一种纳米C-TiO2NB

文档序号:30764059发布日期:2022-07-15 22:19阅读:216来源:国知局
一种纳米C-TiO2NB
一种纳米c-tio2nbs光催化剂的制备方法
技术领域
1.本发明属于光催化剂制备技术领域,尤其涉及一种纳米c-tio2nbs光催化剂的制备方法。


背景技术:

2.光催化技术是目前解决能源短缺和环境污染问题的最有效方法之一。其中具有代表的二氧化钛(tio2)由于反应过程中稳定性好、光催化效率高、价格低廉和无二次污染等特点,在光催化反应中成为研究热点。但是在实现tio2光催化剂的实际使用的过程中仍然存在很多问题,如由于样品的表面和结构上的引发问题,制取样品比表面积小,可见光响应区窄,表面反应活性位点不足,电子的转移速率低,电子空穴重组率高,难分离回收等。因此,为了得到光催化性能更好的tio2,研究学者对tio2进行改性,如:(1)贵金属沉积构建体系:快速分离的反应体系内光生电子-空穴对优化tio2,且光生电子还原能力得到增强。(2)半导体复合构建体系:提高光的吸收、降低光生电子-空穴对的复合率。(3)元素掺杂:以引入缺陷或改变结晶度来调控tio2光催化性质,掺杂元素取代tio2晶格的氧原子,减少导带和价带之间带隙;掺杂也改变了它们的光电特性,使得光生电子空穴的分离。(4)敏化:对tio2表面进行光敏化处理,将复合体系的光响应范围扩展到可见光区域。(5)构建特定形貌结构:以增加tio2的比表面积和活性位点方式改善tio2性能。(6)磁性分离,回收和再利用这些tio2纳米光催化剂。
3.在提高tio2的光催化速率上,形貌的控制是关键性因素,具有优异的形状特征可以使tio2有宽的光源吸收区,快速的电子传输路线,以及减少生电子-空穴对的重组。具有良好的形貌的前提下,催化剂的晶体存在比例和表面结构则为光催化的核心。研究结果表明锐钛矿相和金红石相同时存在时且保持一定的比例,可以表现出更高的光催化降解效率。而无定型纳米碳材料有高度发达均匀的孔隙结构,较大的比表面积,良好的导电、导热性和热稳定性。
4.因此,目前需要解决是问题是如何构建优异的形貌结构来提高tio2的性能。


技术实现要素:

5.本发明的目的是提供一种纳米c-tio2nbs光催化剂的制备方法,以便构建优异的形貌结构来提高tio2的性能。
6.为实现上述目的,本发明采用的技术方案是:
7.一种纳米c-tio2nbs光催化剂的制备方法,其特征在于,包括如下步骤:
8.步骤一、将1-3g的p25级tio2纳米颗粒和1-3g nacl固体颗粒依次加入到30-60ml的naoh(10mol/l)水溶液中,在室温下磁力搅拌30min溶解得到a液;
9.步骤二、称量0.1-0.4g的碳粉(b)溶于步骤一得到的a液中,随后将ab混合液置于反应釜中,再将反应釜置于烘箱中,并设定时间40-48h,160-180℃恒温加热反应得到c-na2tio3纳米带;
10.步骤三、将步骤二得到的c-na2tio3纳米带从反应釜中取出冷却,保留上清液以外的部分,用去离子水洗涤至中性,抽滤;
11.步骤四、将步骤三得到的产物置于0.1mol/l的hcl溶液中浸泡4-6h,再用去离子水洗至中性,抽滤,即得到碳-钛酸纳米带;
12.步骤五、通过管式炉在空气的氛围中对步骤四得到的碳-钛酸纳米带进行煅烧,以10℃/min升温,从室温升至500-700℃,煅烧2-3h后,冷却至室温,得到纳米c-tio2nbs光催化剂。
13.相比于现有技术的缺点和不足,本发明具有以下有益效果:通过一步水热法制备c-tio2nbs,探究掺入纳米碳含量对c-tio2nbs的影响,通过sem、ftir、xrd等和光催化降解来表征分析其形貌结构和性能,研究c-tio2nbs复合材料纳米碳的最佳掺入量。
附图说明
14.为了更加清晰的理解本发明,通过结合说明书附图与示意性实施例,进一步介绍本公开,附图与实施例是用来解释说明,并不构成对公开的限定。
15.图1为本发明中纳米c-tio2nbs光催化剂的制备流程图;
