用于升级fcc产品的带有具有充分混合功能的附加反应器的方法和设备的制作方法

文档序号:5130592阅读:211来源:国知局
专利名称:用于升级fcc产品的带有具有充分混合功能的附加反应器的方法和设备的制作方法
背景技术
本发明地般涉及用于流化催化裂化(FCC)重质烃类物流的方法。更具体的说,本发明涉及用于在一个不连续的反应器装置中升级催化裂化烃原料的方法。
无论是真空瓦斯油,残油或者其它沸点相对较高的烃类原料,FCC方法都是通过起始原料与催化剂接触反应实现的,该催化剂是由精细分割的或颗粒状的固体物质组成的。通过使气体或蒸气以足够产生所需要的流体输送模式的速度通过催化剂使催化剂以所希望流体传输模式被传送。油和流化物质的接触促使裂化反应进行。裂化反应使焦炭沉积在催化剂上,退出反应区的催化剂被称为“废催化剂”,也就是说,由于焦炭在催化剂上沉积而使其部分失活。焦炭由氢和碳组成,并可包括其它的微量物质,如和起始原料一起进入工艺过程的硫和金属。焦炭通过阻塞催化剂表面上发生裂化反应的酸性位点损害废催化剂的催化活性。通常将废催化剂输送到气提器以脱除催化剂上吸附的烃和气体,然后将其送至再生器,从而与含氧气体进行氧化反应以除去焦炭。具有相对于气提器中的废催化剂降低了的焦炭含量的催化剂(在下文中被称作再生催化剂)被收集起来重返反应区。氧化催化剂表面的焦炭释放大量的热,其中一部分随焦炭氧化的气态产物(通常被称作烟气)离开再生器,其余的热量随再生催化剂离开再生器。流化催化剂在反应区和再生区之间不断循环。流化催化剂既提供催化作用,又担当区域间传输热量的工具。FCC方法和其中所用的分离设备在美国专利US-A-5,584,985B1和US-A-4,792,437B1中都有详尽的描述(该文结合于此作为参考)。本领域技术人员熟知各种接触区、再生区和气提区的方法细节,并也熟知在不同反应区之间进行催化剂的传输的布局。
FCC反应器将瓦斯油或较重的原料裂化为宽范围的产品。来自FCC单元的裂化蒸气进入分离区,该区通常以主塔的形式存在,其提供气体流、汽油馏分、轻循环油(LCO)和包括重循环油(HCO)成分的澄清油(CO)。气体流包括干气,即氢气和C1和C2烃,液化气(LPG)即C3和C4烃。在许多地区,石脑油比液化气和干气更有价值。但是,在一些地区LPG比石脑油有价值。汽油馏分可包括轻、中、重汽油组分,重汽油馏分的主要成分包括稠和的单环芳烃。LCO的主要组分是稠和的双环芳烃。
用附加反应器处理产品馏分对升级产品是有用的。将原始裂化的FCC产品中的重质产品馏分再裂化就是一个例子。典型地,在再裂化反应中,来自FCC反应器的第一提升管中的未裂化的流出物和第二段的催化剂再次接触,以使较大分子裂化为较小分子。例如,美国专利US-A-4,051,013B1公开了汽油馏程范围原料和瓦斯油原料在同一提升管的不同的高度发生裂化反应。WO01/00750A1公开在同一提升管的不同的高度引入汽油原料和FCC原料,分离裂化产品并使其中一部分循环返回同一提升管反应器。
US-A-2,921,014B1,US-A-3,161,582B1,US-A-5,176,815B1 和US-A-5,310,477B1都公开了在FCC单元的提升管中裂化第一烃原料,在反应器中裂化从提升管中退出的第二烃原料,结果,两种裂化产品在反应器中在一定程度上混合,这抵消了第二烃原料裂化的升级的结果,尤其当它是初始原料的裂化馏分时。US-A-2,956,003通过分离提升管流出物的催化剂和蒸气产品并使得第二烃原料在接受分离的催化剂的反应器中接触在一定程度上避免了这种不利影响。
在FCC单元中使用两个提升管是已知的。US-A-5,198,590B1、US-A-4,402,913B1、US-A-4,310,489B1、US-A-4,297,203B1、US-A-3,799,864B1、US-A-3,748,251B1、US-A-3,714,024B1和US2002/0,003,103A1公开了有两个提升管FCC单元,其中的原料主要在两个提升管中裂化。在这些专利中,两个提升管与同一回收管路和/或能使气相产品混合的反应器连通。在US-A-5,730,859B1中,一个提升管中的所有流出物没有首先经过产品分离过程就被送到另一个提升管中。US-A-4,172,812B1教导了再裂化全部或一部分来自FCC单元提升管中的裂化产品,再裂化所用的催化剂与提升管中的催化剂有着不同的组分。US-A-5,401,387公开了先在固定床、流化床或移动床中使用形状选择性催化剂来裂化原料,然后将全部或部分的裂化流出物与重质原料混合后送至FCC单元。在US-A-5,944,982B1中,尽管两个提升管都终止于同一反应器装置中,每个提升管中的气相产品是互相隔离的。
