用于氨选择性催化还原氮氧化物后处理过程的闪蒸喷射器的制作方法

文档序号:5213133阅读:88来源:国知局
专利名称:用于氨选择性催化还原氮氧化物后处理过程的闪蒸喷射器的制作方法
技术领域
本发明涉及内燃机,尤其是柴油机,更具体地说涉及用于在发动机排气中还原NOx的氨的选择性催化还原过程。
背景技术
随着政府对发动机排放物的法规持续地增加,发动机后处理作用必须变得更加有效以满足更严格的排放标准。例如,柴油机的NOx排放物的还原受到特别的关注。
几十年来,通过诸如氨或者尿素的氮化合物对NOx的选择性催化还原(SCR)已经证明在工业的固定式发动机应用上是有效的。这些应用中的一些包括化学工厂和炼油厂的加热器和锅炉,燃气轮机以及烧煤的热电厂。使用在这些应用中的燃料包括工业废气、天然气、原油、轻或者重油、以及粉煤。新近,氨-SCR已经结合到汽车柴油机中,例如重型卡车和公共汽车发动机。
通常说来,在氨-SCR过程中,尿素的水溶液被喷射到发动机的排气流中。在温度高于160℃时,尿素开始经受水解作用和热解作用,导致了氨的产生。然后,所获得的包含尿素/氨和排气的混合物通过SCR催化剂,例如铂(Pt)、钒(V2O5)或者沸石,在那里氨与NOx气体反应,从而形成氮气和水。
更具体的,在氨-SCR系统中,尿素和水的溶液可保持在容器中。低压流泵通过流体管路将尿素溶液从容器中移动到位于排气流中的喷雾嘴中。通过流体管路的尿素溶液的泵送可导致尿素溶液凭借喷嘴被喷射到排气流中。在喷嘴的下游侧,尿素溶液和排气流中的热排气通过静止混合装置进行混合。接着,尿素和排气的混合物通过水解催化剂,在那里尿素被转化为氨。然后,氨和排气通过SCR催化剂,在那里NOx排气与氨发生反应以形成氮气和水。氧化催化剂可设置在SCR催化剂的下游处,用于剩余氨气的氧化,从而限制了从该系统排出的氨气的量。在经过SCR催化剂、氧化催化剂(如果存在)之后,排气流被排出到外界大气中。
为了在氨-SCR过程中实现高的NOx转换,尿素和排气的均匀混合以及尿素/排气混合物的流的均匀分布是重要的。如上所述,静止混合装置经常用来帮助混合尿素和排气。同时,可利用压缩空气源来提供压缩空气,从而当尿素溶液通过喷嘴被喷射到排气流中时可雾化尿素溶液。
而且,尿素/排气混合物的温度是重要的,以确保尿素具有足够的热量来分解和水解以形成氨。同时,当排气温度下降到低于在150-300℃范围内的值(取决于所采用的催化剂)时,催化剂钝化并且产生不希望的二次排放物。当排气温度达到该预定值时,排气流中的尿素流将被停止以防止产生不希望的结果,从而导致NOx转换效率全面的下降。在任何情况下,当排气温度相对低,例如在冷起动后的发动机暖机期间,氨-SCR过程变得困难。总之,尿素的喷射对于氨-SCR过程的改善是重要的因素,因为其对所有这些结果产生影响,并且因此对SCR性能也产生影响。

发明内容
本发明提供用于改进氨-SCR过程的方法和装置。本发明改善了尿素和排气的混合,消除了用于提高喷射而采用压缩空气的需要,并且减少或者消除了对静止混合装置的需要。由于改善了混合,以及增加了反应温度,本发明也提高了尿素到氨的转换,并且同样造成NOx的转换效率的提高。这些优点可以允许更低的尿素消耗以及催化剂体积上的减少。而且本发明减少了尿素溶液冷凝的可能性,同时也潜在的减少了氨的逸出,即氨通过排气流从系统中逃出。而且本发明增加了SCR运行的低端温度范围,并且减少了SCR催化剂的过早老化/钝化。
