一种快速高效吸附重金属离子的微膜吸附器的制备方法

文档序号:29975391发布日期:2022-05-11 12:03阅读:197来源:国知局
一种快速高效吸附重金属离子的微膜吸附器的制备方法

1.本发明属于吸附废水中的重金属离子的技术领域,具体涉及一种新型快速高效吸附重金属离子的微膜吸附器及其制备方法。


背景技术:

2.近年来,有毒重金属的存在给人类社会带来了严重的全球健康问题。污染水体中最常见的重金属离子包括铬、镉、铅、铜、汞、镍、锌等。这些金属离子会对人体产生毒性和严重的副作用。例如,长期饮用重金属铜(cu)、铅(pb)含量超标的水,会对人体脑细胞和器官造成损害,形成先天性浅脑沟,导致智力低下等疾病。因此,去除废水中的重金属离子对于污染控制和修复具有特殊意义。
3.重金属离子污染废水的控制措施包括化学沉淀法、吸附法、膜分离法、离子交换法、电化学法和生物法等。其中,吸附法以其操作简单、吸附剂可回收利用、处理效率高等优点成为废水处理过程中的主要工艺。至今为止,各类典型的吸附剂已被报道,然而,常规吸附剂的吸附能力普遍受到其化学性质的限制。
4.沸石咪唑骨架-8(zif-8),作为金属有机框架材料的一种,具有独特的孔结构与超高的比表面积等特性而广受关注。然而,作为疏水材料,它不利于金属离子向zif-8的扩散转移,导致吸附过程缓慢。此外,由于存在zif-8团聚的现象,降低活性位点的利用率,导致吸附效率降低。β-环糊精(β-cd)作为一种天然的吸附剂材料,其分子周围分布着极为丰富的羟基基团,可以通过静电吸附、化学螯合等理化方法与重金属离子发生相互作用,从而将其从溶液中分离出来。但是β-cd易溶于水的特性与优良吸附剂的易回收重复利用性能相违背。例如, xu等研究者就成功制备出了β-cd@zif-8纳米复合材料,β-cd与zif-8通过静电引力和氢键作用结合在一起,显著提高了两者的相容性,提高了β-cd的稳定性(acs omega,2018.3(9):p.11770-11787)。但目前为止,还没有研究者将制备成功的β-cd@zif-8复合材料应用于去除废水中重金属领域。
5.此外,目前制备的粉体吸附材料应用于去除废水中的重金属,都普遍存在易团聚、不便于回收等问题。若将纳米吸附剂固定在膜孔壁上,就可以得到一种微膜吸附器。利用深层渗透法在膜的孔壁上固定纳米颗粒,将会获得更高的催化稳定性和可重复使用性。与固定在膜表面的薄层吸附剂不同,由于膜孔为吸附剂的附载提供了巨大的表面积,因此固定在膜孔中的吸附剂可能具有更高的附载量。膜孔径分布均匀,可提高纳米吸附剂的分散性。为将吸附剂加入到膜孔壁上,通过施加外部压力并应用深度渗透方法,反应物被迫流动,而不是扩散穿过多孔膜,这样反应物可以完全渗透到膜的内部孔中,在膜孔壁上原位生成纳米颗粒。
6.在申请号为cn13343310的发明专利中,介绍了一种利用壳聚糖溶液状态下吸附重金属离子的方法,虽然该方法最大限度地利用了壳聚糖分子链上的活性吸附基团,但是其不便于后续处理且重复利用率低。
7.在申请号为cn2010533375.6的发明专利中,介绍了一种利用共混法使树脂分散在
铸膜液中,通过溶剂相分离的方法制备膜吸附剂。但是该方法在制备膜吸附剂的过程中会造成大量的树脂流失,并且使得剩余的树脂被包裹在膜内部,而减少了活性位点与重金属离子的接触,影响其吸附效果。
