无取向硅钢无铬环保涂层的厚度控制方法与流程

文档序号:30292674发布日期:2022-06-04 16:13阅读:934来源:国知局
无取向硅钢无铬环保涂层的厚度控制方法与流程

1.本发明属于硅钢涂层技术领域,具体地说,本发明涉及一种无取向硅钢无铬环保涂层的厚度控制方法。


背景技术:

2.当前新能源汽车、出口型高效压缩机、中小型电机等领域用硅钢,都在逐步采用无铬环保涂层。随着国家环保要求的提升,无铬环保涂层将逐步替代含铬涂层;且2019年环保涂层国家标准正式制定并将实施,加快了推进国内硅钢无铬涂层发展。目前国内市场需求的无铬环保涂层以c5涂层为主流,涂层厚度在0.5~1.5μm,典型值0.9
±
0.2μm,层间电阻≥3ω
×
cm2。国内典型硅钢制造企业如宝武、首钢、太钢针对c5无铬薄涂层,陆续开展过国内外多家涂料的工业化试制和应用技术研究,并在新能源汽车、压缩机领域推广应用。
3.国内外无铬c5环保涂层种类繁多,不同成分的涂层固含量不同,从20-45%不等,固含量与涂层厚度息息相关,另外涂层厚度与涂覆工艺也密切相关。目前已有专利主要规定涂料组分和固化工艺,没有说明涂覆工艺。如公开号为cn102433055a的专利文献公开了一种无取向硅钢用无铬绝缘涂层涂料通过金属磷酸二氢盐100份,环氧树脂10-60份,环烷酸盐或金属异辛酸盐催干剂0.001-10份,有机溶剂0.001-100份,纯水60-2000份,生产出一种具有优异的绝缘性、耐腐蚀性、附着性、焊接性、可制造性的环保涂层;公开号为cn110885571a的专利文献公开了一种节能型无取向硅钢涂液及其制备方法,采用磷酸盐、环氧丙烯酸酯复合乳液和硼酸,生产出一种具有较好耐腐蚀性、光泽度、硬度和较低烘干温度的涂层。但这些发明专利对无铬环保涂层涂覆工艺、烘干固化工艺和厚度控制方法没有进行详细的说明。


技术实现要素:

4.本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提供一种无取向硅钢无铬环保涂层的厚度控制方法,目的是实现无取向硅钢无铬环保涂层厚度的有效控制。
5.为了实现上述目的,本发明采取的技术方案为:无取向硅钢无铬环保涂层的厚度控制方法,包括步骤:
6.s1、提供稀释液,稀释液是由无铬环保涂料和脱盐水配制而成;
7.s2、在硅钢基板上涂覆稀释液;
8.s3、烘干固化,在硅钢基板上形成无铬环保涂层;
9.其中,在步骤s1中,无铬环保涂料固含量为35
±
3%。
10.所述无铬环保涂层层间电阻≥3ω
·
cm2。
11.所述无铬环保涂层的厚度控制在0.5-1.5μm。
12.所述无铬环保涂料和所述脱盐水的体积比为1:0.5~0.8。
13.所述稀释液固含量控制在18-25%。
14.所述硅钢基板的表面粗糙度ra控制在0.05-0.30μm范围内。
15.所述步骤s2中,采用六辊涂机,六辊涂机的粘料辊与涂覆辊压力控制在0.3-0.8mpa范围。
16.所述步骤s2中,采用六辊涂机,六辊涂机的涂覆辊与取液辊速比控制在0.6-1.0。
17.所述步骤s3中,烘干固化时的温度控制在450-520℃,时间控制在20-30s。
18.本发明的无取向硅钢无铬环保涂层的厚度控制方法,通过固含量控制、涂覆工艺控制,结合固化工艺,可以实现无取向硅钢无铬环保涂层厚度的有效控制,将涂层厚度控制在0.5-1.5μm范围内,层间电阻控制在≥3ω
·
cm2,生产的无铬环保涂层上下表面均匀性良好,涂层厚度控制准确,附着力优良,满足下游客户的使用要求。
具体实施方式
19.下面通过对实施例的描述,对本发明的具体实施方式作进一步详细的说明,目的是帮助本领域的技术人员对本发明的发明构思、技术方案有更完整、准确和深入的理解,并有助于其实施。
20.本发明提供了一种无取向硅钢无铬环保涂层的厚度控制方法,包括如下的步骤:
21.s1、提供稀释液,稀释液是由无铬环保涂料和脱盐水配制而成;
22.s2、在硅钢基板上涂覆稀释液;
23.s3、烘干固化,在硅钢基板上形成无铬环保涂层。
24.具体地说,在上述步骤s1中,无铬环保涂料是一种半有机-半无机硅钢片涂液,无铬环保涂料固含量为35
±
3%。
25.在上述步骤s3中,为满足电机铁心用户对电机效率的要求,无铬环保涂层层间电阻≥3ω
·
cm2。为了实现无铬环保涂层层间电阻的有效控制,将无铬环保涂层的厚度控制在0.5-1.5μm。
26.在上述步骤s1中,为了控制无铬环保涂层的厚度,稀释液固含量控制在18-25%范围内。
27.在上述步骤s1中,为了控制无铬环保涂层的固含量,无铬环保涂料和脱盐水的体积比为1:0.5~0.8,也即稀释比例为1:0.5~0.8。
28.在上述步骤s2中,为了控制无铬环保涂层的厚度和附着力,硅钢基板的表面粗糙度ra控制在0.05-0.30μm范围内。
29.在上述步骤s2中,为了精确控制无铬环保涂层厚度,采用六辊涂机进行绝缘涂层的涂覆,六辊涂机为设置有计量辊、取液辊、粘料辊、涂覆辊的平辊涂层机。
30.在上述步骤s2中,六辊涂机的涂覆方式为逆涂。
31.在上述步骤s2中,为了控制无铬环保涂层的厚度,六辊涂机的粘料辊与涂覆辊压力控制在0.3-0.8mpa范围。
32.在上述步骤s2中,为了控制无铬环保涂层的厚度,带钢/涂覆辊速比控制在1.0-1.4。
33.在上述步骤s2中,为了控制无铬环保涂层的厚度,六辊涂机的涂覆辊与取液辊的速比(即涂覆辊的转速与取液辊的转速的比值)控制在0.6-1.0。
34.在上述步骤s3中,为了保证涂层完全固化,烘干固化时的温度控制在450-520℃,
时间控制在20-30s。
35.所述固化是在干燥炉内空气气氛下完成,固化温度来自于炉内辐射管热辐射加热或近红外辐射管辐射加热。
36.采用本发明生产得到的无铬环保涂层用无水酒精20次擦拭和丙酮5次擦拭,涂层均不能被擦掉,说明涂层完全固化。
37.根据gb/t2522-2017《电工钢带(片)涂层绝缘电阻和附着性测试方法》,对无铬环保涂层进行附着力进行测试,附着力测试达到a级。
38.根据gbt 20831-2007《电工钢片(带)层间绝缘涂层温度特性测试方法》,对无铬环保涂层进行耐热性能测试,测试气氛为氮气,涂层不掉粉。
39.根据gbt_10125-2012《人造气氛腐蚀试验_盐雾试验》,对无铬环保涂层进行耐腐蚀性能测试,保存8h后腐蚀面积≤20%为合格,不腐蚀为优。
40.表1实施例1-8及对比例1-2的固含量、涂覆工艺列表
[0041][0042]
表2实施例1-8及对比例1-2的主要工艺参数及性能情况列表
[0043][0044][0045]
从以上发明内容可以看出,按照本发明提供的技术方案得到的无铬环保涂层,涂层附着力、耐热性、耐腐蚀性能良好,如表2所示,涂层附着力、耐热性、耐腐蚀性能比对比例1、对比例2明显提高。涂层厚度0.5-1.5μm,层间电阻≥3ω
×
cm2,满足下游用户对涂层的要求。
[0046]
上述参照实施例对一种无取向硅钢无铬环保涂层的厚度控制方法进行的详细描述,是说明性的而不是限定性的,可按照所限定范围列举出若干个实施例,因此在不脱离本发明总体构思下的变化和修改,应属本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1