一种气动控制阀门的制作方法

文档序号:33301263发布日期:2023-02-28 22:51阅读:35来源:国知局
一种气动控制阀门的制作方法

1.本实用新型涉及阀门领域,具体涉及一种气动控制阀门。


背景技术:

2.在航天飞行器领域的发动机阀门很多需要在低温介质下工作,目前广泛使用的阀门可以应对低压力介质以及小尺寸结构,当研制大推力的航天飞行器发动机时,阀门的工作压力以及尺寸会大幅增加,现有的阀门不能适应大尺寸的发动机以及可靠性较低。
3.鉴于此,亟需设计一种具有高可靠性且随着发动机尺寸增加快速迭代的气动控制阀门。


技术实现要素:

4.本实用新型的目的在于克服现有技术的不足,提供一种气动控制阀门。
5.本实用新型提供一种气动控制阀门,包括:包括主体单元、作动单元、执行单元;所述主体单元包括供液体进入和流出的介质入口和介质出口以及连通介质入口和介质出口的介质通道,所述执行单元用于抵接所述介质出口以堵住介质通道;所述作动单元与所述主体单元在第一方向上连接,所述作动单元用于带动所述执行单元在介质通道内沿着第一方向运动,从而所述执行单元使介质入口和介质出口相通。
6.根据本实用新型的一个实施例,所述执行单元包括阀芯和活塞,所述阀芯设置在所述主体单元内,所述活塞设置在所述作动单元内,所述活塞能够带动所述阀芯运动。
7.根据本实用新型的一个实施例,所述阀芯的头部为锥体形状,所述锥体表面与所述阀芯的中轴平面的角度范围是30
°‑
89
°
;所述阀芯在远离头部的部分为圆柱形状,且圆柱的直径小于所述椎体的最大直径。
8.根据本实用新型的一个实施例,所述主体单元包括壳体和阀座,所述阀座安装在所述壳体相对于所述作动单元相反端的内侧,且处于静止状态时的所述阀芯的头部抵接在所述阀座上。
9.根据本实用新型的一个实施例,所述壳体分为一体成型的第一壳体和第二壳体,所述第一壳体内侧的直径为所述锥体的最大直径,所述第二壳体内侧的直径介于所述锥体最大直径与所述圆柱直径之间,所述阀芯的所述圆柱至少部分可移动地容纳在所述第二壳体内侧。
10.根据本实用新型的一个实施例,所述第二壳体从所述第一壳体朝向所述作动单元的一端的内侧背向所述作动单元延伸,所述第二壳体与所述第一壳体的内侧形成限位空间;在轴向方向上,所述第二壳体与静止状态下的所述阀芯的头部间隙配合。
11.根据本实用新型的一个实施例,所述第一壳体与所述第二壳体之间形成的所述限位空间安装有弹性件,所述弹性件的一端抵接在所述阀芯头部的内端面,另一端在所述限位空间内抵接在所述第一壳体与所述第二壳体的连接处,所述弹性件在所述阀芯移动后处于压缩状态,当所述作动单元不施力时,所述弹性件推动所述阀芯回弹复位。
12.根据本实用新型的一个实施例,所述弹性件与处于静止状态的所述阀芯圆柱径向方向之间的间隙处设置弹性座,所述弹性座延伸套设在所述第二壳体上。
13.根据本实用新型的一个实施例,所述第一壳体与所述第二壳体的连接处设置一条贯穿的泄漏通道,所述泄漏通道延伸到所述第一壳体外侧。
14.根据本实用新型的一个实施例,所述弹性座上设置多个小孔用于所述阀芯打开时介质的排出,排出的介质从所述泄漏通道流出。
15.本实用新型通过主体单元、作动单元和执行单元的模块化组装的气动控制阀门,合理布局介质入口和介质出口的位置,并通过作动单元和执行单元的配合完成气动控制阀门的启动和关闭,该阀门能够适应性地匹配各种尺寸的航天运载器发动机,并且具有高可靠性的性能。
16.应了解的是,上述一般描述及以下具体实施方式仅为示例性及阐释性的,其并不能限制本实用新型所欲主张的范围。
附图说明
17.下面的附图是本实用新型的说明书的一部分,其绘示了本实用新型的示例实施例,所附附图与说明书的描述一起用来说明实用新型的原理。
18.图1是本实用新型一个实施例的气动控制阀门静止的示意图;
19.图2是本实用新型另一个实施例的气动控制阀门静止的示意图;
20.图3是本实用新型再一个实施例的气动控制阀门静止的示意图;
21.图4是本实用新型一个实施例的气动控制阀门运动后的示意图;
22.图5是本实用新型一个实施例的气动控制阀门局部放大的示意图。
23.附图标记:
24.100-主体单元,101-介质入口,102-介质出口,103-壳体,1031-第一壳体,1032-第二壳体,104-阀座,105-弹性件,106-弹性座,107-泄漏通道,200-作动单元,201-壳段,202-阀盖,300-执行单元,301-阀芯,302-活塞,401-第一密封圈,402-第二密封圈,403-第三密封圈,404-支撑环,405-压环。
具体实施方式
25.下面将详细描述本实用新型的各个方面的特征和示例性实施例,为了使本实用新型的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本实用新型进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本实用新型,用于示例性的说明本实用新型的原理,并不被配置为限定本实用新型。另外,附图中的机构件不一定是按照比例绘制的。例如,可能对于其他结构件或区域而放大了附图中的一些结构件或区域的尺寸,以帮助对本实用新型实施例的理解。
26.下述描述中出现的方位词均为图中示出的方向,并不是对本实用新型实施例的具体结构进行限定。在本实用新型的描述中,需要说明的是,除非另有说明,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本实用新型中的具体含义。
27.此外术语“包括”、“包含”“具有”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素结构件或组件不仅包括那些要素,而且还包括没有明确列出或固有的属于结构件、组件上的其他机构件。在没有更多限制的情况下,由语句“包括
……”
限定的要素,并不排除在包括要素的物品或者设备中还存在另外的相同要素。
28.诸如“下面”、“下方”、“在

下”、“低”、“上方”、“在

上”、“高”等的空间关系术语用于使描述方便,以解释一个元件相对于第二元件的定位,表示除了与图中示出的那些取向不同的取向以外,这些术语旨在涵盖器件的不同取向。另外,例如“一个元件在另一个元件上/下”可以表示两个元件直接接触,也可以表示两个元件之间还具有其他元件。此外,诸如“第一”、“第二”等的术语也用于描述各个元件、区、部分等,并且不应被当作限制。类似的术语在描述通篇中表示类似的元件。
29.对于本领域技术人员来说,本实用新型可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本实用新型的示例来提供对本实用新型更好的理解。
30.图1是本实用新型一个实施例的气动控制阀门静止的示意图;图2是本实用新型另一个实施例的气动控制阀门静止的示意图;图3是本实用新型再一个实施例的气动控制阀门静止的示意图;图4是本实用新型一个实施例的气动控制阀门运动后的示意图;图5是本实用新型一个实施例的气动控制阀门局部放大的示意图。
31.如图1所示,本实用新型提供一种气动控制阀门,包括:包括主体单元100、作动单元200、执行单元300;主体单元100包括供液体进入和流出的介质入口101和介质出口102以及连通介质入口101和介质出口102的介质通道,执行单元300用于抵接介质出口102以堵住介质通道;作动单元200与主体单元100在第一方向上连接,作动单元200用于带动执行单元300在介质通道内沿着第一方向运动,从而执行单元300使介质入口101和介质出口102相通。
32.具体的,本实施例中的气动控制阀门主要由三个单元部分组成,包括主体单元100、作动单元200、执行单元300。其中主体单元100包括供液体介质进入和流出的介质入口101和介质出口102以及连通介质入口101和介质出口102的介质通道,执行单元300处于介质通道内且可以在介质通道内移动,在静止状态下执行单元300可以用于抵接介质出口102以堵住介质通道。作动单元200与主体单元100在第一方向上连接,作动单元200和主体单元100可以是一体成型,也可以是焊接或者铆接等其它连接方式。作动单元200用于提供动力,带动执行单元300在介质通道内沿着第一方向运动,在非静止及运动后状态下执行单元300能够使介质入口101和介质出口102相通,从而使得液体介质可以在介质通道内流通。