8.从上述可以看出,现有技术研究还没有将β-cd@zif-8纳米材料应用于去除重金属领域,并且在研究膜吸附剂技术方面,将吸附剂固定在膜表面与膜内部都存在不完全活性位点暴露的问题。针对上述不足,本发明提供了一种快速高效去除废水中的微膜吸附器的制备方法。通过深层渗透的协同过滤方法的反应,在pvdf膜孔壁上附载β-cd@zif-8纳米吸附材料,构造一个β-cd@zif-8/pvdf微膜吸附器,实现高效的利用纳米材料分子链上的活性位点,使吸附容量和吸附效率都大幅度的提高,克服了传统吸附工艺中,吸附剂的活性位点不能充分暴露,吸附效率低,以及重复利用率低等问题。


技术实现要素:

9.本发明的目的是为了解决传统吸附工艺中,吸附剂的活性位点不能充分利用、吸附效率低和重复使用率低等问题,而提供一种快速高效地去除废水中重金属离子的微膜吸附器及其制备方法。该所述产品采用六水硝酸锌、2-甲基咪唑和β-环糊精为原料,利用聚偏氟乙烯膜作为基底膜。利用深层渗透法,在聚偏氟乙烯膜的膜孔壁上原位合成β-cd@zif-8纳米颗粒。
10.本发明所要解决的技术问题:针对现有纳米粉体材料用于吸附废水中的重金属易团聚,活性位点不能充分利用,以及可重复利用性差等问题,而提出了一种新型快速高效去除废水中重金属的微膜吸附的制备方法。
11.为解决上述技术问题,本发明采用的技术方案是:
12.s1:首先,将商用聚偏氟乙烯膜(pvdf)放入膜组件过滤器中,在一定压力作用下以1~3ml/min的流速,使0.21mol/l的六水硝酸锌(zn(no3)2·
6h2o)以一定的流速缓慢渗透过膜;
13.s2:渗透结束后,将膜置于60℃真空干燥箱中干燥2小时,干燥后的 zn(no3)2·
6h2o将重新结晶并沉淀于pvdf膜的膜孔壁上;
14.s3:同样的方法,将在膜孔壁上附载了zn(no3)2·
6h2o的pvdf膜安装在膜组件中,在一定压力下1~3ml/min的流速,缓慢渗透含2-甲基咪唑(2-mi)和β
‑ꢀ
环糊精(β-cd)的混合水溶液;
15.s4:渗透结束后,将膜置于60℃真空干燥箱中干燥2小时。上述步骤重复 4-6次,即可得到在膜孔壁上附载了β-cd@zif-8纳米颗粒的pvdf膜材料;
16.s5:最后,使用超声清洗的方式以去除pvdf膜表面未反应的配体及残存的纳米颗粒。
17.本发明提供的一种快速高效吸附重金属离子的微膜吸附器的制备方法与其他方法相比,具有以下几种有益技术效果:
18.(1)本发明技术方案采用的β-环糊精对合成的沸石咪唑骨架-8改性,不仅增加了活性位点数量,还改变了其亲疏水性能。由于膜亲水性能的提升,便减少了驱动溶液的通过时间,从而保持有效的驱动力,同时提高了水通量,降低溶质逆通量;
19.(2)本发明技术方案采用聚偏氟乙烯膜作为基底膜,良好的耐酸碱性和化学稳定
性等特征,且多孔膜提供的膜孔径分布均匀,可提高纳米吸附剂的分散性;
20.(3)本发明技术方案采用深层渗透法原位合成β-cd@zif-8纳米颗粒,通过施加外部压力使反应物被迫流动,而不是扩散穿过多孔膜,这样反应物可以完全渗透到膜的内部孔中。
附图说明
21.图1为β-cd@zif-8/pvdf的制备示意图,(a)zn(ii)在膜基底上的附载, (b)β-cd附载和zif-8的形成,(c)膜断面结构图,(d)β-cd@zif-8结合的示意图;
22.图2为使用微膜吸附器和粉末材料进行间歇吸附的吸附工艺示意图;
23.图3为β-cd@zif-8/pvdf微膜吸附器bet图谱,(a)氮气吸附-脱附等温线,(b)孔径分布曲线;
24.图4为β-cd@zif-8/pvdf微膜吸附器xrd图谱;
25.图5为β-cd@zif-8/pvdf微膜吸附器ftir图谱;
26.图6为β-cd@zif-8/pvdf微膜吸附器sem图谱(a1-d1),pvdf膜的sem 图谱;
27.图7为β-cd@zif-8/pvdf微膜吸附器能谱-面扫图谱;
