真空泵及控制器的制作方法

文档序号:31463120发布日期:2022-09-09 18:41阅读:201来源:国知局

1.本发明涉及真空泵及控制器。


背景技术:

2.在cvd装置等的半导体装置处设置的真空腔内的排气处理中,一般使用真空泵,特别地,由于残留气体少而保养容易等方面而多使用涡轮分子泵。
3.半导体的制造工序中,有使各种各样的工艺气体作用于半导体的基板的工序,涡轮分子泵不仅在使半导体装置的腔内为真空时被使用,在将工艺气体从腔内排出时也被使用。
4.但是,工艺气体有为了提高反应性而被以高温的状态导入腔的情况。这样的情况下,被排出的工艺气体的温度下降,压力上升,所以从气体凝华,变为固体而析出产物。即,这种工艺气体在涡轮分子泵内凝华,变为固体的产物附着于涡轮分子泵内,逐渐堆积,由此使泵流路变窄,有使涡轮分子泵的性能下降的情况。
5.对于这样的问题,以前,将借助继电器切换通电状态的加热器等装入涡轮分子泵,由此,进行将析出物容易堆积的部位加热至既定的温度。此时,如图8(以往的真空泵(涡轮分子泵)的系统结构图)所示,借助与tms温度传感器相连的tms温度计量部计量涡轮分子泵的温度,将计量出的值和设定温度比较,控制向加热器等的输出。另一方面,若来自加热器等的热扩散而涡轮分子泵的温度上升,则对装入其中的电子回路造成影响。此外,随着温度上升,有泵的旋转体的马达所使用的永久磁铁的磁力下降、电磁铁绕组断路的可能,所以在它们周边配置水冷管,借助阀等控制冷却水的流动(例如参照专利文献1)。这样,以往的真空泵之中,有装入有用于使真空泵的既定部位为既定的温度的温度调整机构(加热器、继电器、水冷管、阀等)的真空泵。
6.专利文献1:日本特开2003-148379号公报。
7.但是,这样的真空泵以往借助图8中表示的保护功能处理部,通过被tms温度计量部计量的计量值和允许温度的比较,通知高温过热异常/警告、温度上升异常、低温异常、断路/短路异常等,但未考虑继电器、阀的寿命(开启/关闭次数、开启/关闭时间),有持续利用至它们发生动作不良的情况。若继电器、阀故障,则有真空泵异常地变为高温或低温的情况,结果,有发生某种不良情况而真空泵突然停止的可能。
8.若运转中真空泵停止,则有例如对制造中的半导体的品质造成影响的可能,但是为了将这样的预料外的真空泵的停止防范于未然,也有与动作频率无关地定期更换继电器、阀来应用的情况。但是,由于更换实际未达到寿命的继电器、阀,所以导致维护费用的增大。


技术实现要素:

9.鉴于这样的方面,本发明的目的在于提供一种真空泵及控制该真空泵的控制器,其能够将用于使真空泵的既定部位为既定的温度的温度调整机构在适当的时期检查,更
换,由此,能够防止预料外的停止等的发生,此外,能够抑制维护费用。
10.本发明是将被排气装置的气体排出的真空泵,其特征在于,具备温度调整机构、输出控制机构、信息输出机构,前述温度调整机构用于使前述真空泵的既定部位为既定的温度,前述输出控制机构使前述温度调整机构动作,前述信息输出机构输出从前述输出控制机构得到的与前述温度调整机构的开启/关闭相关信息。
11.优选地,这样的真空泵中,前述信息输出机构输出与该温度调整机构的开启次数或关闭次数相关的信息作为与前述温度调整机构的开启/关闭相关的信息。
12.这里,前述信息输出机构也可以输出与该温度调整机构的开启时间或关闭时间相关的信息作为与前述温度调整机构的开启/关闭相关的信息。
13.此外,本发明是一种控制器,控制将被排气装置的气体排出的真空泵主体,其特征在于,前述真空泵主体具备用于使该真空泵主体的既定部位为既定的温度的温度调整机构,前述控制器具备输出控制部和信息输出部,前述输出控制部使前述温度调整机构动作,前述信息输出部输出从前述输出控制部得到的与前述温度调整机构的开启/关闭相关的信息。
14.发明效果根据本发明的真空泵及控制器,能够基于被从信息输出机构输出的与温度调整机构的开启/关闭相关的信息,将温度调整机构在适当的时期检查,更换,所以能够防止真空泵的预料外的停止,此外,能够抑制维护费用。
