一种低温推进剂空间在轨液体获取装置的制作方法

文档序号:22669284发布日期:2020-10-28 12:20阅读:150来源:国知局
一种低温推进剂空间在轨液体获取装置的制作方法

本发明涉及低温推进剂空间流体管理技术领域,具体涉及一种低温推进剂空间在轨液体获取装置。



背景技术:

航天器发动机在轨点火、推进剂在轨增压和传输等过程均需要持续稳定的单相液体推进剂供给。地面条件下,气液相可依靠重力作用实现良好分层。在轨微重力条件下,气液相分布存在很大的随机性,必须通过气液管理技术实现气液定位与分离。近年来,液氢、液氧等低温推进剂以其比冲高、推力大、无毒无污染等优势,已经广泛应用于大型运载火箭系统,是未来大型空间任务的首选推进剂。然而,低温推进剂也具有温度低、沸点低、表面张力小等特殊性,使其空间气液管理更加困难。

现有的在轨气液管理方法主要分为主动型和被动型。惯性式、自旋式等主动型管理技术需要不断消耗高成本的低温推进剂,对于大型系统的经济性差。常温推进剂所采用的挠性隔膜贮箱因无法消除液相侧蒸发的气体,不再适用于易蒸发的低温推进剂。被动型气液管理技术主要包括槽式、陷阱式、海绵式、叶片板式、网幕通道式等;其中,槽式气液管理装置可重复填充,但对加速度方向十分敏感;陷阱式装置的反向加速度承受力较强,但结构复杂、获取流量小;海绵式和叶片板式装置的结构简单、重量轻、成本低,但针对表面张力很小的低温推进剂,只能在很低重力水平下稳定可靠;网幕通道式装置对重力水平和热环境的敏感性较低,但结构复杂、重量大、可靠性低。

现阶段,针对大型低温航天器系统,尚未形成在轨复杂环境下实现低温推进剂气液分离与全液获取的在轨成熟应用方案。



技术实现要素:

为了克服上述现有技术的缺点,本发明的目的在于提供一种低温推进剂空间在轨液体获取装置,实现对空间在轨低温推进剂气液分布的有效管理,使低温推进剂液体获取系统变得更稳定可靠、工况适用范围更广。

为了达到上述目的,本发明采用以下技术方案:

一种低温推进剂空间在轨液体获取装置,包括增压腔2、集液腔4和一组活动叶片板5,增压腔2和集液腔4的外容器结构为一个整体,安装于低温推进剂贮箱1底部;增压腔2和集液腔4由移动活塞3分隔为两个独立区域,增压腔2和集液腔4的容积分配由移动活塞3的位置决定;

所述的增压腔2上端设有增压口6,增压口6连接增压系统;

所述的集液腔4内填充集液海绵9,集液腔4下端设有低温推进剂贮箱1的排液口11,集液腔4与排液口11之间安装有一层多孔金属网幕10;集液腔4侧壁面分为两部分,上部壁面为打孔壁面7,下部壁面为实心壁面8;

所述的活动叶片板5安装于打孔壁面7的外周,保证叶片组旋转至贴附于打孔壁面7时能够完全包裹打孔壁面7。

所述的增压系统采用的增压气体是不凝性气体,或是与低温液体相同工质的气体。

所述的集液海绵9具有多孔介质的结构特性,孔隙率0.4-0.6;集液海绵9具有弹性,在受挤压时将发生压缩变形且孔隙率减小,不受力时回弹恢复至初始孔隙率。

所述的多孔金属网幕10由金属细丝编制而成,具有刚性多孔介质的结构特性,孔隙直径在微米量级。

所述的打孔壁面7的打孔孔径和打孔率根据具体任务需求及液体获取装置的尺寸决定,孔径3-5mm,打孔率0.4-0.5。

所述的活动叶片板5中的每个叶片能够以叶片根部为轴旋转,叶片数量需要根据具体空间任务的加速度工况条件及液体获取装置的尺寸决定,叶片数量12-18;叶片长度l不能小于打孔壁面7的长度,叶片高度h需满足叶片高度h乘以叶片数大于打孔壁面7周长的要求。

本发明的有益效果:

本发明通过采用集液腔结合活动叶片板结构,在满足可重复使用的前提下提高了液体获取装置对加速度方向的适应性,加速度敏感性低于槽式装置,相较于陷阱式和网幕通道式装置结构更加简单可靠。本发明通过采用集液海绵和叶片结构相结合的形式,提高了液体获取装置的气液定位与液体获取能力,且重力敏感性低于海绵式和叶片式装置。本发明通过采用对液体获取装置直接加压排液的方式代替传统的贮箱整体加压排液,提高了液体获取流量的调控能力,降低了液体获取过程的增压气体消耗,也减少了液体获取过程对贮箱内主体推进剂的影响。本发明结构简单、成本低、重量轻、技术成熟度高,液体获取性能更加稳定可靠,对不同微重力环境和流量需求适应性更强,为低温推进剂的在轨气液管理提供了新思路和技术支持。