28.图8为β-cd@zif-8/pvdf微膜吸附器xps图谱;
29.图9为β-cd@zif-8/pvdf微膜吸附器与pvdf、zif-8/pvdf接触角图谱;
30.图10为吸附废水中重金属离子的β-cd@zif-8/pvdf微膜吸附器随着溶液ph 的变化对pb(ii)或cu(ii)吸附容量图谱;
31.图11为吸附废水中重金属离子的β-cd@zif-8/pvdf微膜吸附器随着时间的变化对pb(ii)或cu(ii)吸附的动力学曲线图谱;
32.图12为吸附废水中重金属离子的β-cd@zif-8/pvdf微膜吸附器分别对pb(ii) 或cu(ii)的吸附等温线图谱;
33.图13为吸附废水中重金属离子的β-cd@zif-8/pvdf微膜吸附器随着吸附温度的变化对pb(ii)或cu(ii)吸附的热力学曲线图谱;
34.图14为吸附废水中重金属离子的β-cd@zif-8/pvdf微膜吸附器重复使用对 pb(ii)或cu(ii)吸附容量图谱。
具体实施方式
35.下面结合附图和具体实施例详细介绍本发明,但以下的实施例仅限于解释本发明,本发明的保护范围应包括权利要求的全部内容,不仅仅限于本实施例。
36.实施例1:
37.1)zif-8/pvdf微膜吸附器制备步骤:
38.1.0g zn(no3)2·
6h2o溶解在20ml的去离子水溶液中。随后,将已称重的 pvdf膜放入膜组件中,再利用蠕动泵,溶液能够在压力作用的作用下流过pvdf 膜,使得溶液能够深入而缓慢地渗透到膜孔之中。
39.其次,该渗透循环过程持续1小时后,取出膜,置于60℃真空烘箱中干燥 1h。再次,将4.5g 2-mi在35ml去离子水中搅拌至溶液,同样的方法,使溶液在压力下流过膜,从而在膜孔中合成纳米zif-8。
40.最后,在渗透2-mi溶液1小时后,取出膜,在60℃真空烘箱中干燥。然后,使用在超声作用下去离子水清洗pvdf膜,以去除膜面残留的纳米颗粒,得到了zif-8/pvdf微膜吸附器。
41.2)重金属吸附实验:
42.批量吸附实验是常温(298k)条件下,将在膜孔壁上已附载zif-8的pvdf 膜置于膜组件中,使用蠕动泵输送重金属离子溶液(15ml)缓慢渗透过膜,使得吸附剂能充分与重金属离子接触,如附图2所示。重金属溶液的制备是通过分别在去离子水中溶解适量的pb(no3)2和cuso4。在预定的吸附时间结束后,随后,通过原子吸收分光光度仪对样品中重金属的含量进行分析。
43.实施例2
44.1)β-cd@zif-8/pvdf微膜吸附器制备步骤:
45.首先,将聚偏氟乙烯膜(pvdf)放入膜组件过滤器中,在一定压力作用下,使0.21mol/l的zn(no3)2·
6h2o以0.3ml/l的流速缓慢渗透过膜。渗透结束后,将膜置于60℃的真空干燥箱中干燥1小时,干燥后的zn(no3)2·
6h2o将重新结晶并沉淀于pvdf膜的膜孔中。
46.然后,同样的方法,将在膜孔中附载zn(no3)2·
6h2o的pvdf膜安装在膜组件中,在一定压力下,缓慢渗透2-mi(3.5g)和β-cd(1.0g)的混合水溶液(35ml)。渗透结束后,在60℃温度下干燥1小时。
47.上述步骤重复4-6次,即可得到在膜孔壁上附载β-cd@zif-8纳米颗粒的 pvdf膜材料。最后,使用超声清洗的方式以去除pvdf膜表面未反应的配体及残存的纳米颗粒,得到了β-cd@zif-8/pvdf微膜吸附器。β-cd@zif-8/pvdf 微膜吸附器制备示意图见附图1。
48.2)重金属吸附实验:
49.批量吸附实验是常温(298k)条件下,将在膜孔壁上已附载β-cd@zif-8 的pvdf膜置于膜组件中,使用蠕动泵输送重金属离子溶液(15ml)缓慢渗透过膜,使得吸附剂能充分与重金属离子接触,如附图2所示。重金属溶液的制备是通过分别在去离子水中溶解适量的pb(no3)2和cuso4。在预定的吸附时间结束后,随后,通过原子吸收分光光度仪对样品中重金属的含量进行分析。
50.实验例
51.本发明采用深层渗透的方法,在聚偏氟乙烯膜的孔壁上原位合成β-cd@zif-8纳米颗粒。由于膜孔为纳米颗粒的附载提供了巨大的表面积,因此固定在膜孔中的吸附剂大幅度提升。此外,膜孔径分布均匀,可提高纳米吸附剂的分散性。通过实施1中对样品进行化学成分以及扫描电镜分析,其结果表明成功制备了β-cd@zif-8纳米颗粒,并在pvdf膜孔壁上均匀附载了β-cd@zif-8纳米颗粒。并样品进行对重金属离子的吸附容量测试,探讨在不同 ph环境、吸附时间、吸附初始浓度、溶液温度以及重复使用性能,对样品的吸附性能以及可重复使用性进行研究,实验结果表明β-cd@zif-8/pvdf微膜吸附器对重金属pb(ii)和cu(ii)都有超高的吸附容量和良好的可重复使用性。
52.(1)β-cd@zif-8/pvdf微膜吸附器化学成分分析实验:将聚偏氟乙烯膜 (pvdf)放入膜组件过滤器中,在一定压力作用下,使0.21mol/l的zn(no3)2·
6h2o 以0.3ml/l的流速缓慢渗透过膜。渗透结束后,将膜置于60℃的真空干燥箱中干燥1小时,干燥后的zn(no3)2·
6h2o将重新结晶并沉淀于pvdf膜的膜孔中。然后,同样的方法,将在膜孔中附载zn(no3)2·
6h2o的pvdf膜安装在膜组件中,在一定压力下,缓慢渗透2-mi(3.5g)和β-cd(1.0g)的混合水溶液(35ml)。渗透结束后,在60℃温度下干燥1小时。上述步骤重复4-6次,即可得到在膜孔壁上附载β-cd@zif-8纳米颗粒的pvdf膜材料。最后,使用超声清洗的方式以去除pvdf膜表面未反应的配体及残存的纳米颗粒,得到了β-cd@zif-8/pvdf微膜吸附器。对其进行bet、xrd、ftir、扫描电镜以及 xps分析,结果见附图3-8。
53.从图3可以看出,在pvdf膜孔壁上原位合成的β-cd@zif-8纳米颗粒依然具有较高的比表面积和孔隙度;在图4中可以看出与纯的pvdf、zif-8/pvdf 相比,β-cd@zif-8/pvdf在2θ=7.61
°
、10.4
°
、12.7
°
处的吸附峰均存在,说明β-cd@zif-8纳米颗粒存在于pvdf膜孔壁上;从图5中可以发现β-cd@zif-8/pvdf在1403、1082、1012以及1157cm-1
等处均出现了特征峰,也表明β-cd@zif-8纳米颗粒成功在pvdf膜上附载;图6和图7的β-cd@zif-8/pvdf微膜吸附器的膜截面扫描电镜分析与能谱-面扫分析说明β-cd@zif-8均匀地附载在pvdf膜孔壁上;图8xps中o1s分谱以及c1s分谱都进一步说明了pvdf基膜上β-cd@zif-8纳米颗粒的存在。
54.(2)亲疏水性能测试实验:1.0g zn(no3)2·
6h2o溶解在20ml的去离子水溶液中。随后,将已称重的pvdf膜放入膜组件中,再利用蠕动泵,溶液能够在压力作用的作用下流过pvdf膜,使得溶液能够深入而缓慢地渗透到膜孔之中。其次,该渗透循环过程持续1h后,取出膜,置于60℃真空烘箱中干燥1h。再次,将4.5g 2-mi在35ml去离子水中搅拌至溶液,同样的方法,使溶液在压力下流过膜,从而在膜孔中合成纳米zif-8。最后,在渗透2-mi溶液1h后,取出膜,在60℃真空烘箱中干燥。然后,使用在超声作用下去离子水清洗pvdf膜,以去除膜面残留的纳米颗粒,得到zif-8/pvdf。利用接触角对pvdf、 zif-8/pvdf、β-cd@zif-8/pvdf的亲水性能进行定量分析,如附图9所示。
