一种确定泥浆滤液侵入深度的方法及系统与流程

文档序号:18126504发布日期:2019-07-10 09:56阅读:488来源:国知局
一种确定泥浆滤液侵入深度的方法及系统与流程

本文涉及勘探测井技术领域,尤指一种确定泥浆滤液侵入深度的方法及系统。



背景技术:

泥浆滤液侵入地层深度是测井评价泥浆污染储层的基础参数。泥浆滤液侵入油气储层是一个复杂的物理过程。目前,获得泥浆滤液侵入深度参数主要通过实验研究和理论模拟两种方法。

实验研究主要是对岩心注入泥浆滤液,模拟泥浆滤液侵入地层过程,通过记录实验条件与泥浆滤液侵入量,测量岩心电阻率变化,获得泥浆滤液侵入深度。在通过室内实验模拟泥浆滤液侵入地层过程中,由于实验条件不可能完全模拟地层真实条件,得到的实验结果与地层真实情况存在差距,而且实验方法的时效性差,无法用于勘探阶段快速决策。

理论模拟可以分为以下两种:一种以油水两相渗流理论、对流扩散理论为基础,利用有限元的方法对泥浆滤液侵入过程进行模拟;另一种通常以侧向测井或感应测井的工作原理,分析测井响应特征,对泥浆滤液侵入进行数值模拟。由于理论模拟方法是间接测量,存在输入参数多、影响因素复杂的缺点,而且模拟精度不高。



技术实现要素:

本申请提供了一种确定泥浆滤液侵入深度的方法及系统,可以实现在勘探阶段快速准确确定泥浆滤液侵入深度。

一方面,本申请提供了一种确定泥浆滤液侵入深度的方法,包括:获取地层流体泵抽取样过程中的时间和电导率曲线图;基于所述时间和电导率曲线图,确定所述地层流体的油气突破时间信息和纯油气稳定时间信息;根据所述油气突破时间信息、所述纯油气稳定时间信息以及已知设定的泵抽速度,建立地层流体体积模型,并基于所述地层流体体积模型,确定泥浆滤液侵入深度。

另一方面,本申请提供一种确定泥浆滤液侵入深度的系统,包括:电缆地层取样器以及处理终端;所述电缆地层取样器适于对地层流体进行泵抽取样;所述处理终端适于获取泵抽取样过程中的时间和电导率曲线图,基于所述时间和电导率曲线图,确定所述地层流体的油气突破时间信息和纯油气稳定时间信息,根据所述油气突破时间信息、所述纯油气稳定时间信息以及已知设定的泵抽速度,建立地层流体体积模型,并基于所述地层流体体积模型,确定泥浆滤液侵入深度。

另一方面,本申请提供一种确定泥浆滤液侵入深度的装置,包括:获取模块,适于获取地层流体泵抽取样过程中的时间和电导率曲线图;第一处理模块,适于基于所述时间和电导率曲线图,确定所述地层流体的油气突破时间信息和纯油气稳定时间信息;第二处理模块,适于根据所述油气突破时间信息、所述纯油气稳定时间信息以及已知设定的泵抽速度,建立地层流体体积模型,并基于所述地层流体体积模型,确定泥浆滤液侵入深度。

另一方面,本申请提供一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现上述确定泥浆滤液侵入深度的方法的步骤。

在本申请中,获取地层流体泵抽取样过程中的时间和电导率曲线图;基于时间和电导率曲线图,确定地层流体的油气突破时间信息和纯油气稳定时间信息;根据油气突破时间信息、纯油气稳定时间信息以及已知设定的泵抽速度,建立地层流体体积模型,并基于地层流体体积模型,确定泥浆滤液侵入深度。本申请可以实现在勘探测井阶段,快速准确获知泥浆滤液侵入深度,从而为储层测井解释和评价提供基础参数,为勘探阶段提供快速决策,可以广泛用于海上和陆上的多种类型的油气田。

本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的其他优点可通过在说明书、权利要求书以及附图中所描述的方案来实现和获得。

附图说明

附图用来提供对本申请技术方案的理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。

图1为本申请实施例提供的一种确定泥浆滤液侵入深度的方法的流程图;

图2为本申请实施例中的时间和电导率曲线图的一种示例;

图3为本申请实施例提供的一种确定泥浆滤液侵入深度的系统的示意图;