附图说明
15.图1是概略地表示本发明的一实施方式的真空泵主体的剖视图。
16.图2是本发明的一实施方式的真空泵的系统结构图。
17.图3是表示本发明的一实施方式的真空泵的动作的流程图。
18.图4是表示开启维持间隔时间、关闭维持间隔时间及周期间隔时间的图。
19.图5是表示被计量的温度与使温度调整机构开启/关闭的时间的关系的图。
20.图6是表示图5中表示的od1和od2的开启维持间隔时间、关闭维持间隔时间、周期间隔时间(均进行平均化处理)的表。
21.图7是图2中表示的系统结构图的变形例。
22.图8是以往的真空泵(涡轮分子泵)的系统结构图。
具体实施方式
23.以下,参照附图的同时对本发明的真空泵及控制器的一实施方式进行说明。本实施方式的真空泵是涡轮分子泵10,如图1、图2所示由泵主体100和控制器(控制装置)200构成。本实施方式的涡轮分子泵10将泵主体100与半导体装置等的被排气装置(未图示)连接,在控制器20的控制下从被排气装置的腔内排出工艺气体。
24.首先,对泵主体100进行说明。泵主体100具备圆筒状的外筒127,在外筒127的上端设置有吸气口101。在外筒127的内侧设置有旋转体103,前述旋转体103将用于将工艺气体抽吸排出的涡轮叶片的多个旋转翼102a、102b、102c
・・・
在周部放射状且多层地形成。
25.在旋转体103的中心处安装有转子轴113。该转子轴113例如借助所谓的5轴控制的
磁轴承被在空中悬浮支承且被位置控制。
26.上侧径向电磁铁104在本实施方式中由4个电磁铁构成,这些电磁铁被沿作为转子轴113的径向的坐标轴而互相正交的x轴和y轴成对地配置。此外,泵主体100处设置有由与这些上侧径向电磁铁104接近的4个电磁铁构成的上侧径向传感器107。上侧径向传感器107检测旋转体103的径向位移,将该信息送向控制器200。
27.这里,控制器200基于上侧径向传感器107检测到的位移信号,经由具有pid调节功能的补偿回路控制上侧径向电磁铁104的励磁,调整转子轴113的上侧的径向位置。
28.转子轴113例如由高透磁率材料(铁等)形成,被上侧径向电磁铁104的磁力吸引。磁力的调整被沿x轴向和y轴向各自独立地进行。
29.此外,下侧径向电磁铁105及下侧径向传感器108被与上侧径向电磁铁104及上侧径向传感器107同样地配置,将转子轴113的下侧的径向位置与上侧的径向位置同样地调整。
30.进而,轴向电磁铁106a、106b配置成上下隔着在转子轴113的下部设置的圆板状的金属盘111。金属盘111由铁等高透磁率材料构成。为了检测转子轴113的轴向位移而设置轴向传感器109,构成为该轴向位移信号被送向控制器200。
31.并且,轴向电磁铁106a、106b基于该轴向位移信号经由具有控制器200的pid调节功能的补偿回路被励磁控制。轴向电磁铁106a和轴向电磁铁106b借助磁力将金属盘111分别向上方和下方吸引。
32.这样,控制器200适当调节该轴向电磁铁106a、106b对金属盘111施加的磁力,使转子轴113在轴向上磁悬浮,以空间上非接触的方式保持。
33.马达121具备以包围转子轴113的方式周状地配置的多个磁极。各磁极被控制器200控制,使得经由在与转子轴113之间作用的电磁力将转子轴113旋转驱动。
34.与旋转翼102a、102b、102c
・・・
隔开些许空隙地配设有多个固定翼123a、123b、123c
・・・
。旋转翼102a、102b、102c
・・・
为了分别将被排出的工艺气体的分子通过碰撞向下移送,形成为从与转子轴113的轴线垂直的平面以既定的角度倾斜。
35.此外,固定翼123a、123b、123c
・・・
也同样形成为从与转子轴113的轴线垂直的平面以既定的角度倾斜,且被向外筒127的内侧与旋转翼102a、102b、102c
・・・
的层交替地配设。并且,固定翼123a、123b、123c
・・・
的一端以被嵌插于多个被层积的固定翼间隔件125a、125b、125c