根据本发明的一个示例的方式包括提供终止在喷射器处的流体管路,其中该喷射器设置在排气流中。该排气流连接并且通过氨-SCR系统。流体管路中的尿素水溶液在喷射器上游侧被加压并且加热,从而使得尿素水溶液保持液态。然后,该加压、加热的尿素水溶液被喷射入排气流中。在尿素水溶液被喷射的地方处的排气流接近大气压,从而使得压力的迅速下降导致尿素水溶液在排气流中闪蒸。换句话说,尿素水溶液迅速雾化为亚微米尺寸的液滴。于是尿素水溶液迅速均匀地与排气流中的排气混合。在闪蒸期间,尿素水溶液损失非常少的热量,但是在排气流中仍然保持高温。这样减少了排气流/氨-SCR系统的内部表面上的水冷凝的可能性。
具有闪蒸喷射的氨-SCR排气后处理系统的一个实施例包括排气流在一端与发动机的排气口相连通,在另一端被排出到大气中。在发动机的下游处,排气流通过预氧化催化剂。在预氧化催化剂的更下游处,排气流通过水解催化剂、SCR催化剂,然后是氧化催化剂。在通过氧化催化剂之后,排气流被排出到后处理系统外面的大气中。
尿素容器储存了尿素水溶液供给源,并且流动泵从该容器中泵送尿素水溶液通过流体管路。该流体管路终止在喷嘴/喷射器中,该喷嘴/喷射器设置在预氧化催化剂和水解催化剂之间的排气流中。在该流动泵的下游侧,该流体管路通过一高压泵。该高压泵对高压泵和喷嘴之间的尿素水溶液进行加压。流体控制阀,优选设置在喷嘴的附近,控制尿素水溶液通过喷嘴的释放。加热器加热高压泵和喷嘴之间的流体管路中的尿素。控制器可以控制高压泵、加热器和流动控制阀,并且接收发动机的运行信息。
下面结合附图,本发明的这些和其它的特征和优点将从本发明的确定的具体实施例的下面描述中得到充分理解。
附图简述

图1是根据本发明,包括瞬时喷射器装置的氨选择性催化还原系统的示意图。
具体实施例方式
现在详细地参见附图,数字10通常表示用于诸如汽车内燃机的发动机12所产生的排气处理的氨-SCR排气后处理系统。氨-SCR系统10增大NOx的转换率,并且因此有利的导致了发动机12的NOx排放物的减少。氨-SCR系统10也增大了SCR运行的低端温度范围,导致在低温时增大了NOx的转换率,例如在发动机的暖机期间。而且,由于氨-SCR系统10效率的增加,氨-SCR系统可允许在催化剂体积上的减少,从而相比较先前的氨-SCR系统而言可降低系统的成本。
氨-SCR系统10包括用于引导排气流15的排气导管14,其与发动机的排气口相连通,通过例如排气歧管(未示出)。排气导管14通常包括排气管。排气流15包括在发动机12中燃烧反应所产生的排气,该排气流流过系统10的导管14并且在排出端16处排出到大气中。因此,排气流15的流动的方向是从发动机12到排出端16。
在流动方向中,排气流15可以首先通过预氧化催化剂18。该预氧化催化剂18处理未燃烧的碳氢化合物并且将NO转化为NO2,其可以与NH3更容易发生反应以形成N2。在预氧化催化剂18的更下游侧是SCR催化剂20。该SCR催化剂20可以为例如铂(Pt)、钒(V2O5)或者沸石。SCR催化剂20可促进氨(NH3)与NOx的反应以形成氮气和水,从而减少NOx的排放。水解催化剂22可直接设置在SCR催化剂20的上游侧。水解催化剂22可促进尿素和水的反应以形成氨和二氧化碳(CO2),从而在进入SCR催化剂20之前,帮助确保了在排气流中氨的可用性。氧化催化剂24可直接设置在SCR催化剂20的下游。氧化催化剂24可促进没有在SCR催化剂20中反应的过剩的氨的分解。氧化催化剂24是帮助限制氨逸出的“防护催化剂”。换句话说,氧化催化剂24促进了剩余的氨的氧化,从而限制了从SCR系统10中氨的释放。
