一种煤矿巷道平均风速计算方法与流程

文档序号:21977567发布日期:2020-08-25 19:10阅读:1293来源:国知局
一种煤矿巷道平均风速计算方法与流程

本发明涉及采矿业技术领域,具体为一种煤矿巷道平均风速计算方法。



背景技术:

矿井通风是保障煤矿安全生产的重要举措,而适宜的风速则是矿井通风要达到的一项重要指标。煤矿一般要求一月当中上中下三旬都要测风速,以及时掌握巷道中风速的实际情况,而且对于同一测风地点,要求的现场测试不能低于三次,以便结合多次测量数据来求平均值,以最大反映井下风流实际情况。这种风速测试方法,需要专门测风人员定期开展,尤其是井田范围较大情况下,一次测风将耗费大量时间。为了准确而快速地获知井下风流参数,在井巷不同地点也布置了相关风速测试传感器,可以通过煤矿局域网系统,通过监测监控中心在线检测系统快速捕获风速参数,然而这种传感器获知的风速大小,始终只能代表某个固定地点的瞬时数值,不能反映巷道平均风速,尤其是井巷工作环境复杂,风流及瓦斯可能产生紊流或飘逸现象,这种情况下传感器获得的风流数据可靠性更差。



技术实现要素:

本部分的目的在于概述本发明的实施方式的一些方面以及简要介绍一些较佳实施方式。在本部分以及本申请的说明书摘要和发明名称中可能会做些简化或省略以避免使本部分、说明书摘要和发明名称的目的模糊,而这种简化或省略不能用于限制本发明的范围。

鉴于上述和/或现有巷道风速计算方法中存在的问题,提出了本发明。

因此,本发明的目的是提供一种煤矿巷道平均风速计算方法,能够结合瓦斯监测探头反映的瓦斯浓度图像差异性特征,来计算巷道风速,方便快捷、节省人工,而且能够反映平均风速,对井下通风安全管理具有十分重要的应用价值。

为解决上述技术问题,根据本发明的一个方面,本发明提供了如下技术方案:

一种煤矿巷道平均风速计算方法,该风速计算方法如下:

步骤一:安装甲烷监测探头;

步骤二:安装一氧化碳传感器和温度传感器;

步骤三:安装数据网络传输系统;

步骤四:将甲烷监测探头通过数据网络传输系统进行联动,然后与氧化碳传感器和温度传感器连接;

步骤五:根据多个甲烷监测探头之间的数据交互,获取数据波形,绘制数据曲线;

步骤六:根据数据曲线得出瓦斯的记录点,从而获取瓦斯的移动数据;

步骤七:根据移动数据和瓦斯的移动数据获取平均风速,公式如下:

v=l/δt

式中:v为瓦斯气团平均漂移速度m/s;l为相邻两个甲烷监测探头之间的距离m;δt为相位差,即同一个瓦斯气团被相邻两个甲烷监测探头先后探测到的时间差(δt=t2-t1),t1和t2分别是相邻两个甲烷监测探头探测到同一个瓦斯气团的时间。

作为本发明所述的一种煤矿巷道平均风速计算方法的一种优选方案,其中:所述步骤一中的甲烷检测探头包括t0、t1、t2、t3、t4甲烷传感器,其安装位置如下:

甲烷传感器to安装在采煤工作面切顶线对应的煤帮处;

甲烷传感器t1安装在回风流距工作面煤壁10m范围内;

甲烷传感器t2安装在距回风绕道口10~15m处;

甲烷传感器t3安装在距工作面煤壁10m范围内;

甲烷传感器t4安装在距回风绕道口10~15m处。

作为本发明所述的一种煤矿巷道平均风速计算方法的一种优选方案,其中:所述步骤二中的一氧化碳传感器和温度传感器安装在工作台面上。

作为本发明所述的一种煤矿巷道平均风速计算方法的一种优选方案,其中:所述步骤三和步骤四中的网络数据传输系统包括有线网络传输单元和无线网络传输单元,所述有线网络传输单元与甲烷监测探头探头中的多个甲烷传感器连接,所述无线传输单元与一氧化碳传感器和温度传感器连接,所述无线传感器的另一端与远程控制端连接。

作为本发明所述的一种煤矿巷道平均风速计算方法的一种优选方案,其中:所述步骤五中的多个甲烷传感器之间数据交互具体为瓦斯在回风巷中形成瓦斯气团后背甲烷传感器监测,根据多个甲烷传感器的监测数据即可进行数据交互。

作为本发明所述的一种煤矿巷道平均风速计算方法的一种优选方案,其中:所述步骤六中的移动数据由两个相邻的甲烷传感器获取产生。

与现有技术相比:现有的技术中采用风速传感器进行测量,通过风速获取的方法是只能代表单个区域的监测数据,不能代表整体的巷道中的平均数据,本申请文件中,通过瓦斯监测探头反映的瓦斯浓度图像差异性特征,来计算巷道风速,方便快捷、节省人工,而且能够反映平均风速,对井下通风安全管理具有十分重要的应用价值。

附图说明

为了更清楚地说明本发明实施方式的技术方案,下面将结合附图和详细实施方式对本发明进行详细说明,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中:

图1为本发明一种煤矿巷道平均风速计算方法的甲烷传感器安装位置结构示意图;