图4为本申请实施例提供的一种确定泥浆滤液侵入深度的装置的示意图。

具体实施方式

本申请描述了多个实施例,但是该描述是示例性的,而不是限制性的,并且对于本领域的普通技术人员来说显而易见的是,在本申请所描述的实施例包含的范围内可以有更多的实施例和实现方案。尽管在附图中示出了许多可能的特征组合,并在具体实施方式中进行了讨论,但是所公开的特征的许多其它组合方式也是可能的。除非特意加以限制的情况以外,任何实施例的任何特征或元件可以与任何其它实施例中的任何其他特征或元件结合使用,或可以替代任何其它实施例中的任何其他特征或元件。

本申请包括并设想了与本领域普通技术人员已知的特征和元件的组合。本申请已经公开的实施例、特征和元件也可以与任何常规特征或元件组合,以形成由权利要求限定的独特的发明方案。任何实施例的任何特征或元件也可以与来自其它发明方案的特征或元件组合,以形成另一个由权利要求限定的独特的发明方案。因此,应当理解,在本申请中示出和/或讨论的任何特征可以单独地或以任何适当的组合来实现。因此,除了根据所附权利要求及其等同替换所做的限制以外,实施例不受其它限制。此外,可以在所附权利要求的保护范围内进行各种修改和改变。

此外,在描述具有代表性的实施例时,说明书可能已经将方法和/或过程呈现为特定的步骤序列。然而,在该方法或过程不依赖于本文所述步骤的特定顺序的程度上,该方法或过程不应限于所述的特定顺序的步骤。如本领域普通技术人员将理解的,其它的步骤顺序也是可能的。因此,说明书中阐述的步骤的特定顺序不应被解释为对权利要求的限制。此外,针对该方法和/或过程的权利要求不应限于按照所写顺序执行它们的步骤,本领域技术人员可以容易地理解,这些顺序可以变化,并且仍然保持在本申请实施例的精神和范围内。

图1为本申请实施例提供的一种确定泥浆滤液侵入深度的方法的流程图。如图1所示,本实施例提供的确定泥浆滤液侵入深度的方法,包括:

步骤101、获取地层流体泵抽取样过程中的时间和电导率曲线图;

步骤102、基于时间和电导率曲线图,确定地层流体的油气突破时间信息和纯油气稳定时间信息;

步骤103、根据油气突破时间信息、纯油气稳定时间信息以及已知设定的泵抽速度,建立地层流体体积模型,并基于地层流体体积模型,确定泥浆滤液侵入深度。

在一示例性实施例中,步骤101可以包括:记录电缆地层取样器对地层流体进行泵抽取样过程中地层流体的电导率值;基于记录的电导率值,得到时间和电导率曲线图。本示例性实施例中,依托电缆地层测试取样技术,监测取样过程中地层流体的电导率(电阻率)值。本实施例中,可以采用本领域常用的电缆地层取样器,比如,电缆测压取样器,例如,斯仑贝谢的mdt、贝壳休斯的rci以及中海油田服务股份有限公司的efdt。然而,本申请对此并不限定。

在一示例性实施方式中,步骤102可以包括:在时间和电导率曲线图中,确定电导率值开始跳动的时间点,以及电导率值开始稳定不变的时间点。图2为本申请实施例中的时间和电导率曲线图的一种示例。如图2所示,tt表示油气突破时间点,tp表示纯油气稳定时间点。其中,油气突破时间信息包括油气突破时长,即为时间和电导率(电阻率)曲线图中,泵抽起始时间点至电导率(电阻率)值开始跳动的时间点(即油气突破时间点tt)之间的时长;纯油气稳定时间信息包括纯油气稳定时长,即为时间和电导率(电阻率)曲线图中,泵抽起始时间点至电导率(电阻率)值开始稳定不变的时间点(即纯油气稳定时间点tp)之间的时长。

在一示例性实施方式中,步骤103可以包括:

基于以下式子计算泥浆滤液侵入冲洗带深度:

基于以下式子计算泥浆滤液侵入污染带深度:

其中,at表示泥浆滤液侵入冲洗带深度;ap表示泥浆滤液侵入污染带深度;p表示已知设定的泵抽流体速度;tt表示油气突破时间信息;tp表示纯油气稳定时间信息;rc表示井半径;r表示地层水平渗透率与垂直渗透率比值;表示地层孔隙度;so表示地层含油饱和度。

其中,可以采用本领域常用的测井资料确定井半径(rc)、地层孔隙度地层含油饱和度(so)、地层水平渗透率与垂直渗透率比值(r)。地层水平渗透率与垂直渗透率比值r还可以由电缆地层取样器的双探针测压得到。

下面通过一个实施例对本申请进行举例说明。

在本示例中,在某个海上油田,通过电缆地层取样器在井下1477.5米处泵抽取样,记录泵抽时间与电导率值曲线如图2所示,则从图2可知,油气突破时长为15分钟(min),纯油气稳定时长为118min。在本示例中,仪器设定的泵抽速度p为320ml/min。由常规资料可以测得井半径rc为20.4厘米(cm),地层孔隙度为32.4%,地层含油饱和度so为67.3%,地层水平渗透率与垂直渗透率比值r为5。

