用脉动压力调整液体输送系统的辅助泵的方法

文档序号:71848阅读:236来源:国知局
专利名称:用脉动压力调整液体输送系统的辅助泵的方法
本发明涉及一种用脉动压力调整液体输送系统的辅助泵的方法。
已知为对以脉动方式工作的在一液体输送系统中的泵进行辅助设置有其它的泵。这种辅助泵通常以恒定的转速驱动。根据辅助泵的压差/容积流-特性曲线,辅助泵在输入压力升高并随之扬程变化(输入压力与输出压力的差)时,将做出提高容积流的反应或在相反的条件下做出与上述相反的反应。但在低压阶段,即在输入压力降低时辅助泵的容积流并不降低到零。
压差/容积流-特性曲线斜度越大,则在该阶段剩余的容积流就越大。此点将导致必须对容积流进行中断并且前置于辅助泵的包括主泵的输送系统被负压加载,此点会导致出现各种缺点,即在输入压力降低时补充流入主泵泵室内的液体将会出现剧烈的涡流。
血液循环系统是一种特别敏感的液体输送系统.。血液通过心脏的节奏性的收缩在闭合的血管系统内被驱动循环。当心脏的功能出现故障时循环辅助泵将在最快的时间内投入工作,对尚存的心搏加以辅助。血液从左心室绕过心脏瓣膜进入辅助泵内并由辅助泵进入主动脉。这种辅助泵既可以根据压唧原理作为脉动泵,又可以根据蜗轮原理作为径流或轴流机加以实现。根据压唧原理的脉动泵由于为实现与心律的同步必须付出必要的代价,所以是不适用的。就根据蜗轮原理工作的泵而言,因于尺寸较小,所以优选采用轴流泵。
已知的轴流血液泵主要由一外部圆柱状的管件,一作为其外部贴靠在电机定子上的转子的输送部分在后者内旋转并且血液轴向流动。同样已知转子被无接触磁性支承。在WO 00/640 30中披露了这种辅助泵。
当这样一个辅助泵以恒定转速工作时,即使心室处于舒张期内,基于上述的情况将出现血液被辅助泵继续输送的情况。
本发明的目的在于提出一种方法,应用此方法辅助泵的容积流以简单的方式仅在主泵处于压缩期内起辅助作用。
本发明的目的通过权利要求
1的特征得以实现。从属权利要求
的主题是本发明的有益的设计。
根据本发明,不断地检测辅助泵的输入端和输出端之间的压力差以及流过辅助泵的流量。调整辅助泵的转速,使测出的压差不低于预定的值并且流量不低于零。
根据本发明的一优选实施方式,作为辅助泵采用一个轴流泵,所述轴流泵具有电子换向同步电机和永磁支承和用于对转子的磁性位置调整的控制线圈,并对辅助泵的输入端和输出端的压差进行测定,其中根据控制线圈的控制电流和作为位置调整的值的实时的转子位置确定与压差成比例的作用于转子的干扰力。同时利用实时转速和根据预先测出的辅助泵的压差/容积流特性曲线的压差求出流过辅助泵的流量。采用此方式不再需要为测量压力和流量设置单独的传感器。
下面将对照一作为本发明方法的实施例的一个循环辅助泵对本发明做进一步说明。附图中示出
图1为轴流泵的特性曲线图;图2示出一种用于实施本方法的心脏辅助泵;图3为说明本发明的调整举例的框图;图4为心脏辅助泵的压力曲线;图5为心脏辅助泵的扬程-和容积流曲线;图6为心脏辅助泵的转速曲线;图7为扬程-和容积流特性曲线和图8心脏辅助泵在用恒定的转速工作时的压力特性曲线。
图1为轴流血液泵的特性曲线图。特性曲线分别示出泵的压力跳变(扬程)与一定的转速的情况下单位时间内输送的容积的关系。在以恒速工作时泵的工作点沿特性曲线移动。在压力差变化给定的情况下流量变化的程度取决于特性曲线的斜率。为了明显地改变该值,可根据瞬时扬程改变泵的转速。这时工作点不再沿恒定转速的曲线移动,而是在不同转速的曲线之间移动。其中转速是有待影响的参数。当扬程给定的增大将导致流量的降低幅度大于自然的泵曲线时,在增大扬程时必须降低转子的转速并且在降低扬程时必须增大转子的转速。因此将造成在特性曲线间的移动并且随之造成泵特性曲线的斜率明显的降低。
除此之外血液在舒张期不应再流回到心脏的条件也适用自然血液循环系统。在一个无损伤的循环系统中该任务是由心脏瓣膜实现的。因此血液泵也必须模拟心脏瓣膜的该功能。所以为实现本发明的调整必须已知扬程和容积流。这两个参数可以用一个相应的传感器求出。但也可以通过精心选择特定的泵类型而且根据泵驱动装置本身的调整数据获得这两个参数。