氨-SCR系统10还包括用于储存一定量的尿素水溶液的尿素容器26。通常说来,尿素水溶液相对水有32.5%的尿素。在这个浓度下,尿素水溶液具有大约11的最低凝固点,并且因此不大可能在低的外界温度条件(例如,冬天运行)下发生凝固。流体管路28可允许从尿素容器26出来的尿素水溶液与排气导管14的连通。流体管路28开始在尿素容器26处并且终止在设置在排气导管14中的喷射器喷嘴30处。喷嘴30设置在SCR催化剂20和水解催化剂22(如果存在)的上游侧,并且在预氧化催化剂18(如果存在)的下游侧,流动泵32从容器26中泵送尿素水溶液通过流体导管28。
在流动泵32的下游侧,高压泵34对在高压泵34和喷嘴30之间的流体管路28中的尿素水溶液进行加压。加热器36连接到高压泵34和喷嘴30之间的流体管路28,以将流体管路中的加压的尿素水溶液加热到更高的温度,在该温度下其仍然是液态。流体控制阀,诸如电磁阀38,控制尿素水溶液通过喷嘴30释放到排气流15中。控制单元40可控制高压泵34,加热器35和电磁阀38,并且从发动机12中接收发动机运行信息以辅助确定尿素水溶液释放到排气流15中的时间和数量。
加压、加热的尿素水溶液通过喷嘴30释放入排气流15会导致尿素水溶液闪蒸,即快速的雾化,由于从流体管路28到排气导管14的压力的下降,这将在下面进行更详细的解释。尿素水溶液的闪蒸会导致尿素和水会在高温下与排气快速和有效的混合。
由于存在尿素水溶液过热并且因此热动力学不稳定,尿素水溶液闪蒸。尿素水溶液的沸点随着压力的增加而增加。在氨-SCR系统10中,在流体管路28中的尿素水溶液首先被高压泵34加压至例如大约50psi。相比之下,排气流15接近大气压(14.7psi),并且流动泵32基本上不会将流体管路28中的压力增加到大气压力之上。
在这样的高压下,在尿素水溶液沸腾前,其可被加热到更加高的温度。因此,在加压尿素水溶液之后,加压的尿素水溶液被加热器36加热至接近但是低于在该高压下的尿素水溶液的沸点的温度。由于尿素水溶液被加压,其可以被加热而不会蒸发它或者在流动管路28中具有两相流。在流体管路28中的两相流不是希望的,因为由于气泡的形成,对喷射量(即,通过喷嘴30喷射的尿素水溶液的量)的控制被减弱或者甚至丧失。当通过打开电磁阀38,加压、加热的尿素水溶液通过喷嘴30释放到排气流15中时,尿素水溶液的压力突然下降,因为排气流接近于大气压力。
在该高温下,当尿素水溶液压力突然下降时,其迅速达到其沸腾的压力。因此,尿素水溶液闪蒸,几乎同时分散(雾化)成亚微米尺寸的液滴和蒸汽。快速膨胀以及所产生的亚微米尺寸的尿素水溶液液滴可允许尿素水溶液和排气流15中的排气容易和有效的混合。尿素水溶液在闪蒸期间损失极少的热量,从而导致了雾化的尿素水溶液处于高温。
由于尿素水溶液的温度高于饱和蒸汽压力,尿素水溶液可以抵抗住冷凝,甚至当喷射到温度低于尿素水溶液的排气流15中时。而且,当尿素水溶液的温度增加时,尿素水溶液的水解作用变得更加显著和有效,改善了氨的形成,该氨是NOx选择性催化还原所需的。这潜在地减少了所需水解催化剂22的量。
同时,尿素的水解所产生的氨处于高温下并且与排气流15中的排气较好的混合,从而导致氨与NOx气体更有效和完全的反应。这样增加了NOx的转换效率并且减少了通过SCR催化剂20之后所留下未反应的氨的量,减少了氨的逸出并且减少了氧化催化剂24所需的体积尺寸。而且,由于氨被很好的利用,更少的尿素水溶液需要被消耗以实现可接受水平的NOx转换。
如上所述,在传统的氨-SCR在系统中,从空气管路来的压缩空气,例如车辆的悬挂系统中的,可用来在尿素水溶液通过喷射器被释放到排气流中时雾化尿素水溶液。通常说来,由压缩空气的雾化所导致的尿素水溶液的液滴尺寸为30至60微米范围内的索太尔平均直径(Sauter mean diameter)。这远远大于本发明中闪蒸所达到的亚微米液滴直径。因此,本发明不仅消除了在氨-SCR后处理系统中利用压缩空气的需要,而且改善了尿素水溶液的雾化。