在次级反应器中使用了两种类型的流动模式。在FCC提升管反应器中通常使用输送流动模式。在输送流动中,气体和催化剂的速度差(称做滑动速度)相对低,通常少于0.3m/s(1.0ft/s),而几乎没有催化剂返混或截留,滑动速度通过下面的公式计算vs=ug‾-us---(1)]]>其中是vs滑动速度,ug是表观气体速度,us是催化剂速度,是催化剂空隙率,另一种方式是通过这样的滑动比表征的流动模式,即滑动比为流动区的实际密度与非滑动密度之比。非滑动密度是用催化剂流量比表观气体速度来计算的ns=-cug---(2)]]>其中ns是流动区的非滑动密度,c是催化剂通量,ug是表观气体速度,催化剂通量为催化剂质量流速/反应器横截面积。滑动比与流动区的催化剂截留成正比例。通常,输送流动模式的滑动比达不到2.5,因此,反应区的催化剂保持在低密度和非常稀释的相的条件下流动。输送流动的表观气体速度通常远大于3.7m/s(12.0ft/s),并且催化剂的密度通常不超过48kg/m3(3lb/ft3)(这通常取决于催化剂和蒸气的特征与流速)。在输送模式下,催化剂-蒸气的混合物是均相的,在催化剂相中没有蒸气空洞或者鼓泡形成。
沸腾床次级反应器也是已知的。在沸腾床中,流化蒸气形成气泡上升通过清晰的密集催化剂床的上表面。只有被蒸气夹带的催化剂与蒸气一起离开了反应器。蒸气的表观速度通常小于0.5m/s(1.5ft/s),密集床的密度通常大于640kg/m3(40lb/ft3)(取决于催化剂的特征)。当具有渗透性的蒸气从旁路通过催化剂时,催化剂与蒸气的混合物就是多相的。
沸腾床与输送流动模式之间的是湍动床和快速流化模式。US-A-4,547,616B1公开了一种用于氧化转化的湍流模式,在湍动床中,催化剂与蒸气的混合物不是均相的,湍动床具有密集催化剂床,其中在催化剂相内有细长的蒸气空隙,并且表面很难分辨。仅被夹带的催化剂与蒸气一起离开,而且催化剂密度与它在反应器内的高度不很成比例。US-A-6,166,282B1公开了一种用于氧化转化反应的快速流化床模式。在快速的流化模式下,没有密集催化剂床。相反,催化剂与蒸气是均相的。离开反应区的催化剂比退出反应区的蒸气速度仅稍慢。因此,对于快速流化流动模式,滑动速度通常大于或等于0.3m/s(1.0ft/s),对于大多数FCC催化剂,滑动比大于或等于2.5。快速流化床已经用于使催化剂再生的FCC燃烧室和煤炭气化过程中。
US-A-3,928,172B1提出了一种具有次级反应器的流化催化裂化装置。在输送流动条件下,瓦斯油在具有未再生的废催化剂的提升管中裂化。提升管中生产的裂化瓦斯油的重石脑油馏分,其沸点在127°与232℃(260°-450°F)之间,在次级反应器中在沸腾床中的再生催化剂上进行再裂化。提升管中使用的废催化剂来自次级反应器的密集沸腾床。
US-A-5,346,613B1、US-A-5,451,313B1、US-A-5,455,010B1、US-A-5,597,537B1、US-A-5,858,207B1、US-A-6,010,618B1和US-A-6,113,776B1都公开了已经和原料接触的被送回反应器段的循环的未再生的废催化剂和再生催化剂混合,并和新鲜原料再接触以降低催化剂和原料接触的温度。US-A-5,965,012B1公开了第一原料和未再生的废催化剂与再生催化剂的混合物在离开进入混合容器的管道中的接触。从混合容器中脱除蒸气产品,并且与第一原料接触的混合催化剂进一步同其它未再生的废催化剂混合,并且进一步地,混合催化剂与第二进料在FCC提升管内接触。
在汽油生产中,许多政府机构正在限制汽油总调和组分内的烯烃浓度。降低烯烃浓度而不减少值是困难的,因为较高的烯烃浓度通常会产生较高的研究法辛烷值(RON)与马达法辛烷值(MON),但是对后者影响的程度相对小。辛烷值或者道路辛烷值是RON与MON的平均值。仅仅饱和烯烃通常会产出通常具有低辛烷值的正链烷烃。另外,饱和反应要求加氢,氢气是昂贵的并且在某些地区也很难得到。
美国申请09/944,511公开了石脑油在FCC单元的分离的反应器中在FCC催化剂上的反应,该反应在促进氢转移反应而不必加入氢的条件下进行。氢转移反应促进烯烃重整为异链烷烃和芳香族化合物,重整至异链烷烃降低了辛烷值,但是降低量并不大,因为产物烷烃是异链烷烃,它具有比正烷烃更大的辛烷值。此外,更多的烯烃到芳香族化合物的重整促使辛烷值提高,从而抵销了一些由烯烃到异链烷烃的饱和所造成的辛烷值损失。