33.本实用新型通过主体单元100、作动单元200和执行单元300的模块化组装的气动控制阀门,合理布局介质入口101和介质出口102的位置,并通过作动单元200和执行单元300的配合完成气动控制阀门的启动和关闭,该阀门能够适应地匹配各种尺寸的航天运载器发动机,并且具有高可靠性的性能。本实施例中的气动控制阀门为常闭式结构,能够提高发动机的工作压力范围,增强气动控制阀门的可靠性。
34.如图2和图4所示,根据本实用新型的一个实施例,作动单元200包括气体入口和气体出口,作动单元200通过输入高压气体推动执行单元300运动。作动单元200与主体单元100的连接处为凸起的一圈圆环,圆环设置贯穿的通孔用于安装固定,圆环避开通孔处还设
置气体入口的气体通道。
35.具体地,作动单元200和主体单元100的连接处设置一圈垂直于中心轴向外延伸凸起的圆环,在凸起的圆环处设置贯穿的多个通孔,通孔可以用于将气动控制阀门安装固定在航天运载器上。在圆环的内部还设置有气体通道,该气体通道是作动单元200气体入口的通道,需要注意的是,气体的设置要避开用于安装固定的通孔位置,当气动控制阀门需要开启时,需要通过气体入口注入高压控制气体。
36.根据本实用新型的一个实施例,作动单元200包括壳段201和阀盖202,阀盖202安装在壳段201外侧,在阀盖202的中间设置气体出口的气体通道。
37.具体地,作动单元200由壳段201和阀盖202构成,壳段201与主体单元100在径向方向上连接,阀盖202安装在远离主体单元100的壳段201外侧,阀盖202能够堵住壳段201的一端,仅在阀盖202的中间设置一个供作动单元200气体出口的气体通道。当气动控制阀门需要关闭时,需要通过气体出口排出高压控制气体。
38.如图2和图4所示,根据本实用新型的一个实施例,执行单元300包括阀芯301和活塞302,阀芯301设置在主体单元100内,活塞302设置在作动单元200内,活塞302能够带动阀芯301运动。
39.具体地,执行单元300具体是通过阀芯301和活塞302来完成在介质通道内移动,其中阀芯301设置在主体单元100的介质通道内,活塞302设置在作动单元200的介质通道内,活塞302套设在阀芯301远离头部一端的圆柱上。作动单元200内充入高压气体作用到活塞302,进而活塞302受到高压气体的压力可以移动,移动的活塞302能够带动连接的阀芯301一起移动。
40.根据本实用新型的一个实施例,阀芯301的头部为锥体形状,锥体表面与阀芯301的中轴平面的角度范围是30
°‑
89
°
;阀芯301在远离头部的部分为圆柱形状,且圆柱的直径小于椎体的最大直径。
41.具体地,阀芯301的头部呈锥体形状,锥体表面与阀芯301的中轴平面的角度在30
°
~89
°
范围内选取,根据密封压力、流阻要求和密封比压进行角度选择。阀芯301在远离头部的部分为圆柱形状,且圆柱的直径小于椎体的最大直径。其中阀芯301的头部采用锥体形状能够更好地堵住静止状态下的介质出口102。
42.根据本实用新型的一个实施例,主体单元100包括壳体103和阀座104,阀座104安装在壳体103相对于作动单元200相反端的内侧,且处于静止状态时的阀芯301的头部抵接在阀座104上。
43.具体地,主体单元100包括壳体103和阀座104,阀座104安装在壳体103相对于作动单元200相反端的内侧,且处于静止状态时的阀芯301的头部抵接在阀座104上,通过阀芯301的头部抵接在阀座104上从而堵住介质通道的介质流动,使得气动控制阀门处于关闭状态。壳体103与阀座104可以通过螺纹连接,但不限于该连接方式,只要将壳体103与阀座104能够固定连接即可。
44.根据本实用新型的一个实施例,壳体103分为一体成型的第一壳体1031和第二壳体1032,第一壳体1031内侧的直径为锥体的最大直径,第二壳体1032内侧的直径介于锥体最大直径与圆柱直径之间,阀芯301的圆柱至少部分可移动地容纳在第二壳体1032内侧。
45.具体地,气动控制阀门中主体单元100的壳体103分为第一壳体1031和第二壳体