・・・
之间的状态支承。
36.固定翼间隔件125a、125b、125c
・・・
是环状的部件,由例如铝、铁、不锈钢、铜等金属、或将这些金属作为成分包含的合金等金属形成。
37.在固定翼间隔件125a、125b、125c
・・・
的外周,隔开些许空隙地固定有外筒127。在外筒127的底部配设有基座部129,在固定翼间隔件125a、125b、125c
・・・
的下部和基座部129之间配设有带螺纹的间隔件131。并且,在基座部129中的带螺纹的间隔件131的下部形成排气口133,与外部连通。
38.带螺纹的间隔件131是借助铝、铜、不锈钢、铁、或以这些金属为成分的合金等金属形成的圆筒状的部件,在其内周面刻设有多条螺旋状的螺纹槽131a。螺纹槽131a的螺旋的方向为被向旋转体103的旋转方向排出的工艺气体的分子移动时该分子被向排气口133移送的方向。
39.在与旋转体103的旋转翼102a、102b、102c
・・・
连续的最下部,旋转翼102d垂下。该旋转翼102d的外周面为圆筒状,且向带螺纹的间隔件131的内周面伸出,与该带螺纹的间隔件131的内周面隔开既定的间隙地接近。
40.基座部129是构成涡轮分子泵10的基底部的圆盘状的部件,一般由铁、铝、不锈钢等金属形成。
41.基座部129将涡轮分子泵10物理性地保持且也兼备热的传导路的功能,所以优选为,使用铁、铝、铜等那样有刚性而热传导率也高的金属。
42.呈这样的结构的泵主体100中,若旋转翼102a、102b、102c
・・・
被马达121驱动而与转子轴113一同旋转,则通过旋转翼102a、102b、102c
・・・
和固定翼123a、123b、123c
・・・
的作用,来自被排气装置的工艺气体被穿过吸气口101地抽吸。
43.被从吸气口101抽吸的工艺气体穿过旋转翼102a、102b、102c
・・・
和固定翼123a、123b、123c
・・・
之间,被向基座部129移送。此时,由于工艺气体与旋转翼102a、102b、102c
・・・
接触或碰撞时产生的摩擦热、由马达121产生的热的传导、辐射等,旋转翼102a、102b、102c
・・・
的温度上升,但该热由于辐射或工艺气体的气体分子等的传导而被向固定翼123a、123b、123c
・・・
侧传递。
44.固定翼间隔件125a、125b、125c
・・・
在外周部互相接合,将固定翼123a、123b、123c
・・・
从旋转翼102a、102b、102c
・・・
接受到的热、工艺气体与固定翼123a、123b、123c
・・・
接触或碰撞时产生的摩擦热等向外筒127、带螺纹的间隔件131传递。并且,被向带螺纹的间隔件131移送的工艺气体被螺纹槽131a引导且被送向排气口133,被从泵主体100排出。
45.但是,工艺气体如上所述地温度下降,压力上升,结果,有凝华而变为固体从而析出产物的情况。泵主体100处,有排气口133的周边变温度的情况。特别地,旋转翼102d、带螺纹的间隔件131附近间隙窄,所以处于由于被析出的工艺气体的产物而流路容易变窄的状况。因此,本实施方式的泵主体100中,例如在基座部129的外周等配设加热器、环状的水冷管、温度传感器(例如热敏电阻)等,基于该温度传感器的信号,进行基于加热器的加热、基于水冷管的冷却的控制(以下,称作“tms控制”。tms;temperature management system),使得基座部129的温度被在不析出产物的温度(设定温度)下保持。这里,若tms控制下的设定温度变高则产物难以堆积,所以希望设定温度尽可能高。
46.另一方面,若基座部129的温度变高,则在基座部安装的电子回路的温度也上升。并且,例如由于排气负荷的变动等而温度变高至设想程度以上,则有可能超过在电子回路处设置的半导体存储器的允许温度,在该存储器中记录的控制参数、泵起动时间、错误历史等维护信息数据消失。维护信息数据消失的情况下,无法判断保养检查的时期等而成为大的故障。