EP1046696A2和EP1046695A2公开了原料同催化剂在提升管的第一反应区接触,并利用介质对第一反应区的流出物进行激冷,该介质包括已再生且已冷却的催化剂或石脑油。使激冷的流出物从第一反应区传到同一提升管的第二反应区,这个反应区可以比在促进异构化和氢转移反应的条件下的第一反应区具有更大的直径。第一反应区的进料可以包括石脑油。X.Youhao,Z.Jiushun和L.Jun在“一种改进的用于在裂化石脑油中最大化异链烷烃的FCC过程方法MIP”,《石油加工与石油化工产品》(2000年8月)中公开了汽油和FCC废催化剂的反应。在这些公开报告中,烯烃浓度被大大降低了,而增加了异链烷烃和芳香族化合物浓度。
FCC装置的进料通常包括有机硫和氮,在进行FCC操作时,一些有机硫和氮就转化成硫化氢和氨,它们很容易被脱除。但是,它们中的一部分转化成焦炭,较轻的硫和氮化合物及硫醇。这些焦炭随后在催化剂再生器中被氧化形成硫氧化物和氮氧化物。对于硫和氮化合物的排放的严格的环境限制条件催生了燃料产品中较低硫的规格,因此,大大提高了人们从FCC汽油中除去氮和硫化合物的兴趣。随着对燃料清洁性的要求的提高、高硫和高氮的使用的原料增加,从FCC汽油中除去氮和硫化合物的需要更加迫切。
US-A-5,482,617公开了一种用于烃流(例如含硫的FCC石脑油)的通过在床中同酸性催化剂接触脱硫的方法,50重量%的硫转化为硫化氢。
WO01/00751A1公开了一种转化方法,该方法用于降低汽油中烯烃、硫和氮的浓度。预热汽油和不多于2.0重量%积碳、温度低于600℃的催化剂接触。汽油产品中的烯烃含量降到20重量%以下,硫和氮含量也被降低。看来在接触汽油进料以前,再生催化剂在催化剂冷却器中被冷却到600℃以下。
用冷却器冷却催化剂的效率可能效率低。在FCC反应器中的裂化反应是吸热的。另外,热量也要用来气化次级反应器的原料。因此,为冷却催化剂而从工艺过程中吸取热量,这些热量必须得到补充以用于气化去另一反应器的原料。这些热量是通过牺牲有价值的产品给再生器增加燃料,从而在催化剂上产生更多的焦炭得到的。
本发明的目的是提供一种用于提高来自FCC反应器的产品质量的方法,该方法通过在保证充分混合催化剂和原料的条件下进一步反应上述产品来实现。
发明简述现在已经发现从FCC产品中衍生的原料,特别是石脑油,在快速流化流动条件下和反应器中的催化剂接触,对于促进氢转移反应和控制催化裂化反应是理想的。流动条件可以降低到湍动床模式,但是比快速流化流动模式的效率低。结合进FCC反应器中并且由此充分利用催化剂的次级反应器是优选的。催化剂和蒸气相原料的均匀混合使催化剂和原料充分接触而不产生不期望的焦炭和干气。
因此,本发明的一个实施方案中涉及了一种用于裂化并进一步处理烃的方法。该方法包括第一烃原料流和催化剂接触产生裂化烃和废催化剂。然后在分离器段分离废催化剂和裂化烃。至少一部分废催化剂再生以提供再生催化剂。然后第二烃原料流和再生催化剂在流动条件下在反应区内接触,流动条件包括表观蒸气速度大于或等于0.6m/s(1.8ft/s)和滑动比大于或等于2.5,以产生升级的烃和废催化剂。
在另一个实施方案中,本发明涉及一种用于烃流处理的方法,所述烃流包括至少一部分FCC反应器的流出物。该方法包括使烃原料流和催化剂在促进催化剂和烃均匀混合和滑动速度大于或等于3.0的反应条件下在反应区内接触。这样的接触产生了一种升级的烃和废催化剂。
在更进一步的实施方案中,本发明涉及一种用于烃类和催化剂接触的设备。设备包括一个具有至少一个反应器的反应器装置和一个与反应器装置连通的稀释剂喷嘴。原料喷嘴连通反应器的第一末端和反应器的第二末端,该喷嘴具有相对于反应器缩小的横截面。最后,分离器装置包括输送管道,其与反应器的第二末端连通,该输送管道有一个卸料口和分离器装置连通。
其它的目的,具体实施方案和发明详述可以从以下对本发明的详细描述中获得。
附图简述

图1是一个根据本发明的结合了次级反应器的FCC反应器的正视剖面示意图。
图2是一个沿着图1的截面2-2的剖面平面图。
发明详述我们已经发现当FCC方法产生的烃在次级反应器中反应时,能潜在地裂化为干气和LPG,在一些地区中这些干气和LPG的价值低于石脑油的价值。降低催化剂温度将抑止石脑油烯烃热裂化为干气和LPG,这可以全面提高石脑油的总产率。在一个实施方案中,本发明循环废催化剂到次级反应器中以与原料再接触。循环废催化剂和来自再生器的再生催化剂混合以降低总的混合催化剂的温度。
