一种负载双金属多孔碳纳米纤维催化剂及制备方法和应用

文档序号:35865598发布日期:2023-10-26 23:36阅读:46来源:国知局
一种负载双金属多孔碳纳米纤维催化剂及制备方法和应用

本发明涉及光热催化的,尤其是涉及一种负载双金属多孔碳纳米纤维催化剂及制备方法和应用。


背景技术:

1、化石燃料的大量使用使co2被认为是造成温室效应的主要原因。由此引发了土地荒漠化、冰川消融、极端天气等一系列环境问题。在co2减排的众多方法中,将co2转化为具有高附加值的环状碳酸酯,不仅可以减少co2的排放,实现“碳中和”,还可以减轻对化石燃料的依赖,缓解能源危机,而且环状碳酸酯具有高偶极矩、高介电常数等特性,广泛应用于锂电池的电解液、医药合成中间体、有机化合物合成的前体等方面。因此,co2环加成反应成为co2合成有机化合物的重要方向,也是合成环状碳酸酯的主要方法。

2、当前,路易斯酸(la)位点催化该反应的理论被广泛接受,大体包括环氧底物的开环,co2的插入,内环化反应三步。然而当前大多数催化剂需要在高温高压的条件下进行,直接加热的方式通常会造成能源的二次消耗。当催化剂表现出优异的光热性能时,可以用光能作驱动co2环加成反应的动力。

3、近年来,利用光能或其他可再生能源将co2转化为具有高附加值的化学品已成为一种趋势。与其他形式的清洁能源相比,光能受到研究人员的青睐,因为它使用更方便,不需要进一步的能源消耗。因此,以光能为驱动力将co2转化为环状碳酸酯,具有很高的工业价值和科学意义。单金属zif-8衍生碳材料在利用光为驱动力对co2环加成反应进行催化时,依然存在la活性位点不足,催化效率低的缺点。


技术实现思路

1、本发明的目的在于提供一种负载双金属多孔碳纳米纤维催化剂及制备方法和应用,以解决现有技术中单金属zif-8衍生碳材料在利用光为驱动力对co2环加成反应进行催化时,存在la活性位点不足,催化效率低的技术问题。

2、本发明提供一种负载双金属多孔碳纳米纤维催化剂的制备方法,包括如下步骤:

3、步骤1、采用静电纺丝法制备含有锌盐的纳米聚合物纤维;

4、步骤2、将纳米聚合物纤维置于2-甲基咪唑的甲醇溶液中进行原位生长,获得负载有zif-8的复合纳米纤维;

5、步骤3、利用复合纳米纤维吸附重金属离子水溶液中的重金属离子,得到双金属复合纳米纤维;

6、步骤4、对双金属复合纳米纤维进行预氧化、碳化,获得催化剂。

7、进一步地,在步骤1中,制备含有锌盐的纳米聚合物纤维具体包括:

8、将聚丙烯腈、锌盐溶解于有机溶剂中,混合后获得稳定均一的静电纺丝前驱体溶液;

9、利用静电纺丝前驱体溶液通过内掺纺丝形成含有锌盐的纳米聚合物纤维。

10、其中,锌盐中的锌元素和聚丙烯腈的质量比为(0.5-2.5):1。

11、进一步地,在步骤1中,静电纺丝法采用以下参数:正负极之间高压为14kv,正极与负极铜板之间距离为19cm。

12、进一步地,在步骤2的原位生长过程中,2-甲基咪唑与锌盐中锌离子的摩尔比为(2-6):1。

13、进一步地,在步骤3中,所述重金属离子选用铜离子,铜离子水溶液的浓度为20-140mg/l,铜离子水溶液的ph为2-6.5,吸附温度为25-55℃,吸附时间为0.5-5h。

14、进一步地,在步骤4中,所述碳化全程在惰性气体环境下进行,升温速率1-10℃/min,并在100-250℃停留0.5-5h,在300-900℃停留0.5-5h后获得所述催化剂。

15、本发明又提供了一种负载双金属多孔碳纳米纤维催化剂,由上述的制备方法制得。

16、本发明还提供了上述负载双金属多孔碳纳米纤维催化剂的应用,用于光热催化co2与环氧化物的环加成反应。

17、进一步地,所述环氧化物为氧化苯乙烯、环氧氯丙烷、环氧溴丙烷、环氧丙烷、环氧丁烷中的至少一种。

18、进一步地,所述环加成反应的条件为:co2压力0.5-15mpa,反应时间5-10h。

19、与现有技术相比较,本发明的有益效果在于:

20、(1)本发明中的纳米聚合物纤维通过内掺纺丝可以使金属固定到纤维上,防止脱落,同时纳米聚合物纤维起到限域作用,控制zif-8颗粒直径以及均匀分散,避免金属锌团聚。

21、(2)本发明的催化剂在制备过程中内掺纺丝结合原位生长,保证zif-8在纤维上均匀负载;并且原位生长负载zif-8,相较后负载、水热、微波加热等方法,操作流程简单;同时,碱性的2-甲基咪唑溶液刻蚀部分pan纤维,使zn(ii)暴露出来,暴露出来的zn(ii)作为催化剂活性位点,可以提升反应效率。

22、(3)本发明通过吸附负载铜离子,增加金属位点,避免金属铜团聚,处理水中重金属污染物,并且双金属材料优于单金属的催化活性。

23、(4)本发明碳化过程中,低温预处理可以使催化剂保持较好的形貌特征,高温碳化使pan结构破坏,得到碳基载体;同时,整个过程处于氮气缺氧氛围,可保证zn(ii)在该过程不被氧化,从而形成zn-n键,能够为反应提供活性位点,提升催化活性。



技术特征:

1.一种负载双金属多孔碳纳米纤维催化剂的制备方法,其特征在于,包括如下步骤:

2.根据权利要求1所述的一种负载双金属多孔碳纳米纤维催化剂的制备方法,其特征在于,在步骤1中,制备含有锌盐的纳米聚合物纤维具体包括:

3.根据权利要求1所述的一种负载双金属多孔碳纳米纤维催化剂的制备方法,其特征在于,在步骤1中,静电纺丝法采用以下参数:正负极之间高压为14kv,正极与负极铜板之间距离为19cm。

4.根据权利要求1所述的一种负载双金属多孔碳纳米纤维催化剂的制备方法,其特征在于,在步骤2的原位生长过程中,2-甲基咪唑与锌盐中锌离子的摩尔比为(2-6):1。

5.根据权利要求1所述的一种负载双金属多孔碳纳米纤维催化剂的制备方法,其特征在于,在步骤3中,所述重金属离子选用铜离子,铜离子水溶液的浓度为20-140mg/l,铜离子水溶液的ph为2-6.5,吸附温度为25-55℃,吸附时间为0.5-5h。

6.根据权利要求1所述的一种负载双金属多孔碳纳米纤维催化剂的制备方法,其特征在于,在步骤4中,所述碳化全程在惰性气体环境下进行,升温速率1-10℃/min,并在100-250℃停留0.5-5h,在300-900℃停留0.5-5h后获得所述催化剂。

7.一种负载双金属多孔碳纳米纤维催化剂,其特征在于,由权利要求1-6中任一项所述的制备方法制得。

8.如权利要求7所述的负载双金属多孔碳纳米纤维催化剂的应用,其特征在于,用于光热催化co2与环氧化物的环加成反应。

9.根据权利要求8所述的应用,其特征在于,所述环氧化物为氧化苯乙烯、环氧氯丙烷、环氧溴丙烷、环氧丙烷、环氧丁烷中的至少一种。

10.根据权利要求8所述的应用,其特征在于,所述环加成反应的条件为:co2压力0.5-15mpa,反应时间5-10h。


技术总结
本发明涉及光热催化技术领域,公开了一种负载双金属多孔碳纳米纤维催化剂及制备方法和应用,利用多孔碳纳米纤维负载双金属,制备过程包括静电纺丝、原位生长、吸附、碳化过程。多孔碳纳米纤维的制备维过程相较于常规方法,操作更加简单,可重复性更高;双金属材料制备过程,吸附法的引入,既可以增加催化剂的金属位点,又可以处理水中的重金属污染物。该方法制备的多孔碳纳米纤维负载双金属的催化剂,有效避免了催化剂金属位点团聚、二次污染等问题,具有良好的循环稳定性和催化活性;同时,制备过程还对重金属污染物进行回收。为催化剂性能的提升以及材料的多领域利用提供了一定的可行性策略,在光热催化领域具有很好的应用前景。

技术研发人员:白杰,许瞳,李媖,孙映晖,高文森,孙兴伟,郝旭杰
受保护的技术使用者:内蒙古工业大学
技术研发日:
技术公布日:2024/1/15
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1