47.此外,也设想由于基座部129的温度变高至设想程度以上,流向构成马达121的磁极的电磁铁绕组的电流增大,超过绕组的允许温度。这样的情况下,有电磁铁绕组断路而马达停止的可能。
48.因此,泵主体100中,将加热器、水冷管与为了使温度变高的部位(例如旋转翼102d、带螺纹的间隔件131附近)和为了抑制温度的部位(例如电子回路、马达121的附近)对应地配设于适当的位置,并且借助控制器200,将切换加热器的通电状态的继电器、与水冷管连接的阀等的开启/关闭在适当的时机切换,使泵主体100的既定部位为既定的温度。另
外,本说明书等中的“温度调整机构”在本实施方式中相当于上述的加热器、继电器、冷水管、阀等。
49.这里,关于控制器200,参照图2的同时详细地说明。控制器200使用各种的电子零件或将它们安装的基板等,构成为实现以下说明的功能。
50.磁轴承控制部201进行泵主体100的磁轴承的控制(图1的轴向电磁铁106a、106b的控制),马达驱动控制部202进行马达的控制(图1的马达121的控制)。此外tms温度计量部203基于来自用于执行tms控制的温度传感器(以下,称作“tms温度传感器”)的输出信号,计量泵主体100的既定部位的温度。
51.上述的磁轴承控制部201、马达驱动控制部202、tms温度计量部203与保护功能处理部204连接。保护功能处理部204基于从磁轴承控制部201得到的与磁轴承相关的信息、从马达驱动控制部202得到的与马达相关的信息、从tms温度计量部203得到的既定部位的温度信息监视在泵主体100处是否发生异常,并且在为异常的状态情况下执行保护泵主体100的处理(例如使泵主体100自动停止等)。此外,保护功能处理部204还具有如下功能:在泵主体100处发生异常的情况下,将该信息借助后述的用户界面处理部209转换成能够处理的数据,向用户界面处理部209输出。
52.并且,tms输出控制部205基于从tms温度计量部203得到的既定部位的温度信息,相对于用于执行tms控制的输出元件(以下,称作“tms输出元件”。在本实施方式中,相当于切换加热器的通电状态的继电器及与水冷管连接的阀。)发送指令,控制tms输出元件的开启/关闭。另外,tms输出控制部205相当于本说明书等中的“输出控制机构”、“输出控制部”。
53.累积计数间隔计量部206基于从tms输出控制部205得到的与tms输出元件的开启/关闭相关的信息(使tms输出元件开启或关闭的信息),例如将tms输出元件的开启次数、关闭次数计数,计量tms输出元件的开启时间、关闭时间。
54.记录处理部207将从累积计数间隔计量部206得到的与tms输出元件的开启/关闭相关的计量值(例如tms输出元件累积的开启次数(关闭次数)、tms输出元件的开启时间(关闭时间)及其平均值等)转换成能够由非易失性存储器208记录的数据、能够由用户界面处理部209处理的数据来向它们输出。记录处理部207也具有如下功能:调出由非易失性存储器208记录的数据来向累积计数间隔计量部206、用户界面处理部209输出。
55.非易失性存储器208定期地记录从记录处理部207得到的数据。作为非易失性存储器208的具体例,列举例如eeprom、feram。另外,在本实施方式中,使用非易失性存储器208,但也可以使用以易失性存储器(sram、dram)为代表的其他记录机构。
56.用户界面处理部209与后述的信息输出部210连接,将从记录处理部207、保护功能处理部204得到的数据借助信息输出部210转换成能够输出的信号等。
57.信息输出部210基于从用户界面处理部209得到的信号等,输出与tms输出元件的开启/关闭相关的信息、与泵主体100的异常相关的信息。信息输出部210可以例如lcd那样通过显示文字、图像等来输出信息,也可以像led那样使光闪动(闪烁)。此外,不限于lcd、led那样通过视觉使用户感知,也可以是能够借助其他五感来感知(例如输出声音而能够利用用户的听觉来感知)。此外,信息输出部210为了经由与涡轮分子泵10分体地设置的其他设备向用户提供信息,例如也可以是进行基于i/o信号的通信、串口通信的外部端子。