将循环废催化剂和再生催化剂混合是比使用间接热交换催化剂冷却器(其操作从系统中回收必须通过产生并燃烧更多的焦炭而产生的热量)更优选的方法。即使通过用在催化剂冷却器中的废热催化剂与加入反应器的原料间接热交换以保存热量,这种加热方式仍旧效率低,而且容易生成焦炭。
通过利用循环含焦炭废催化剂对催化剂活性进行调整也是有利的。FCC催化剂的强酸性位点通过焦炭的生成而受到抑止。因此,汽油重整活性相对于裂化活性增加了。调整催化剂活性可以减少干气和液化气的产生以使石脑油达到较高的产率。
我们也发现原料和催化剂更好的混合促进氢转移反应和催化裂化反应而减少不期望的焦炭和干气的生成。在不希望受制于特定理论的条件下,申请人相信较好的混合使烃类能更迅速地到达催化剂表面,这将提高氢转移反应和催化裂化反应。这允许降低总的接触时间和/或降低催化剂与原料之比,而这将使得在给定的转化率下干气和焦炭产率最小化。因此,在比沸腾床条件下反应更加剧烈的反应器条件下,例如使用快速流化流动模式,将提供更好的产品产率。
本发明可以通过参考三个部件进行描述FCC反应器10,再生器50和次级反应器70。虽然本发明的许多结构都是可能的,这里只举出了一个特殊的实施方案作为例子。能够实现发明的所有其它可能的具体实施方案也在本发明的范围内。
在图1的具体实施方案中,FCC反应器10包括管道形式的反应器装置12,优选垂直的,也被称为提升管。如同典型的FCC结构中的那样,反应装置12向上延伸通过分离器装置14的下部。反应器装置12在分离器装置14内部优选是垂直的,并且可以向上延伸通过分离器装置14的底部,或从分离器装置14的顶部延伸向下。反应器装置12终止于漩涡管18处的分离器装置14的脱离部分16中。在喷嘴20处送入提升管的烃原料流和热再生催化剂接触、气化,热再生催化剂通过来自喷嘴22的气体如蒸汽流化。催化剂裂化烃原料流,废催化剂颗粒和气态裂化烃的混合物离开漩涡管18中的卸料口至脱离段16中。从漩涡管18沿切线方向排出的气体和废催化剂在分离段16内部产生了回旋螺旋运动,导致较重的催化剂颗粒落进密集催化剂床24中,气态裂化烃和夹带的废催化剂颗粒的混合物向上进入气体回收管道26并进入旋风分离器28。在旋风分离器28里,作用于混合物的向心力导致气体夹带的较重的催化剂颗粒通过旋风分离器28的料腿30落入分离器装置14底部的密集催化剂床32中。旋风分离器28中的气体更加容易地改变方向并且开始向上螺旋运动,直到气体最终通过出口管34离开旋风分离器28。裂化气体通过出口管道36离开分离器装置14。裂化气体可以经由管道46送出至进一步的分离处理(未显示)以除去任何轻载荷催化剂颗粒并随后分馏。在密集催化剂床32中的废催化剂颗粒通过窗口38进入到脱离段16,在其中,它们与脱离段16的气提段40中的密集床24中的废催化剂颗粒混合。在挡板42上,使用来自至少一个喷嘴44中的气提介质如蒸汽气提掉废催化剂夹带的裂化蒸气,气提掉的裂化蒸气向上运行到气体回收管道26中,在那里它们和其它的裂化产品蒸气一起被处理。
来自FCC反应器10的分离器装置14的气提段40的气提过的废催化剂通过由控制阀49调节的废催化剂管48,优选进入再生器50。在一个实施方案中,一部分气提过的催化剂被送到次级反应器70中。在再生器50中,气提过的废催化剂遇到来自分配器53的热含氧气体,例如空气。当催化剂受热时,来自废催化剂的焦炭被燃烧掉。再生催化剂在密集床58上收集,而在旋风分离器60和62中,被夹带的催化剂与再生器流出气体分离。烟气通过出口管64退出旋风分离器62,然后通过出口66退出再生器50。来自密集床58的再生催化剂通过由控制阀69调节的第一再生催化剂管道68进入反应器装置12,在那里被流化并与新鲜原料接触。再生催化剂也通过由控制阀54调节的第二再生催化剂管道52退出再生器50进入到次级反应器70底部的次级反应器70的混合罐72中。
原料和催化剂在次级反应器70的反应器装置74中发生接触,控制阀54、80控制催化剂循环到反应器装置74的速率。如果反应器装置74包括催化剂床,催化剂循环速率就会影响催化剂床在反应器装置74中的高度。在次级反应器70中的反应器装置74的催化剂床的高度影响反应物通过反应器装置74的重时空速(WHSV)。例如,如果要求一个较大的重时空速,控制阀54、80将会相对关闭得更小,以降低催化剂在密集催化剂床中的高度和剂油比。另一方面,如果要求较小的重时空速,控制阀54、80将要打开得相对更大,以增加催化剂在密集催化剂床82中的高度和催化剂对原料的比率。控制阀54、80相关的设置可以独立调整以获得要求的温度和将要与反应器84中的原料接触的在密集催化剂床82中的催化剂的混合物。