55.从图9测试结果可知,pvdf膜、zif-8/pvdf、β-cd@zif-8/pvdf的接触角度分别为79.749
°
、94.6
°
、53.6
°
,说明β-cd的附载现实了zif-8由疏水向亲水性转变。
56.(3)β-cd@zif-8/pvdf微膜吸附器吸附性能测试实验:分别配置不同浓度的重金属pb(ii)或cu(ii)溶液,设置不同的ph梯度、吸附时间、初始浓度以及溶液温度,使用β-cd@zif-8/pvdf微膜吸附器对重金属溶液进行的吸附实验,实验结果参考附图10-13。
57.从图10中可以看出,在ph 2~4之间吸附量很低,由于产生质子效应,h
+
离子占据吸附剂表面的活性位点,降低pb、cu离子与吸附剂中锌、氧离子配位,当ph为5~6时,微膜吸附器的吸附效果最好,总吸附量主要为复合材料的吸附效果;图11考察吸附时间对β-cd@zif-8/pvdf对吸附质的吸附性能,研究了微膜反应器对pb(ii)、cu(ii)的吸附动力学,采用伪一级动力学模型与伪二级动力模型对实验数据进行拟合,实验结果表明更符合拟二级动力学模型说明吸附过程主要受化学作用的控制,且该微膜吸附器在2h之内就已经达到了吸附平衡,吸附速率快,吸附效率高;图12研究了溶液初始浓度对β-cd@zif-8/vdf 吸附性能的影响,使用单溶质体系表面吸附的langmuir和freundlich等温线进行模拟,拟合结果发现langmuir模型能更准确的描述吸附行为,且计算出β-cd@zif-8/pvdf微膜吸附器对pb(ii)和cu(ii)的最大吸附量分别为 708.13mg/g和651.38mg/g;图13考察了吸附温度对β-cd@zif-8/pvdf微膜吸附器对重金属离子的吸附性能影响,实验结果显示随着温度的升高,pb(ii)和 cu(ii)的去除率都有所提高,这是由于在较高温度条件下,分子运动更激烈,离子与分子发生碰撞发生键合的概率增加,说明该吸附过程为自发的吸热过程。
58.(4)β-cd@zif-8/pvdf微膜吸附器可重复使用性测试实验:β-cd@zif-8/pvdf微膜吸附器,吸附后的微膜吸附器使用1%的盐酸浸进行解吸,再进行吸附重复使用,分别配置200mg/l的pb(ii)和cu(ii)溶液,测试重复使用次数的吸附效果,实验结果参考附图14。
59.从图14中可以看出,β-cd@zif-8/pvdf微膜吸附器pb(ii)和cu(ii)的吸附量随着重复使用的次数而降低,但其下降趋势较低,说明本发明所制备的微膜吸附器具有较好的可重复利用性。
60.总之,从上述实施方式以及实验结果可以看出本发明的有益效果体现在:
61.(1)快速高效:本发明通过研究吸附动力学,发现该微膜吸附器在2h之内就已经达到了吸附平衡,吸附速率快,吸附效率高;
62.(2)吸附容量大:在本实施实例3中,考察吸附浓度对β-cd@zif-8/pvdf 微膜吸附器吸附性能的影响,进行吸附等温线拟合分析,计算出β-cd@zif-8/pvdf微膜吸附器对pb(ii)和cu(ii)的最大吸附量分别为 708.13mg/g和651.38mg/g;
63.(3)可重复使用性好:广泛研究的粉体吸附剂因为吸附低、可重复使用性低而限制了其发展,或制备的膜材料将吸附剂包裹住,而掩蔽了其活性位点。相比而言,本发明使用不仅具有高吸附效率,还具有可重复使用好等特点。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1