1032,第二壳体1032内嵌在第一壳体1031中间。其中第一壳体1031内侧的直径为锥体的最大直径,阀芯301的头部能够在第一壳体1031中间移动;第二壳体1032内侧的直径为阀芯301圆柱的直径,阀芯301圆柱至少部分可移动地容纳在第二壳体1032内侧。第二壳体1032外侧的直径介于锥体最大直径与圆柱直径之间,因此第二壳体1032在第一壳体1031内部且第二壳体1032的外侧与第一壳体1031的内侧之间相隔有一定的间隙。
46.根据本实用新型的一个实施例,第二壳体1032从第一壳体1031朝向作动单元200的一端的内侧向背向作动单元200延伸,从而第二壳体1032的径向外侧与第一壳体1031的径向内侧形成限位空间;在轴向方向上,第二壳体1032与静止状态下的阀芯301的头部间隙配合。
47.具体地,第二壳体1032和第一壳体1031在朝向作动单元200的一端是连接在一起的,从连接处开始第二壳体1032沿着背向作动单元200的方向延伸而形成,第二壳体1032的径向外侧与第一壳体1031的径向内侧形成限位空间。在壳体103的轴向方向上,第二壳体1032与静止状态下的阀芯301头部间隙配合,当非静止状态下阀芯301沿着该轴向方向朝着作动单元200移动,从而使得第二壳体1032与阀芯301头部的间隙距离减小。
48.根据本实用新型的一个实施例,第一壳体1031与第二壳体1032之间形成的限位空间安装有弹性件105,弹性件105的一端抵接在阀芯301头部的内端面,另一端在限位空间内抵接在第一壳体1031与第二壳体1032的连接处,弹性件105在阀芯301移动后处于压缩状态,当作动单元200不施力时,弹性件105推动阀芯301回弹复位。
49.具体地,弹性件105位于阀芯301与限位空间限定的区域内,弹性件105的一端抵接在阀芯301头部的内端面,另一端抵接在第一壳体1031和第二壳体1032的连接处。在气动控制阀门处于关闭状态时,在弹性件105的作用下,阀芯301头部压紧阀座104形成密封面,从而阻断介质入口101和介质出口102的连通即阻止介质的流动。
50.当弹性件105在阀芯301朝向作动单元200的方向移动后处于压缩状态,此时气动控制阀门处于打开状态,介质处于流动状态,当作动单元200没有高压控制气体施加力时,在液体介质的压力作用下可以继续维持气动控制阀门维持打开状态。如果介质入口101的介质压力下降到一定值时,压缩的弹性件105提供回弹力推动阀芯301回弹复位,从而关闭气动控制阀门。
51.根据本实用新型的一个实施例,弹性件105与处于静止状态的阀芯301圆柱径向方向之间的间隙处设置弹性座106,弹性座106延伸套设在第二壳体1032上。
52.具体地,弹性件105与阀芯301圆柱的压紧面之间还设置有弹性座106,弹性座106套设在第二壳体1032外侧面,用于弹性件105在气动控制阀门开启或者关闭过程中作为导向,防止弹性件105工作不稳定,防止弹性件105在压缩时卡在阀芯301与第二壳体1032之间。
53.根据本实用新型的一个实施例,第一壳体1031与第二壳体1032的连接处设置一条贯穿的泄漏通道107,泄漏通道107延伸到第一壳体1031外侧。
54.具体地,在高压工作环境下,气动控制阀门里的液体介质泄漏是可能的。为了避免液体介质下的密封泄漏形成背压,造成阀芯301的异常关闭,通过泄漏通道107能够及时将密封泄漏的介质排出气动控制阀门,泄漏通道107将第二壳体1032的内侧与第一壳体1031的外侧连通,从而避免气动控制阀门在工作状态下的异常问题。
55.根据本实用新型的一个实施例,弹性座106上设置多个小孔用于阀芯301打开时介质的排出,排出的介质从泄漏通道107流出。
56.具体地,为了进一步使密封泄漏的介质充分流出,在弹性座106上可以设置多个小孔,泄漏的介质通过多个小孔快速排出,然后经过泄漏通道107流出,避免形成死腔对阀芯301造成背压。
57.如图3所示,根据本实用新型的一个实施例,阀芯301与第二壳体1032内侧之间通过第一密封圈401和第二密封圈402进行密封,且第一密封圈401和第二密封圈402设置在第二壳体1032两端内侧且径向远离阀芯301的斜面上,通过支撑环404将第一密封圈401和第二密封圈402压紧至斜面和阀芯301形成的沟槽中。