来自FCC反应器10的管道46中的裂化产品物流(相对不含有催化剂颗粒并包含气提流体)被转入分馏塔主塔(图中没有显示)。来自主塔的一种或多种馏分优选送入次级反应器70中,以与那里的催化剂接触。在一个实施方案中,来自主塔的馏分,例如轻循环油馏分(LCO),在被送入次级反应器70中裂化以前,可以在加氢处理反应器中进行加氢处理。
在一个优选的实施方案中,次级反应器70包括反应器装置74和一个分离器装置76。废混合催化剂通过由控制阀80控制的循环废催化剂管78传送,再生催化剂通过由控制阀54控制的第二再生催化剂管52送入混合罐72。流化介质,例如蒸汽,通过管道77传送到稀释剂喷嘴79以流化混合罐72中的混合催化剂,并产生有一个上水平面83的再生密集催化剂床82。混合罐72能使废催化剂和再生催化剂在被送至原料之前充分混合,并且温度平衡。上水平面83的高度与控制阀54、80的相对于全开的状态成正比例。尽管一个反应器84可以用于实现本发明的目的,但是,通过增加空速操作范围的方式提供使用用带有专门喷嘴88和控制阀89(控制进入每一反应器84的原料流速)的多个反应器84比使用单个反应器84更具有操作弹性。
图2是沿着反应器装置74的截面2-2向上面看的剖视图,图2图示了在一个反应器装置74中有四个反应器84的优选实施方案。
可以是来自FCC反应器10的、管道46中的流出物的一部分或全部的烃原料通过喷嘴88被管道86分配到反应器装置74中的每个反应器84。反应器84可以是管状的,其底部末端开口并与反应器装置74中的催化剂床82连通。进入反应器84的原料优选使来自密集催化剂床82的混合催化剂进入发生接触的反应器里。对于一个给定的催化剂原料流速,反应器84的催化剂的量将与密集床82的上水平面83的高度成比例,上水平面83的高度通过控制阀54,80来控制。因此,反应器中的空速和密度以及催化剂与原料的比都可以通过调整密集床82的上水平面83的高度和/或通过调整或切断原料通过一个或更多喷嘴88的流速来控制。
反应器84的顶端85具有截面缩小区域(可以采取截头圆锥体的形式)。当废催化剂和蒸气产品的混合物退出反应器装置74并进入出口管道90中时,顶端85的截面缩小区域用来加速蒸气产品和废混合催化剂的混合物。出口管道90具有连通反应器装置74和具有提升管形式的输送管道92。出口管道90也可以被反应器84和输送管道92的直接连通所代替。出口管道90都有比各自的反应器84更小的横截面积,输送管道92的截面积优选小于为输送管道92提供进料的所有的反应器84的总面积。由此,当向上离开反应器84时,产品蒸气和催化剂就加速进入到输送模式。因而几乎不给废混合催化剂和产品蒸气进一步反应或者裂化为不期望的产品留下时间。进入输送方式也阻止了催化剂落在产品蒸气的夹带作用以外。
废混合催化剂和产品通过输送管道92从反应器装置74上升到分离器装置76。废混合催化剂和蒸气产品通过漩涡管96中的卸料口94退出,以完成废混合催化剂从蒸气产品中初步的向心分离。被分离的废混合催化剂落入分离器装置76的密集床98。然后,分离器装置76中的废混合催化剂优选在一系列挡板100上被气提,使用的气提介质,例如蒸汽,通过在分离器装置76的气提段103的气提喷嘴102喷入。第一部份气提的废混合催化剂以控制阀106控制的流速通过废混合催化剂管104退出分离器装置76。气提的废混合催化剂进入提升管108,该提升管把它分配到再生器50中的床58中。换句话说,废混合催化剂管104可以把废混合催化剂输送到FCC反应器10中。第二部分气提过的废混合催化剂以控制阀80控制的流速通过再循环废混合催化剂管道78回收,并被输送到混合罐72中,在那里和从第二再生催化剂管道52传送过来的再生催化剂混合。产品蒸气和被夹带的从分离器装置76中取出的催化剂通过出口管110被输送到一个外部旋风分离器112中。另外一种选择是,旋风分离器112也可以安装在分离器装置76中。在旋风分离器112中,被夹带的催化剂从产品蒸气中向心分离。分离的催化剂以控制阀118控制的流速通过料腿116退出并返回到反应器装置74中。管道120中的产品蒸气通过出口114从旋风分离器112排出,并被送到产品处理中。