图2示出适用于实施本发明方法的轴流的血液辅助泵。血液辅助泵的驱动装置按照电子换向同步电机的原理工作。电机具有一个定子,所述定子由叠片组31、绕组33和铁轭板2、2a构成;具有一个转子5,所述转子具有永磁磁芯32。所述定子包括一个管状的中空体1,在中空体内轴向上输送液体,在本例中输送的是血液。转子5被无接触地磁性支承。
磁性轴承由在定子端侧的永磁铁42、42a和在导向装置6和7端侧的永磁铁41、41 a构成。导向装置6、7固定在管状的中空体1的内壁上。
另外控制线圈12、12a也属于磁性轴承的一部分。导向装置6、7内的传感线圈43、43a和与前者相对的短路环80、80a用于对转子的实时位置进行测量。
永磁铁对41、42、41a、42a的极性分别相互吸引。在轴向上存在一不稳定的平衡。在径向上两个磁铁对同心,因此径向位置被动稳定。
控制线圈12、12a电气串联并且其磁性设置应使电流减弱其中的一个磁铁对的磁场并增强另一个磁铁对的磁场。通过铁磁轭板2、2a和定子的叠片组31磁性接地。
利用传感器线圈43、43a检测出转子5的轴向位置。利用一较高频率的电压对传感器线圈43、43a加载。在转子5轴向移动时将出现传感器线圈43、43a的相互失调。通过将传感器线圈43、43a设置在一电桥电路内将获得转子5的轴向位置的测量信号。
轴向稳定是通过调节电路实现的。测出的转子位置是调节器的输入信号。调节器的输出信号,即控制电流被馈送给控制线圈12、12a。采用此方式可实现转子5在两个端止挡之间位置的调整。当所有的磁和机械力为零时,调整是无电流的。在电机处于未加载的状态时处于中间位置时就是此情况。在此位置实际上控制电流无限小。当转子5被轴向加载时,转子必须克服作用力实现移动,直至永磁铁41、42、41a、43a的非对称力被干扰力抵消掉。在此点上控制电流重新又变得无限小。
作为具有I2分量的比例积分微分调节器的调节器被用于零流调节。调节器可以对跳变方式的干扰进行几乎没有自激的调整。对零点的寻找充分迅速,因而在应用特有的干扰频率下几乎可以将控制电流保持在零上。
从传感线圈43、43a的电桥电路获得测量信号。当然由于对控制线圈电流和电机电流的调整很难进行测量。所以利用选择方法仅在两个控制脉冲之间的无干扰时间进行测量。在控制脉冲时间内在选择前对最后的测量值进行储存。
磁性支承的转子5的轴向稳定可实现对作用于转子5的干扰力的估算。作用于转子5的力的总和在任何时刻必须等于零。永磁铁系统的力、电磁铁系统的力和机械力、特别是压力,摩擦力、阻尼力和加速力必须相互抵消。在有待检测的干扰力的频度与稳定调节电路的极限频度相比很小的前提条件下,计算时可以对阻尼力和加速力忽略不计。因此根据下式计算出干扰力干扰力=控制电流×电气灵敏度-转子位置×轴向固定性。
电磁灵敏度是一个取决于磁回路的常数。轴向固定性是力的表达形式,所述力是为了使转子5轴向移动一个特定的路径所需的力并且所述力在此感兴趣的范围(转子间隙约0.5至2.5mm)同样是恒定的。
利用干扰力为辅助泵的成比例的压力跃变提供一个值,所述值作为调整转速的动态信号。在已知泵特性曲线的情况下利用压差和泵转速同时求出容积流。
通过对一种专用的血液泵的选择和对根据转子位置调整了解到的数据的精心的评价可以完全不必采用对压力和流量进行检测的传感器。
图中所示的血液泵还出于其它原因特别适用于本发明的调节。无传感器换向的同步电机可以实现泵转子的高的角加速度。该加速和相关的作用于转子的轴向-和径向力受磁性支承限制。但有效转速范围并不受径向转子悬浮的谐振频率的限制。谐振始终保持被衰减状态。因此在约50ms的范围内可以实现从最小转速到最大转速的转速变化。在转子转速的时间函数与泵流量的时间函数之间不存在迟延时间。
图3示出转速调节回路的举例。在支路21上输入辅助泵的额定-扬程。额定-扬程根据心脏还可以产生多大的自然压力和由辅助泵应需相应加入多大的附加的压力。如上所述求出的辅助泵的输入端和输出端之间的压差作为在支路的必要的扬程输入给比较器23,以便进行额定值-测量值-比较。由此得出调节偏差,由一个具有后置的限制器的比例积分微分调节器对该偏差调整,实现转速的控制值。由电机控制装置将所述控制值转换成相应的转速。