58.上述的信息输出部210相当于本说明书等中的“信息输出机构”。
59.借助这样的控制器200,能够进行泵主体100的通常动作,并且在发生异常时能够从信息输出部210通知用户,此外,能够督促将温度调整机构在适当的时期检查,更换。
60.这里,关于为了将温度调整机构在适当的时期检查,更换而进行的“累积计数间隔计量”,参照图3的同时进行说明。累积计数间隔计量主要被累积计数间隔计量部206执行。首先,作为步骤1,累积计数间隔计量部206基于从tms输出控制部205得到的将tms输出元件开启或关闭的信息,判断当前的tms输出元件为开启状态还是关闭状态,并且判断与上次执行步骤1时的tms输出元件的状态相同还是不同(图3的s1)。
61.步骤1的结果为,当前的tms输出元件的状态与上次执行步骤1时的状态相同的情况(图3的s1中为否的情况)下,此次的累积计数间隔计量结束。另外,累积计数间隔计量在较短的期间(例如30ms)中被重复进行,立即执行接下来的累积计数间隔计量。
62.步骤1的结果为,当前的tms输出元件的状态与上次执行步骤1时的状态不同的情况(图3的s1中为是的情况)下,作为步骤2,累积计数间隔计量部206从当前时刻减去上次的步骤1中为是的时刻,算出tms输出元件保持该状态的维持间隔时间 (图3的s2)。
63.若关于该点参照图4的同时具体地说明,则例如当前时刻为图4的t2的情况下,tms输出元件从开启状态变成关闭状态(步骤1为是),所以执行步骤2。另外,上次的步骤1中为是的时刻(本说明中的t1)被非易失性存储器208记录。累积计数间隔计量部206经由记录处理部207从非易失性存储器208调出上次的步骤1中为是的时刻t1,从时刻t2减去时刻t1,算出其间的时间。
64.执行步骤2后,累积计数间隔计量部206执行判断当前的tms输出元件是否为开启状态的步骤3 (图3的s3)。
65.例如当前时间点为图4的时刻t2的情况下,tms输出元件为关闭状态,所以步骤3中的判断为图3中的否,进入步骤4(图3的s4)。另外,从时刻t1至时刻t2之间,tms输出元件被以开启状态保持。累积计数间隔计量部206将其间的时间(步骤2中算出的t2-t1的时间)设定成“开启维持间隔时间”。
66.步骤4中,累积计数间隔计量部206关于已算出的t2-t1的开启维持间隔时间执行平均化处理。这里平均化处理是指,使用过去的开启维持间隔时间将当前已算出的t2-t1的开启维持间隔时间平均化。平均化的手法不被特别限定,但若举一例,则相对于t2-t1的开启维持间隔时间将最近的过去(n-1)个开启维持间隔时间相加,将开启维持间隔时间的合计除以n即可。另外,过去的开启维持间隔时间记录于非易失性存储器208,执行步骤4时,累积计数间隔计量部206经由记录处理部207执行来自非易失性存储器208的调出。
67.执行步骤4后,累积计数间隔计量部206执行将记录于非易失性存储器208的上次的信息(上次的步骤1中为是时的信息)更新的步骤5 (图3的s5)。当前时刻为图4所示的t2而上次的步骤1中为是的时刻为t1的情况下,累积计数间隔计量部206经由记录处理部207将时刻t1更新成时刻t2来作为记录于非易失性存储器208的上次的信息,此外,将时刻t1下的tms输出元件的状态(开启状态)更新成时刻t2下的tms输出元件的状态(关闭状态)。此外,累积计数间隔计量部206将进行平均化处理之前和之后的t2-t1的开启维持间隔时间经由记录处理部207记录于非易失性存储器208。执行步骤5后,结束此次的累积计数间隔计量。
68.另一方面,步骤1中判断为是的当前时刻为图4的t3的情况下,累积计数间隔计量
部206不进入上述的步骤4而执行以下说明的步骤6~9。