使来自次级反应器装置14的蒸气产品和来自第一分离器装置76的蒸气产品不混合是很重要的。这样的混合可能抵消在次级反应器70中的产品升级操作的作用。当次级反应器70处理来自FCC反应器10的原料时尤其如此。因此,管道120中的产品优选与管道46的产品分开。另外,保持管48,52,68,104分开也是优选的。
本发明使用的催化剂是通常使用的FCC催化剂。这些催化剂组分包括具有高活性的硅铝酸盐晶体或包含催化剂的沸石。在FCC操作中优选使用沸石催化剂,因为它们具有本身固有的活性和较强的对高温蒸汽和存在于大多数原料中的金属的钝化影响的抵抗力。沸石通常分散在多孔的无机载体材料中,例如氧化硅,铝,或者锆。这些催化剂组合物的沸石含量可在30%以上。当要求FCC或次级反应器产出轻产物时,具有高硅铝比组分的沸石,例如LZ-210、ST-5和ZSM-5型材料是优选的。另一个特别有用的FCC催化剂类型包括硅取代氧化铝。正如US5,080,778B1中公开的,沸石或者增加了硅的氧化铝催化剂组分中可能还含有插层粘土,也就是通常所称的柱状粘土。本发明优选的催化剂包括USY沸石。
典型地,通过FCC反应器10的反应器装置12的催化剂循环速率和进入反应装置12的进料和所有的提升气体的输入量将被操作以产生流动密度低于48kg/m3(31bs/ft3)和平均表观速度大于3.7直到31m/s(12-93ft/s)的输送条件。在FCC反应器10中,催化剂和烃类接触的剂油比的范围通常为3-8,更优选的范围是4-6。反应器装置12的长度通常被设定为在平均流速条件下提供0.5-10秒的停留时间。反应器12的其它反应条件通常包括468°-566℃(875°-1050°F)的温度范围。
适合于FCC反应器10中处理的原料包括传统的催化裂化原料或高沸点的烃原料。传统的最通常使用的原料是减压瓦斯油,它是通过常压渣油的减压馏分制取的典型的烃材料,沸点范围从343°-552℃(650°-1025°F)。这样的馏分通常含有较少的焦炭前体和能使催化剂失活的重金属。
管道46中的来自FCC反应器10的流出物可以在主塔(未显示)中加工生成具有轻尾气流,轻汽油液体物流,重汽油物流,轻循环油(“LCO”)物流,重循环油(“HCO”)物流和一个澄清油(“CO”)物流的馏分。轻汽油或轻石脑油馏分优选具有在C4范围内的等于或者大于-5°C(23°F)的初馏点(IBP),终点(EP)的温度范围大于或等于127℃(260°F)。这些馏分的沸点是用被称为ASTM D86-82的方法测定的。重汽油或重石脑油馏分的IBP在127℃(260°F)或以上,终点在优选在204°-232℃(400°-450°F),特别是在216℃(420°F)。LCO物流的IBP大约在重汽油的EP温度左右,EP在260°-371℃(500°-700°F)的温度范围内,优选288℃(550°F)。HCO物流具有LCO的EP温度的IBP,EP在371°-427℃(700°-800°F)的温度范围内,最优选399℃(750°F)。CO物流具有HCO物流EP温度的IBP,并且包括所有沸点更高的物质。任何或所有馏分都可以在次级反应器装置70中得到处理。烃原料优选含有50重量%的石脑油。
送到次级反应器装置70中的原料也可以来自非FCC反应器10的流出物的来源。可以单独取得并被送到次级反应器装置70的焦化汽油馏分就是一个例子。
在次级反应器装置70中,主要的反应可以是裂化反应,反应中一个烃分子被分裂成两个较小的烃分子以致于每个分子中的碳原子数目减少。另一种情况是,次级反应器装置70中的主要反应可以是氢转移反应,例如重整或异构化反应,反应中分子结构被改变,但每个分子中的碳原子数目不变。
烯烃,环烷烃和环烯烃如式(3)、(4)、(5)所示被重整变成烷烃,芳香烃和某些环烷烃。
(3)
(4)
(5)
(6)
烯烃比它们相对应的链烷烃具有更高的辛烷值。因此,从烯烃到链烷烃的转化通常会降低其辛烷值。当烯烃如式(3)和(4)所示环化成的芳烃和当环烯烃如式(5)所示芳香化产生的芳香烃时,它们失去了许多氢,如式(6)所示,其它的烯烃获得了这些氢。在本发明使用的次级反应器70中,正烯烃和异构烯烃主要重整为比正烷烃具有更高辛烷值等级的异链烷烃。此外,芳烃也能提高产品的辛烷值的等级。因为异链烷烃和芳烃都具有高辛烷值,尽管烯烃转化为链烷烃时,通常辛烷值等级下降,但在次级反应器70中的氢转移反应仍能使产品保持高辛烷值等级。据此,次级反应器70中的氢转移反应能产生更多的异链烷烃和芳烃,这比把烯烃饱和为正链烷烃的方法更好。有利的是,完成氢转移反应而不增加额外的氢,因为氢是昂贵的,而且难以获得。