图2为本发明一种煤矿巷道平均风速计算方法的瓦斯浓度传感器t1和t2在一天内监测曲线示意图;

图3为本发明一种煤矿巷道平均风速计算方法的瓦斯浓度传感器t1和t2在0:00—6:00点监测曲线示意图;

图4为本发明一种煤矿巷道平均风速计算方法的瓦斯气团平均运移速度计算示意图。

具体实施方式

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。

在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施方式的限制。

其次,本发明结合示意图进行详细描述,在详述本发明实施方式时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。

为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的实施方式作进一步地详细描述。

本发明提供一种煤矿巷道平均风速计算方法,该风速计算方法如下:

步骤一:安装甲烷监测探头;

步骤二:安装一氧化碳传感器和温度传感器;

步骤三:安装数据网络传输系统;

步骤四:将甲烷监测探头通过数据网络传输系统进行联动,然后与氧化碳传感器和温度传感器连接;

步骤五:根据多个甲烷监测探头之间的数据交互,获取数据波形,绘制数据曲线;

步骤六:根据数据曲线得出瓦斯的记录点,从而获取瓦斯的移动数据;

步骤七:根据移动数据和瓦斯的移动数据获取平均风速,公式如下:

v=l/δt

式中:v为瓦斯气团平均漂移速度m/s;l为相邻两个甲烷监测探头之间的距离m;δt为相位差,即同一个瓦斯气团被相邻两个甲烷监测探头先后探测到的时间差(δt=t2-t1),t1和t2分别是相邻两个甲烷监测探头探测到同一个瓦斯气团的时间。

其中,所述步骤一中的甲烷检测探头包括t0、t1、t2、t3、t4甲烷传感器,其安装位置如下:

甲烷传感器to安装在采煤工作面切顶线对应的煤帮处;

甲烷传感器t1安装在回风流距工作面煤壁10m范围内;

甲烷传感器t2安装在距回风绕道口10~15m处;

甲烷传感器t3安装在距工作面煤壁10m范围内;

甲烷传感器t4安装在距回风绕道口10~15m处。

其中,所述步骤二中的一氧化碳传感器和温度传感器安装在工作台面上。

其中,所述步骤三和步骤四中的网络数据传输系统包括有线网络传输单元和无线网络传输单元,所述有线网络传输单元与甲烷监测探头探头中的多个甲烷传感器连接,所述无线传输单元与一氧化碳传感器和温度传感器连接,所述无线传感器的另一端与远程控制端连接。

其中,所述步骤五中的多个甲烷传感器之间数据交互具体为瓦斯在回风巷中形成瓦斯气团后背甲烷传感器监测,根据多个甲烷传感器的监测数据即可进行数据交互。

其中,所述步骤六中的移动数据由两个相邻的甲烷传感器获取产生。

实施例

安装甲烷传感器,如图1所示,同时所有的甲烷传感器设置报警浓度大于1%,断电浓度大于1.5%;

而在现场实践中发现,采煤工作面回风巷中相邻2个瓦斯浓度传感器的监测曲线波形和波幅的相似性特征。也就是说,回采工作面某部位新产生的高浓度瓦斯气体,在经过某个传感器时会保持一定波形,而且这种波形在经过相邻或另一传感器会维持下去,如图2和图3;

经过一定程度的稀释后,能够在回风巷中形成瓦斯气团。并且,这种瓦斯气团随回风风流一起,漂移很长距离仍能保持气团内部的浓度结构不变。这一特征,

在瓦斯浓度波形曲线运移过程中,可以锁定某一瓦斯波形特征曲线,记录下此时时间t0,观测其在下一探头出现的时间t1,那么说明这一瓦斯波形从监测探头t1运移到t2历时为t1-t0。另外,瓦斯浓度监测探头t1和t2在井下位置是已知的,那么t1和t2之间的距离l是可以获知的。那么,瓦斯波形曲线在t1和t2之间巷道内的平均运行速度,即平均风速。

根据某矿工作面回风巷中t1和t2相邻2个传感器的瓦斯浓度监测数据绘制的瓦斯浓度变化时间序列曲线,如图4。

在此期间,t1和t2两个传感器相距630m,先后探测到了波形和波幅相似的瓦斯浓度变化曲线,表明多个高浓度瓦斯气团先后被t1和t2监测到。为了计算瓦斯气团平均漂移速度,可以分别从t1和t2监测曲线上,选取一个相同气团的曲线特征点(如波峰),读取相位差δt。此例中δt=5min,t1和t2之间的距离l=630m。

根据上面的公式,计算该瓦斯气团在t1和t2间的平均漂移速度为2.1m·s-1,计算过程如下:

v=l/δt=630/5×60=2.1(m·s-1)

应用上述方法与实测方法对比可知,风速计算值在误差范围内,能够满足现场通风工程需要。

虽然在上文中已经参考实施方式对本发明进行了描述,然而在不脱离本发明的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,本发明所披露的实施方式中的各项特征均可通过任意方式相互结合起来使用,在本说明书中未对这些组合的情况进行穷举性的描述仅仅是出于省略篇幅和节约资源的考虑。因此,本发明并不局限于文中公开的特定实施方式,而是包括落入权利要求的范围内的所有技术方案。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1