69.当前时刻为图4的t3的情况下,tms输出元件从关闭状态变成开启状态 (步骤1中为是),所以执行步骤2。此外,步骤2中,将上次的步骤1中为是的时刻t2经由记录处理部207从非易失性存储器208调出,从时刻t3减去时刻t2来算出其间的时间。然后,在时刻t3,tms输出元件为开启状态,所以若在步骤3中判断成是则进入步骤6。另外,在从时刻t2至时刻t3之间tms输出元件被以关闭状态保持。累积计数间隔计量部206将其间的时间(步骤2中已算出的t3-t2的时间)设定成“关闭维持间隔时间”。
70.步骤6中,执行进行累积次数计数的计数加一的处理 (图3的s6)。这里,“累积次数计数”是指与tms输出元件从关闭状态切换成开启状态的累积次数相关的信息,被记录于非易失性存储器208。累积计数间隔计量部206进行,将经由记录处理部207记录于非易失性存储器208的上次为止的累积次数计数的计数加一(对记录的累积次数计数加上1)。
71.执行步骤6后,累积计数间隔计量部206执行关于已算出的t3-t2的关闭维持间隔时间进行平均化处理的步骤7(图3的s7)。关闭维持间隔时间的平均化处理也被与先前说明的开启维持间隔时间同样地进行。
72.执行步骤7后,累积计数间隔计量部206将已算出的t3-t2的关闭维持间隔时间和该关闭维持间隔时间的上一个开启维持间隔时间(这次为t2-t1的开启维持间隔时间)相加,执行算出图4所示的“周期间隔时间”(这次为t3-t1)的步骤8 (图3的s8)。
73.执行步骤8后,累积计数间隔计量部206执行关于已算出的t3-t1的周期间隔时间进行平均化处理的步骤9(图3的s9)。周期间隔时间的平均化处理也被与先前说明的开启维持间隔时间等同样地进行。
74.并且,在执行步骤8后进行的步骤5中,累积计数间隔计量部206将记录于非易失性存储器208的上次的信息更新(图3的s5)。当前时刻为t3而上次的步骤1中为是的时刻为t2的情况下,累积计数间隔计量部206将时刻t2更新成时刻t3来作为记录于非易失性存储器208的上次的信息,此外,将时刻t2下的tms输出元件的状态(关闭状态)更新成时刻t3下的tms输出元件的状态(开启状态)。此外,累积计数间隔计量部206将进行平均化处理之前和之后的t3-t2的关闭维持间隔时间及t3-t1的周期间隔时间经由记录处理部207记录于非易失性存储器208。执行步骤5后,这次的累积计数间隔计量结束。
75.通过执行这样的累积计数间隔计量,非易失性存储器208处除了tms输出元件的累积开启次数即累积次数计数以外,记录有进行平均化处理前的开启维持间隔时间、关闭维持间隔时间、周期间隔时间及进行平均化处理后的开启维持间隔时间、关闭维持间隔时间、周期间隔时间。并且,相对于信息输出部210,经由用户界面处理部209输出这些信息,由此,用户能够知晓tms输出元件的累积开启次数等。因此,用户能够判断例如tms输出元件的累积开启次数是否超过被允许的开启次数,所以能够将tms输出元件(例如继电器、阀)在适当的时期更换。这样,能够事先更换向开启次数的切换频率多而有导致故障的可能性的tms输出元件,所以能够防止真空泵的预料外的停止。
76.另外,在本实施方式中,计量tms输出元件的累积开启次数,但通过计量累积关闭次数来输出该信息,也能够将tms输出元件在适当的时期更换。
77.此外,进行tms输出元件的平均化处理的开启维持间隔时间、关闭维持间隔时间、周期间隔时间稍微不均,但若连接有泵主体100的被排气装置稳定地动作,则有收束成某恒
定的范围的倾向。即,表示进行平均化处理的开启维持间隔时间、关闭维持间隔时间、周期间隔时间等急剧的变化时,用户能够知晓在包括tms输出元件的温度调整机构处有发生故障的可能性 (例如与水冷管相连的阀的周期间隔时间较大地变化的情况下,除了阀自身的故障以外,有发生冷却水的急剧的温度变化、异物等导致的水冷管的堵塞等的可能性)。即,借助在泵主体100的既定部位的附近配设的温度传感器计量的温度收敛于既定的范围,能够把握即使实际上不发生加热异常、冷却异常今后也可能发生异常的情况,所以适当地进行检查,由此,能够预防这样的加热异常、冷却异常。