次级反应器70中的反应优选在相同的催化剂循环通过再生器50和FCC反应器10的情况下实现。当然,如果次级反应器70没有与FCC反应器结合而单独存在,次级反应器70中的催化剂不必通过FCC反应器。
当希望在次级反应器70中氢转移大大超过裂化反应时,高稀土含量的Y沸石是优选的。术语“高稀土含量”催化剂中的沸石部分上的稀土氧化物的百分含量大于2.0重量%。高稀土含量Y沸石如USY沸石可有多达4重量%的稀土。高稀土含量能通过增加催化剂上相邻酸位点的密度促进氢转移反应。催化剂上的强酸性位点能促进裂化反应。具有低稀土含量的Y沸石对促进氢转移反应也是有效的,但需要较长的反应器停留时间。当希望在第二应器70中裂化反应大大超过氢转移反应时,具有2.0重量%或更低稀土含量的低稀土Y沸石是优选的。另外,如降低硫的添加剂的添加剂也可被添加到催化剂中。使用这样的添加剂是期望提高在次级反应器70中有较长的停留时间的催化剂的效率。
在本发明的一个实施方案中,次级反应器70可以在沸腾床的条件下操作。在这样一个实施方案中,分离器84也许不是必须的。在另一个实施方案中,次级反应器70也以在输送条件下操作。在这个实施方案中,反应器装置74或者反应器84可能具有一个管道如提升管。但是,优选在次级反应器70中,在快速流化流动条件下使原料和催化剂接触。即使在快速流化条件下,混合催化剂优选累积于在沸腾床条件下操作的密集催化剂床82上,直到它被带到反应器84中。因此,通过喷嘴79传送的流化介质优选在反应器装置74中产生低于0.5m/s(1.5ft/s)的表观速度和大于480kg/m3(30lb/ft3)的密度。一旦烃原料和催化剂进入反应器84,它们优选以快速流化流动模式流动。因此,离开反应器84的不可辨别的床表面的催化剂和气化原料的混合物是均相的。充分混合催化剂和气相物减少了焦炭的产生。为了获得快速流化模式,来自喷嘴88的气相原料的表观速度优选在1.3-3.7m/s(4-12ft/s)之间,对于典型的FCC催化剂,反应器84中的密度应该在48-320kg/m3(3-20lb/ft3)之间。在湍流床中也可能发生足够的但是较不充分的混合。但是,表观速度应该总是为至少0.6m/s(1.8ft/s),反应器的密度应该始终不超过480kg/m3(30lb/ft3),以免FCC催化剂在反应器84中产生接近于较不期望的沸腾床的条件。在快速流化流动模式中,滑动比在2.5和10之间,优选等于或大于3.0。典型FCC催化剂的滑动速度是高的,但不能延伸至低于0.3m/s(1.0ft/s)的输送模式中,优选保持在0.5m/s(1.5ft/s)或以上,以发生返混或为氢转移反应提供足够的时间。大于或等于0.3m/s(1.0ft/s)的滑动速度不会给在高表观气体速率下例如进入典型的输送范围的快速流化流动模式提供一个有意义的参数。为了保证来自反应器84的流出物进入典型的输送模式以终止反应,出口管道90和/或输送管道92的尺寸应该使表观速度达到大于3.7m/s(12ft/s),流动密度低于48kg/m3(3lb/ft3),滑动比低于2.5。
前述的对于床和流动模式的各种范围是基于典型的FCC催化剂和石脑油范围气化原料的特征提出的。如果使用了不同的催化剂或具有不同分子量的原料,本发明的这些范围可以随之变化。
如果想使在次级反应器70中氢转移反应大大超过裂化反应,WHSV的典型范围应该为1-25h-1,温度范围应该为399°-510℃(750°-950°F),如果空速和温度取这些范围中的高端值,裂化反应将会更加频繁。但是,氢转移反应仍可能在被较低的温度补偿的较高的空速下占统治地位,反之亦然。如果希望在次级反应器70中的裂化反应大大超过氢转移反应,WHSV的典型范围应该为15-50h-1,温度范围应该为482°-649℃(900°-1200°F),如果空速和温度取这些范围中的低端值,氢转移反应将会更加频繁。但是,裂化反应仍可能在被较高的空速补偿的较低的温度下占统治地位,反之亦然。为了确保发生控制催化裂化反应而不是发生热裂化反应,保持次级反应器70的温度低于556℃(1050°F)是有利的。因此,控制温度对于这两种反应类型都是重要的。
将再生催化剂和废催化剂混合能使混合催化剂和送入次级反应器70的原料接触的温度降低大约27°-166℃(50°-300°F),这取决于再生器温度和循环废混合催化剂对反应器70中的再生催化剂的比,如果希望氢转移反应为主要反应,则优选控制废循环催化剂对再生催化剂的比为1∶1。