总之,本发明改善了在所有温度下(尤其是低温下)氨-SCR后处理系统中的NOx转换效率。本发明还减少了由于低温下产生的各种氨化合物引起的后处理催化剂的过早老化。而且,本发明减少了在氨-SCR后处理系统的排气流中尿素水溶液冷凝的可能性。而且,本发明减少了尿素水溶液的消耗并且减少了氨的逸出量。
虽然本发明已经参见确定的优选实施例进行了描述,需要理解的是在所描述的发明概念的精神和范围之内可以做出各种变化。因此,本发明意图不限于所公开的实施例,而是具有下面的权利要求的语言所描述的全部范围。
权利要求
1.一种用于改善氨选择性催化还原系统的方法,该方法包括下面步骤提供尿素水溶液供给源;对尿素水溶液加压同时保持尿素水溶液处在液态;提供与加压的尿素水溶液热连通的加热器;采用加热器对加压的尿素水溶液进行加热;和喷射加热、加压的尿素水溶液到排气流中,从而由于在加热、加压的尿素水溶液和排气流之间的压力差,尿素水溶液快速雾化。
2.如权利要求1所述的方法,包括下面步骤提供泵,其用来加压尿素水溶液。
3.如权利要求2所述的方法,其中尿素水溶液通过喷嘴喷射。
4.如权利要求3所述的方法,其中尿素水溶液在泵和喷嘴之间的流体管路中被加压。
5.如权利要求3所述的方法,其中加热器位于泵和喷嘴之间。
6.如权利要求1所述的方法,包括下面步骤在喷射之前,保持尿素水溶液在一个温度,在该温度下尿素水溶液保持液态。
7.如权利要求1所述的方法,包括下面步骤提供用于控制尿素水溶液喷射入排气流的电磁阀。
8.如权利要求1所述的方法,其中在喷射时,该加热、加压的尿素水溶液雾化成为亚微米尺寸的液滴。
9.如权利要求1所述的方法,其中尿素供给源包括用于储存尿素水溶液的容器。
10.一种用于氨选择性催化还原过程的闪蒸喷射系统,其包括容器;储存在容器中的尿素水溶液;设置在发动机排气导管中的喷嘴,该排气导管引导排气流从发动机到大气中;用于在容器和喷嘴之间引导尿素水溶液的流体管路;与流体管路相连用于加压尿素水溶液的泵;与流体管路相连用于加热由泵所加压的尿素水溶液的加热器;和可操作地连接到流体管路上的阀,用于控制尿素水溶液通过喷嘴喷射进入排气流中;从而由于喷嘴两侧的压降,喷射加热、加压的尿素水溶液到排气流会导致尿素水溶液迅速的雾化。
11.如权利要求10所述的系统,其中该阀是电磁阀。
12.如权利要求10所述的系统,其中雾化尿素包括亚微米尺寸的液滴。
全文摘要
用于发动机排气的氨选择性催化还原后处理过程的闪蒸喷射系统,其包括用于储存尿素水溶液的容器。喷射器喷嘴设置在发动机的排气导管中,该排气导管引导从发动机来的排气流。流体管路在容器和喷嘴之间引导尿素水溶液。泵与流体管路相连并用于加压尿素水溶液。加热器也与流体管路相连并用于加热已经被泵加压的尿素水溶液。阀可操作地连接到流体管路上以用于控制尿素水溶液通过喷嘴喷射进入到排气流中。由于喷嘴两侧的压降,喷射加热、加压的尿素水溶液到排气流中会导致尿素水溶液的迅速雾化。该系统可操作地将柴油内燃机产生的NO
文档编号F01N3/24GK1935335SQ200610126729
公开日2007年3月28日 申请日期2006年9月1日 优先权日2005年9月1日
发明者R·米塔尔 申请人:通用汽车环球科技运作公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1