16.图2为本发明中c-tio2nbs与tio2nbs的xrd图谱;
17.图3为本发明中不同碳含量的c-tio2nbs的xrd图谱;
18.图4为本发明中的透射电子显微镜成像图;
19.图5为本发明中碳纳米材料、tio2nbs、c-tio2nbs的sem图;
20.图6为本发明中tio2nbs的ftir光谱图;
21.图7为本发明中水热法制备的c-tio2nbs的ftir光谱图;
22.图8为本发明中碳掺杂和没有碳的tio2nbs对甲基橙的降解率随时间变化图;
23.图9为本发明中不同碳含量对于c-tio2nbs的光催化性能的影响图;
具体实施方式
24.下面将结合本发明的附图,对本发明实施例中的纳米c-tio2nbs光催化剂的制备方法进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
25.实施例1
26.将1g的tio
2-p25纳米颗粒和1g nacl固体颗粒依次加入到30ml的naoh(10mol/l)水溶液中,室温下磁力搅拌30min溶解得到a液;将a液置于反应釜中,于烘箱中设定时间48h,180℃恒温加热反应得到na2tio3纳米带;取出反应釜冷却,保留上清液以外的部分,用去离子水洗涤至中性,抽滤;将产物置于0.1mol/l hcl溶液中浸泡6h得到h2tio3纳米带;将h2tio3用去离子水洗至中性,通过抽滤得到中性的钛酸纳米带;以10℃/min升温,从室温升至600℃,2h后,冷却至室温,得到二氧化钛纳米带(tio2nbs),即纳米tio2nbs光催化剂。
27.实施例2
28.将1g的p25级tio2纳米颗粒和1g nacl固体颗粒依次加入到30ml的naoh(10mol/l)水溶液中,室温下磁力搅拌30min溶解得到a液;称量0.1g的碳粉(b)溶于a液,随后将ab混合
液置于反应釜中,再将反应釜置于烘箱中设定时间48h,180℃恒温加热反应得到c-na2tio3纳米带;取出反应釜冷却,保留上清液以外的部分,用去离子水洗涤至中性,抽滤;将产物置于0.1mol/l的hcl溶液中浸泡6h,用去离子水洗至中性,抽滤,即得到碳-钛酸纳米带;通过管式炉在空气的氛围中对c-h2tio3煅烧,以10℃/min升温,从室温升至600℃,2h后,冷却至室温,得到碳掺杂二氧化钛纳米带(c-tio2nbs),即纳米c-tio2nbs光催化剂。
29.实施例3
30.将1g的p25级tio2纳米颗粒和1g nacl固体颗粒依次加入到30ml的naoh(10mol/l)水溶液中,室温下磁力搅拌30min溶解得到a液;称量0.2g的碳粉(b)溶于a液,随后将ab混合液置于反应釜中,再将反应釜置于烘箱中设定时间48h,180℃恒温加热反应得到c-na2tio3纳米带;取出反应釜冷却,保留上清液以外的部分,用去离子水洗涤至中性,抽滤;将产物置于0.1mol/l的hcl溶液中浸泡6h,用去离子水洗至中性,抽滤,即得到碳-钛酸纳米带;通过管式炉在空气的氛围中对c-h2tio3煅烧,以10℃/min升温,从室温升至600℃,2h后,冷却至室温,得到纳米c-tio2nbs光催化剂。
31.实施例4
32.将1g的p25级tio2纳米颗粒和1g nacl固体颗粒依次加入到30ml的naoh(10mol/l)水溶液中,室温下磁力搅拌30min溶解得到a液;称量0.3g的碳粉(b)溶于a液,随后将ab混合液置于反应釜中,再将反应釜置于烘箱中设定时间48h,180℃恒温加热反应得到c-na2tio3纳米带;取出反应釜冷却,保留上清液以外的部分,用去离子水洗涤至中性,抽滤;将产物置于0.1mol/l的hcl溶液中浸泡6h,用去离子水洗至中性,抽滤,即得到碳-钛酸纳米带;通过管式炉在空气的氛围中对c-h2tio3煅烧,以10℃/min升温,从室温升至600℃,2h后,冷却至室温,得到纳米c-tio2nbs光催化剂。
33.实施例5