58.具体地,第一密封圈401和第二密封圈402能够实现气体介质和液体介质的腔体之间的隔离,防止气体介质和液体介质相互串腔。为了让密封圈更加贴合阀芯301与第二壳体1032之间的密封面,在第二壳体1032沿着轴向的两端内侧设置斜面,该斜面是径向上远离阀芯301设置,且越靠近第二壳体1032轴向两端的斜面离阀芯301的距离越大,从而将第一密封圈401和第二密封圈402安装在斜面距离阀芯301最近位置的沟槽,通过两个支撑环404将第一密封圈401和第二密封圈402压紧在沟槽中。
59.如图5所示,为了让两个支撑环404在密封时不偏移,可以设置两个金属挡板在支撑环404外侧,这样在阀芯301与第二壳体1032之间还有金属挡板形成的金属密封面,以适应不高于100mpa的高压环境的工况,防止第一密封面和第二密封面在高压下失效。该冗余设计能够有效保护气动控制阀门的密封性,使得气动控制阀门的可靠性增大。
60.根据本实用新型的一个实施例,活塞302与壳段之间通过第三密封圈403进行密封,且第三密封圈403的横截面积大于第二密封圈402的横截面积。
61.具体地,第三密封圈403为了将气体介质进行隔离,活塞302在远离阀芯301的一端设置成凸起的端面,在靠近阀芯301的一端预留部分空间,在此预留空间内设置第三密封圈403,为了让第三密封圈403能够稳固在活塞302、壳段与端面形成的预留空间内,在第三密封圈403远离端面的一侧设置压环405,通过压环405能够将第三密封圈403限定在预留空间内。压环405可以设置成z字型,压环405的两端分别抵靠在阀芯301和壳段上,为了让压环405更加可靠地抵靠在阀芯301上,在静止的阀芯301状态下,靠近压环405的阀芯301区域设置一圈挡圈。
62.其中,第三密封圈403和第二密封圈402的横截面积不同形成不平衡的面积差,高压控制气输入到作动单元200后,气体压力在不平衡面积差区域形成作用力,使活塞302带动阀芯301向这作动单元200的方向移动,此时阀芯301与阀座104的密封面脱离,气动控制阀门打开。
63.为满足液体介质在高压工作环境可靠密封,第一密封圈401、第二密封圈402、第三密封圈403可以采用弹簧蓄能密封圈结构,弹簧蓄能密封圈是由聚合材料密封壳和耐腐蚀的不锈钢金属弹簧组成。密封圈安装在沟槽内,弹簧受压,形成向外的张力,促使密封圈紧贴密封沟槽,由于弹簧永久给密封圈提供弹力,可满足低压范围内的密封。由于作动单元200的气体压力会辅助弹簧蓄能,压力越大,密封圈与沟槽贴合的越充分,由此形成高压密封。
64.其中,阀芯301的运动导向由第一密封圈401、第二密封圈402、第三密封圈403构
成,由于弹簧蓄能密封圈具备低摩擦和高负荷的能力,并且有一定限度的变形压缩量可以调整,因此减低了壳体103和阀芯301轴向的形位公差的高要求,降低了加工难度。本实施例中的启动阀门结构也可以避免金属与金属导向运动时因摩擦产生的金属碎末。
65.本实施例中的气动阀门为常闭式结构,可应用于-196℃~100℃的温度环境,以及不高于100mpa的高压环境下,提高了工作压力范围和密封的可靠性。该气动阀门结构简单,密封结构随着工况要求可快速迭代,工作可靠。
66.其中,气动控制阀门装配完毕后,在弹性件105作用下使阀芯301与阀座104处于关闭位置。工作时,控制高压气体经控制口进入气动控制阀门的作动单元200,推动活塞302和阀芯301克服弹性力使气动控制阀门打开,当阀芯301和壳体103金属密封面接触后,气动控制阀门开启到位。介质入口101的液体介质高于一定压力后,作用在阀芯301表面的作用力,克服弹性力保持气动控制阀门打开状态,此时撤掉控制高压气体后,气动控制阀门保持打开状态。
67.当介质压力降到一定压力时,弹簧克服介质力推动阀芯301回坐到阀座104上,气动控制阀门关闭。当低温高压下,第一密封圈401、第二密封圈402存在泄漏时,泄漏介质经泄漏腔从泄漏口及时排出至阀外。第三密封圈403存在泄漏时,泄漏介质经排气口排出至阀外。
68.以上仅为本实用新型的较佳实施例而已,并不用以限制本实用新型,凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1