将本示例中的各个参数代入泥浆滤液侵入冲洗带深度的计算式子,可以得到:

通过求解上述等式,可以计算得到泥浆滤液侵入冲洗带深度为33.93cm。

将本示例中的各个参数代入泥浆滤液侵入污染带深度的计算式子,可以得到:

通过求解上述等式,可以计算得到泥浆滤液侵入污染带深度为71.25cm。

在本示例中,基于上述等式,计算得到泥浆滤液侵入冲洗带深度和侵入污染带深度,即获得了泥浆滤液侵入深度。

本申请实施例可以依托电缆地层测试取样技术,监测取样过程中地层流体的电导率(电阻率)曲线,并分析电导率曲线特征,确定油气突破时间点和纯油气稳定时间点,根据已知设定的泵抽速度,可以分别获得地层流体的体积,建立地层流体体积模型,从而确定泥浆滤液侵入冲洗带深度和侵入污染带深度(即,泥浆滤液冲洗带和污染带与井壁的距离),即为泥浆滤液侵入深度。本申请实施例可以实现在测井勘探阶段,快速准确得到泥浆滤液侵入深度参数,从而满足储层污染评价的需求。

本申请实施例实现了在勘探测井阶段准确获知泥浆滤液侵入深度,为储层测井解释和评价提供基础参数,为勘探阶段提供快速决策,可以广泛用于海上和陆上的多种类型的油气田。

图3为本申请实施例提供的一种确定泥浆滤液侵入深度的系统的示意图。如图3所示,本实施例提供的系统包括:电缆地层取样器301以及处理终端302;电缆地层取样器301适于对地层流体进行泵抽取样;处理终端302适于获取泵抽取样过程中的时间和电导率曲线图,基于时间和电导率曲线图,确定地层流体的油气突破时间信息和纯油气稳定时间信息,根据油气突破时间信息、纯油气稳定时间信息以及已知设定的泵抽速度,建立地层流体体积模型,并基于地层流体体积模型,确定泥浆滤液侵入深度。

在一示例性实施例中,处理终端302可以适于通过以下方式基于地层流体体积模型,确定泥浆滤液侵入深度:

基于以下式子计算泥浆滤液侵入冲洗带深度:

基于以下式子计算泥浆滤液侵入污染带深度:

其中,at表示泥浆滤液侵入冲洗带深度;ap表示泥浆滤液侵入污染带深度;p表示已知设定的泵抽速度;tt表示油气突破时间信息;tp表示纯油气稳定时间信息;rc表示井半径;r表示地层水平渗透率与垂直渗透率比值;表示地层孔隙度;so表示地层含油饱和度。

关于本实施例中的系统的相关处理过程可以参照上述方法实施例的描述,故于此不再赘述。

图4为本申请实施例提供的一种确定泥浆滤液侵入深度的装置的示意图。如图4所示,本实施例提供的装置,包括:获取模块401,适于获取地层流体泵抽取样过程中的时间和电导率曲线图;第一处理模块402,适于基于时间和电导率曲线图,确定地层流体的油气突破时间信息和纯油气稳定时间信息;第二处理模块403,适于根据油气突破时间信息、纯油气稳定时间信息以及已知设定的泵抽速度,建立地层流体体积模型,并基于地层流体体积模型,确定泥浆滤液侵入深度。

在一示例性实施例中,第二处理模块403可以适于通过以下方式基于地层流体体积模型,确定泥浆滤液侵入深度:

基于以下式子计算泥浆滤液侵入冲洗带深度:

基于以下式子计算泥浆滤液侵入污染带深度:

其中,at表示泥浆滤液侵入冲洗带深度;ap表示泥浆滤液侵入污染带深度;p表示已知设定的泵抽速度;tt表示油气突破时间信息;tp表示纯油气稳定时间信息;rc表示井半径;r表示地层水平渗透率与垂直渗透率比值;表示地层孔隙度;so表示地层含油饱和度。

关于本实施例提供的装置的相关说明可以参照上述方法实施例的描述,故于此不再赘述。

此外,本申请实施例还提供一种计算机可读存储介质,存储有计算机程序,该计算机程序被处理器执行时实现上述的确定泥浆滤液侵入深度的方法的步骤,比如图1所示的步骤。

本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于ram、rom、eeprom、闪存或其他存储器技术、cd-rom、数字多功能盘(dvd)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1