34.将1g的p25级tio2纳米颗粒和1g nacl固体颗粒依次加入到30ml的naoh(10mol/l)水溶液中,室温下磁力搅拌30min溶解得到a液;称量0.4g的碳粉(b)溶于a液,随后将ab混合液置于反应釜中,再将反应釜置于烘箱中设定时间48h,180℃恒温加热反应得到c-na2tio3纳米带;取出反应釜冷却,保留上清液以外的部分,用去离子水洗涤至中性,抽滤;将产物置于0.1mol/l的hcl溶液中浸泡6h,用去离子水洗至中性,抽滤,即得到碳-钛酸纳米带;通过管式炉在空气的氛围中对c-h2tio3煅烧,以10℃/min升温,从室温升至600℃,2h后,冷却至室温,得到纳米c-tio2nbs光催化剂。
35.实施例6催化剂的表征
36.(1)x射线衍射(xrd)分析
37.如图2所示,为c-tio2nbs与tio2nbs的xrd图,表征c-tio2nbs与tio2nbs的光催化性能。tio2nbs的xrd图谱中在2θ=25.24
°
、37.89
°
、48.02
°
、55.04
°
、62.72
°
、70.48
°
、75.16
°
观察到了的锐钛矿晶型的衍射峰。同时,观察到在2θ=27.13
°
、36.01
°
、41.45
°
、53.91
°
处出现了部分金红石晶型的衍射峰。在c-tio2nbs样品出现的峰值对应于tio2nbs的特征衍射峰,观察到样品中c-tio2nbs的晶体结构含有大量的锐钛矿和少量的金红石,且在43
°
处显现了较弱的碳的衍射峰,但c-tio2nbs中的金红石晶体结构的峰值出现了偏移,为29.47
°
,其原因是碳的掺入并没有改变tio2nbs的结构,但促进了金红石的二氧化钛结构转化为锐钛矿结构。最后可以看出,c-tio2nbs各峰较窄,特征峰尖锐,说明c-tio2nbs的晶粒大;但c-tio2nbs峰值
的强度减弱,说明其结晶度比tio2nbs低。
38.如图3所示,为不同碳含量的c-tio2nbs的xrd图谱,从图中可以看出不同碳含量的c-tio2nbs在2θ=25.43
°
、37.80
°
、48.01
°
、55.13
°
、62.71
°
、70.58
°
、75.18
°
时出现了锐钛矿的特征衍射峰,分别对应为锐钛矿相(101)、(004)、(200)、(211)、(002、(220)、(215)。同时在2θ=27.40
°
、35.84
°
、41.22
°
、54.28
°
观察到少量的金红石相的特征衍射峰,对应其(110)、(101)、(111)、(211)晶面。在44
°
左右为碳的衍射峰,出现的tio2nbs衍射峰较窄,而且尖锐,说明水热法制得的c-tio2nbs结构以锐钛矿为主,含有少量的金红石相,且成功制得了c-tio2nbs,但是碳材料的衍射峰较弱,这因为制取得碳材料以絮状的形态存在,与二氧化钛的界面是紧密连接的。
39.(2)透射电子显微镜(tem)分析
40.如图4所示,为透射电子显微镜成像图,表征tio2nbs的表面形态和内部的结构,得知其是否适合负载物质,用tem图像解释tio2nbs。从图4(a)可以看出制得的tio2nbs是笔直的和部分呈不规则的纳米带,具有平滑的表面。tio2nbs的长度大约为2μm,宽度大约200nm。从图4(b)、(c)、(d)的tem图像中,可以观察到纳米带表面发生显著的变化,tio2nbs的表面出现了均匀分布的多孔结构,说明了水热合成的钛酸氢钠纳米带经过处理后得到是tio2nbs。
41.(3)扫描电子显微镜(sem)分析
42.如图5(a)为是以葡萄糖为碳源,通过水热法制备的碳纳米材料。从图中可以看出制得的样品的形状为絮状或者树状,还有雪花状。制备的碳纳米材料为无定型,其表面具有高度发达均匀的孔隙结构,大的比表面积;存在的大量缺陷賦予了无定型碳材料更大的比表面积、更大的孔体积、更低的密度以及更多可功能化的位点,利于我们合成c-tio2nbs。图(b)为水热法得到的tio2nbs,由图可见,样品tio2nbs为平面的纳米带,但在样品中我们发现了tio2nbs弯曲的曲面,还有tio2nbs弯曲的曲面弯曲形成的tio2nts,纳米带带面呈现的是透明的薄层,且tio2nts的管弯曲趋势类似于螺旋线。图(c)是通过水热法制备的c-tio2nbs,图中tio2nbs是由无数的单片二氧化钛纳米片组成的,tio2nbs的表面负载的有碳纳米材料,同时我们看到在制取得的tio2nbs片层中也存在有纳米碳材料。
