
91.本发明涉及一种纳米sio2表面改性实现对水相泡沫稳定化的方法,包括:
92.步骤一、将15g纳米sio2置于三口烧瓶中,搅拌加热至120℃,恒温干燥50min,得到干燥物;
93.步骤二、量取一定量的无水乙醇,加入到三口烧瓶中,与干燥物混合配制成质量分数为4.8%的纳米sio2悬浮液,继续搅拌10min;
94.步骤三、搅拌结束后,在三口烧瓶中一次性加入二氯二甲基硅烷,得到混合物质,二氯二甲基硅烷的质量为混合物质质量的35%,然后缓慢加入一定量的蒸馏水,得到反应物,滴加完毕后,蒸馏水的质量为反应物质量的4%,滴加完毕后,升温至145℃,回流90min;
95.步骤四、反应结束后,用无水乙醇离心洗涤悬浮液3~4次,经干燥至恒重即可,得到改性纳米sio2;
96.步骤五、将质量分数为20%的改性纳米sio2加入100ml蒸馏水中,在常温(25℃)下采用2000rpm搅拌3分钟,得到混合物,混合物中改性纳米sio2的质量分数为20%。
97.步骤六、待分散均匀后,以8000rpm高速搅拌10

15分钟,待发泡稳定后,即可。
98.实施例1

6的条件对比,详见表1。
99.表1 各实施例条件对比表
[0100][0101]
如图1中(a)和(b)所示,分别为纳米颗粒在气泡界面的微观构型、改性前后纳米颗粒在气泡界面接触角的改变、改性前后纳米颗粒在气泡界面的分布变化。从图1中可以看出,纳米二氧化硅颗粒改性前在气泡界面有一定的接触角,改性后,纳米二氧化硅颗粒在气泡界面接触角明显变大。而改性前,由于纳米二氧化硅颗粒表面含有较多羟基,所以亲水性较强,在气泡界面主要存在于水中,在改性后,纳米二氧化硅颗粒表面的羟基数量明显减少,使其展现出较强的疏水性,气泡界面主要存在于水相之外。
[0102]
如图2中(a)和(b)所示,分别为泡沫体积随改性纳米sio2质量分数的变化、半衰期随改性纳米sio2质量分数的变化。从图2中可以看出,随着改性纳米sio2质量分数的增大,泡沫体积逐渐增大,当改性纳米sio2质量分数达到5%时,泡沫体积最大,约375ml,随着改性
纳米sio2质量分数的继续增大,泡沫体积逐渐减小至355ml左右;而半衰期随改性纳米sio2质量分数的增大而增大,当改性纳米sio2质量分数为15%时达到最大值7天,随后趋于平稳。
[0103]
如图3所示为改性纳米sio2球形颗粒sem扫描图。从图3可以看出,改性纳米sio2颗粒的形貌为分散均匀的球形形状,大小均一,颗粒之间无团聚现象,单个颗粒之间有较好的分散性,球形形貌明显。
[0104]
如图4所示为纳米sio2颗粒改性前后接触角图,图4中,(a)图为改性前;(b)图为改性后。从图中可以看出,纳米二氧化硅颗粒由于其特殊的结构本身就有一定的接触角,表面接触角达到34.7
°
,经二氯二甲基硅烷改性后,其接触角变为87.9
°

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1