78.另外,这样的加热异常、冷却异常的预防也能够基于进行平均化处理前的开启维持间隔时间、关闭维持间隔时间、周期间隔时间进行。此外,也可以基于开启维持间隔时间、关闭维持间隔时间、周期间隔时间的最小值、最大值进行。
79.此外,根据这样的开启维持间隔时间等预测将来的不良情况的手法不仅限于tms输出元件,也能够关于对泵主体100使用的除此以外的元件应用。即,使泵主体100连续地动作的情况下,使泵主体100定期地启动、停止的情况下,元件的开启维持间隔时间等也有收敛成某恒定的范围的倾向,所以在超过该范围的情况下适当地进行检查,由此,能够预防泵主体100的将来的不良情况。
80.这里,关于tms输出元件的开启维持间隔时间、关闭维持间隔时间、周期间隔时间的具体例,参照图5的同时进行说明。图5的id1表示从在通过tms控制加热的部位的附近安装的温度传感器得到的温度和时间的关系。此外,id2表示从在通过tms控制冷却的部位的附近安装的温度传感器得到的温度和时间的关系。并且,od1表示,相对于与通过tms控制进行加热的加热器连接的继电器、从tms输出控制部205输出的开启/关闭信号和时间的关系。od2表示,相对于与通过tms控制进行冷却的冷却管连接的阀、从tms输出控制部205输出的开启/关闭信号和时间的关系。
81.并且,图6表示相对于图5中所示的tms控制执行上述的累积计数间隔计量的结果。另外,图6中所示的时间均为已进行平均化处理的时间。
82.如图5、图6所示,od1(继电器)及od2(阀)的开启维持间隔时间、关闭维持间隔时间、周期间隔时间虽稍有不均但处于大致恒定的范围。因此,判断成发生泵主体100的既定部位的加热异常、冷却异常的盖然性低。另一方面,例如若进行od1(继电器)的平均化处理的开启维持间隔时间从既定的范围(图5、图6中所示的例子中为1分45秒
±
20秒的范围)偏离,则用户能够预想到今后有发生异常的可能性,所以通过适当地进行检查,能够预防加热异常、冷却异常。
83.上述的控制器200将记录于非易失性存储器208的tms输出元件的累积次数计数、开启维持间隔时间等向信息输出部210输出来传向用户,但也能够通过像图7那样地构成,累积次数计数、开启维持间隔时间等超过既定的值时从信息输出部210输出警告。
84.图7所示的结构中,记录处理部207具有如下功能:将从累积计数间隔计量部206得到的与tms输出元件的开启/关闭相关的计量值转换成能够借助保护功能处理部204处理的数据。
85.并且,保护功能处理部204具有记录各种的阈值211的功能,并且将基于来自记录处理部207的数据的与tms输出元件的开启/关闭相关的计量值和阈值211比较,将表示比较结果的数据向用户界面处理部209输出。
86.即,作为阈值211例如预先记录tms输出元件的能够允许的累积开启次数,若从记录处理部207得到的tms输出元件的累积开启次数超过能够允许的累积开启次数,则能够从信息输出部210发出督促tms输出元件的更换的警告(例如在lcd处显示应更换tms输出元件),所以能够更切实地督促tms输出元件的更换。此外,作为阈值211,例如预先储存能够允许的开启维持间隔时间,若从记录处理部207得到的tms输出元件的开启维持间隔时间从阈值211偏离,则能够从信息输出部210发出督促温度调整机构的检查的警告,所以能够预防泵主体100的加热异常、冷却异常。
87.以上,对本发明的一实施方式进行了说明,但本发明不限于该特定的实施方式,只要上述的说明未特别限定,就能够在权利要求书中记载的本发明的宗旨的范围内进行各种变形

改变。此外,上述的实施方式的效果不过例示了从本发明产生的效果,不意味着本发明的效果被限定于上述的效果。
88.附图标记说明10:涡轮分子泵(真空泵)100:泵主体200:控制器205:tms输出控制部(输出控制机构、输出控制部)206:累积计数间隔计量部207:记录处理部208:非易失性存储器209:用户界面处理部210:信息输出部(信息输出机构)。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1