图4至6示出在心脏收缩期和舒张期内的特性数据的时间曲线。辅助泵位于左心室的引出管路与主动脉之间。心脏的心室压力构成辅助泵的输入压力,穿过辅助泵的主动脉压力同时是其输出压力。
在收缩期由辅助泵实现心室的自然压力与努力实现的主动脉压力之间的压差。在舒张期仅防止血液回流入心室。
图5示出根据这些条件得出的辅助泵的扬程。扬程的额定值大约等于平均主动脉压力的一半。当低于该额定值时,将启动转速调节,必要时泵则被加速,直至达到最大转速并将血液输送入主动脉。当心室的压力降低扬程重新提高时,转速-控制值和随之的转子转速降低,直至到达舒张期。
通过将容积流加入支路24,确切地说是负-值,这意味着,向心室的可能的回流由前置于比较器23的调节放大器k保证了在舒张期保持特定的转速,使容积流不致低于零,而是保持在零值上。
在本实施例中另外将一修正值附加入额定扬程中,根据转子的实时转速与转子的最大转速的比较得出修正值。当在支路25上的转子转速高于在支路26上预定的转子的最大转速时,该偏差将通过调节放大器k1被放大,用一个负号加在加有额定扬程的比较器27上。当达到转子的最大转速时将重新开始对有待调整的额定值-测量值-偏差进行限制。
图7示出扬程和容积流的曲线和图8示出在泵以恒定转速工作时心室内的压力曲线。从图中可见泵在舒张期也进行抽吸并且对心室进行空抽吸。因而并不会导致不希望出现的心脏的压力平衡。
利用在本实施例中示出的方法不仅可省去造成干扰和付出附加代价的传感器,而且还可以对在液体输送系统中的脉动容积流进行辅助,而不必利用同步措施对两种工作状态进行区分。
附图标记对照表2 铁轭板2a 铁轭板5 转子6 导向装置7 导向装置12 控制线圈12a 控制线圈21 支路22 支路23 比较器24 支路25 支路26 支路27 比较器31 叠片组33 绕组41 永磁铁41a 永磁铁42 永磁铁42a 永磁铁43 传感器线圈43a 传感器线圈k 调节放大器k1 调节放大器80 短路环80a 短路环
权利要求
1.一种用脉动压力调整液体输送系统的辅助泵的方法,其特征在于,不断地检测辅助泵的输入端和输出端之间的压力差以及流过辅助泵的流量并调整辅助泵的转速,使测出的压差不低于预定的值并且流量不低于零。
2.按照权利要求
1所述的方法,其特征在于,作为辅助泵采用一个轴流泵,所述轴流泵具有电子换向同步电机和永磁支承和用于对转子的位置以磁方式进行调整的控制线圈,并对辅助泵的输入端和输出端的压差进行测定,其中根据控制线圈的控制电流和作为位置调整的值的转子的实时位置确定与压差成比例的作用于转子的干扰力。
3.按照权利要求
1或2所述的方法,其特征在于,利用实时转速和根据预先测出的辅助泵的压差/容积流特性曲线求出的压差求出流过辅助泵的流量。
4.按照上述权利要求
中任一项所述的方法,其特征在于,辅助泵的转速被限定在预先确定的最大值。
5.按照上述权利要求
中任一项所述的方法,其特征在于,采用一比例积分微分调节器对转速进行调整。
6.按照上述权利要求
中任一项所述的方法,其特征在于,对压差-额定值加入一根据转速与预定的转速最大值的比较求出的修正值。
专利摘要
本发明涉及一种用脉动压力调整液体输送系统的辅助泵的方法。当例如心脏辅助泵以恒定的转速工作时,即使心室处于舒张期时,血液也将通过辅助泵进行输送。利用本发明的方法可以实现仅在主泵的收缩期辅助泵才起辅助作用,其中始终对辅助泵的输入和输出端之间的压差和流经辅助泵的流量进行检测并对辅助泵的转速进行调整,使求出的压差不低于预定值并且流量不低于零。
文档编号F04D15/00GKCN1172091SQ02801467
公开日2004年10月20日 申请日期2002年4月26日
发明者彼得·尼塞尔, 约翰内斯·米勒, 弗兰克·多伊斯, 彼得·格特尔, 杨·霍夫曼, 库尔特·格赖兴, 安得烈亚斯·阿因特, 托比亚斯·默克尔, 多伊斯, 格赖兴, 亚斯 阿因特, 夫曼, 彼得 尼塞尔, 斯 米勒, 斯 默克尔, 格特尔 申请人:柏林心脏公开股份有限公司导出引文BiBTeX, EndNote, RefMan
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1