来自反应器10中的分离器装置14的废催化剂可以循环到次级反应器70以与代替来自分离器76的废混合催化剂的再生催化剂混合,或与来自分离器76的废混合催化剂一起的再生催化剂混合。但是,至少一些再生催化剂必须和废催化剂或废混合催化剂混合,以给混合催化剂提供足够的热以气化原料。即使使用外部原料加热器以气化原料也会效率较低,而且会产生焦炭的倾向。在另外一个实施方案中,来自分离器装置76的废混合催化剂可以被输送到FCC反应器10中,而不是再生器50中。
如果希望在次级反应器70中裂化反应大大超过氢转移反应,就应该使较少的废催化剂循环到次级反应器70中。因此,在次级反应器70中,再生催化剂对废催化剂的比将会更高。较高的反应器温度和再生催化剂上更多有效的无焦炭酸性位点将会促进裂化反应。
我们已经发现,较高的压力不仅对于氢转移反应有利,而且适合于焦炭的产生。因此,在69-207kPa(10-30psig)的反应压力下,优选在83-138kp(12-20psig)的反应压力下对反应器进行操作是合适的。另外,为了促进氢转移反应,催化剂对原料的比应该设为2-8,优选4-7。较高的压力有利于催化裂化反应但不会产生大量的焦炭。因此,当希望在次级反应器70中主要为催化裂化反应时,适合的反应器压力在138-276kPa(20-40psig)之间。此外,因为促进催化裂化反应需要较高的温度,更多的催化剂将被循环到次级反应器70以提供足够的热量。因此,催化剂对原料的比在5-11之间,优选在7-10之间将更有利于促进催化裂化反应。
通过次级反应器70中的氢转移反应对来自主塔的馏分的重整,降低了产品中有机硫化合物和氮化合物的浓度。次级反应器70中的汽油馏分的反应也能使反应器的产品的有机硫化合物浓度降低高达80重量%和使有机氮化合物浓度降低高达98重量%。因此,来自次级反应器70中的产品将具有较低的硫化合物和氮化合物的浓度。剩余的硫和氮化合物可以通过加氢处理使之从产品中脱除,并在最后的蒸馏塔的顶部被送出,或者通过其它能满足规格要求的合适的方法脱除。
权利要求
1.一种用于裂化和进一步处理烃的方法,所述方法包括将第一烃原料流和催化剂接触,产生裂化烃和废催化剂;在分离器区中,使所述裂化烃与所述废催化剂分离;再生至少一部分所述废催化剂,以提供再生催化剂;和使第二烃原料流和再生催化剂在反应区内在包括表观蒸气速度大于或等于0.6m/s(1.8ft/s)和滑动比大于或等于2.5的流动条件下接触,以产生升级了的烃和废催化剂。
2.权利要求1的方法,其中反应区中的密度为48-320kg/m3(3.0-20lb/ft3)的,而其中反应区中的表观蒸气速率为1.3-3.7m/s(4-12ft/s)。
3.权利要求1的方法,其中进一步包括在与第一分离器不同的第二分离器中使所述废催化剂与所述升级了的烃分离;并且在所述再生器中再生一部分所述废催化剂。
4.权利要求1的方法,其中石脑油的浓度在所述第二烃原料流中最大。
5.权利要求1的方法,其中所述第二烃原料流是从所述裂化烃衍生得到的。
6.一种使烃和催化剂接触的设备,所述设备包括反应器装置,其包括至少一个与所述反应器装置相连通的反应器,与所述反应器装置相连通的稀释剂喷嘴,以及在反应器的第一末端与所述反应器相连通的原料喷嘴,并且所述反应器的第二末端具有相对于所述反应器缩小了的横截面积;和分离器装置,其包括和所述反应器的第二末端相连通的输送管道,所述输送管道有和所述分离器装置相连通的卸料口。
7.权利要求6的设备,其中所述反应器装置包括多个反应器,并且每个反应器通过出口管道与输送管道相连通。
8.权利要求7的设备,其中输送管道的横截面积小于所述多个反应器的总横截面积。
9.权利要求6的设备,其中所述分离器装置包括环绕着所述输送管道的气提段。
10.权利要求6的设备,其中所述设备被结合入FCC反应器。
全文摘要
本文公开了在比沸腾床更剧烈的条件下,优选在快速流化流动条件下的反应器中使烃原料和催化剂接触的方法和设备。剧烈的条件确保烃原料和催化剂的充分混合以抑制干气的形成和促进氢转移反应的进行。
文档编号C10G11/18GK1646664SQ03808598
公开日2005年7月27日 申请日期2003年4月18日 优先权日2002年4月18日
发明者D·A·洛马斯 申请人:环球油品公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1