43.(4)傅里叶变换红外光谱(ftir)分析
44.如图6所示,为tio2nbs的ftir光谱图,由o-h振动引发了3428.73cm-1
的吸收峰,为物理吸附的水分子。出现在大约1639.39cm-1
处的峰是h-o-h的弯曲振动,可能是tio2表面物理吸附的水分子产生的。在468cm-1
处的是ti-o键的吸收峰。如图7所示,为水热法制备的c-tio2nbs的ftir光谱,图中3432.83cm-1
是tio2nbs表面吸附的水分子o-h键的吸收峰。2358.41cm-1
是ti-o-c键的伸缩振动吸收峰,在1631.19cm-l
的吸收峰为水分子-oh弯曲振动,1404.65cm-1
是c-c键的吸收峰,在500cm-1
附近出现的吸收峰为ti-o键的振动峰,在2358.41cm-1
出现的吸收峰也可能与吸附的二氧化碳有关。说明水热法制备碳基二氧化钛纳米带光催化剂,碳与二氧化钛纳米带材料复合良好,且相互间修饰。
45.实施例7吸附性能及光催化性能分析
46.(1)碳的掺杂对tio2nbs催化活性的影响
47.如图8所示,是测试tio2nbs在有无碳掺杂对甲基橙溶液的降解测试,设定的时间为210min。图中tio2nbs的降解曲线的斜率小于c-tio2nbs的降解曲线斜率,说明c-tio2nbs得降解速率高于tio2nbs。30min的暗反应后,c-tio2nbs的吸附率为45.3%,tio2nbs为43.73%。光
降解时,c-tio2nbs对甲基橙溶液的降解为99.12%,tio2nbs对甲基橙溶液的降解为98.77%,这可能是纳米级的碳在自身结构的优势下的掺杂加速tio2nbs表面电子的传输,有效的抑制了光生电子空穴的复合,使得c-tio2nbs的吸附和催化性能增强。
48.(2)碳含量对tio2nbs催化活性的影响
49.如图9所示,探究了不同碳含量对于c-tio2nbs的光催化性能的影响。由图可知我们得知随着碳含量的增加,c-tio2nbs光催化活性逐渐增大。当纳米碳的加入量过量时,c-tio2nbs对甲基橙的降解减弱,填充了c-tio2nbs的电子空穴,减少了c-tio2nbs与甲基橙的接触面积,光催化反应慢;当掺入少量碳时,c-tio2nbs没有足够的电子-空穴陷阱的表面缺陷,从而使催化活性降低;当加入碳的适量时,c-tio2nbs捕获了更多的光生电子或空穴,加快了在光催化的过程中电子的快速的转移,因此光催化活性最好。
50.本发明以粉末状的商业化的二氧化钛为催化剂改性原料,通过简易水热法以p25粉末为前体制备了tio2nbs,所制备的tio2nbs为是笔直的和部分呈不规则的纳米带,具有平滑的表面,tio2nbs的长度大约为2μm,宽度大约200nm。tio2nbs的表面出现了均匀分布的多孔结构,这使得tio2nbs具有更大的比较面积、较多的负载点和更多的反应活性位点,有利于催化性能的增强;在此基础上,通过简单的水热法将纳米碳负载到tio2nbs的表面,与tio2nbs紧密的连接在一起,构建成了一种吸光传输结构,具有良好的导电性和吸光性。本发明表明:纳米碳的掺入量为0.2g得出c-tio2nbs对甲基橙溶液的降解为99.12%,tio2nbs对甲基橙溶液的降解为98.77%,这可能是纳米级的树状的碳在自身结构的优势下的掺杂加速tio2nbs表面电子的传输,有效的抑制了光生电子空穴的复合,使得c-tio2nbs的吸附和催化性能增强。
51.最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1