附图说明

图1是本发明实施例的结构示意图,(a)是集液示意图;

(b)是增压排液示意图。

具体实施方式

下面结合附图和实施例来进一步说明本发明的技术方案。

参照图1,一种低温推进剂空间在轨液体获取装置,包括增压腔2、集液腔4和一组活动叶片板5,增压腔2和集液腔4的外容器结构为一个整体,安装于低温推进剂贮箱1底部;增压腔2和集液腔4由移动活塞3分隔为两个独立区域,增压腔2和集液腔4的容积分配由移动活塞3的位置决定。

所述的增压腔2上端设有增压口6,增压口6连接增压系统;增压气体可采用氦气等不凝性气体,也可以采用与低温液体相同工质的气体。

所述的集液腔4内填充集液海绵9,集液海绵9具有多孔介质的结构特性,孔隙率0.4-0.6;集液海绵9具有弹性,在受挤压时将发生压缩变形且孔隙率减小,不受力时可以回弹恢复至初始孔隙率;集液腔4下端设有低温推进剂贮箱1的排液口11,集液腔4与排液口11之间安装有一层多孔金属网幕10,多孔金属网幕10由金属细丝编制而成,具有刚性多孔介质的结构特性,孔隙直径在微米量级(具体网幕型号根据实际任务需求选取);集液腔4侧壁面分为两部分,上部壁面为打孔壁面7,下部壁面为实心壁面8,打孔壁面7的打孔孔径和打孔率根据具体任务需求及液体获取装置的尺寸决定,孔径3-5mm,打孔率0.4-0.5。

所述的活动叶片板5安装于打孔壁面7的外周,每个叶片能够以叶片根部为轴旋转,叶片数量需要根据具体空间任务的加速度工况条件及液体获取装置的尺寸决定,叶片数量12-18;叶片长度l不能小于打孔壁面7的长度,叶片高度h需满足叶片高度h乘以叶片数大于打孔壁面7周长的要求,以保证叶片组旋转至贴附于打孔壁面7时能够完全包裹打孔壁面7。

本发明的工作原理是:

工作过程可以分为集液和增压排液两个阶段。在集液阶段,移动活塞3位于增压腔2最上端,集液腔4容积处于最大状态,活动叶片板5处于打开状态(所有叶片沿集液腔4的径向方向伸展)。在轨条件下,重力作用削减,表面张力和毛细作用成为影响气液分布的主控力,贮箱内液体推进剂具有依附于贮箱壁面和结构件表面的分布趋势。当活动叶片板5处于打开状态时,低温推进剂贮箱1内随机分布的液体推进剂接触到任一叶片的任意位置后,在表面张力作用下将依附于叶片表面分布,并具有向结构更加复杂(表面张力作用更大)的叶片根部运动的趋势。当液体接触打孔壁面7后,具有多孔介质结构特性的集液海绵9基于毛细作用芯吸液体,使液体进入并存储于集液腔4内。这样,在表面张力和毛细作用下,通过活动叶片板5、打孔壁面7、集液海绵9实现了将低温推进剂贮箱1内随机分布的液体推进剂收集于集液腔4内的单相液体获取过程。当液体将集液海绵9的内部孔隙全部填满时,液体获取装置的液体获取能力达到饱和,无法再继续获取更多的液体推进剂。

当需要液体推进剂供给时,液体获取装置进入增压排液工作阶段。首先,关闭活动叶片板5,即将所有叶片旋转至包裹打孔壁面7的状态,打孔壁面7的孔隙全部被活动叶片板5封堵,使集液腔4形成封闭腔体。接着,增压气体由增压口6通入增压腔2进行增压,增压腔2侧高压将推动移动活塞3向集液腔4侧运动,引起集液腔4的容积减小。受到挤压作用后的集液海绵9不断压缩,在集液阶段芯吸存储于集液海绵9孔隙内的推进剂液体将随着集液海绵9孔隙率的不断减小而不断排出。排出的液体推进剂通过金属网幕10后进入排液口11。金属网幕10的大量微米级孔隙能够在表面张力和毛细力作用下对集液腔4内可能存在的气体进行过滤,保证进入排液口11的流体为单相液体。排液口11连接发动机系统、推进剂传输系统等,实现向需求单元的单相液相推进剂供给。排液速率通过增压腔2的增压速率进行控制和调节。当集液海绵9被挤压至孔隙率为0时,液体获取装置排液能力达到极限。关闭增压系统,将移动活塞3复位至增压腔2上端,打开活动叶片板5,液体获取装置将再次进入集液阶段,如此反复便可实现液相推进剂的多次供给。

以上实施例只是阐述了本发明的基本原理和特性,本发明不受上述事例限制,在不脱离本发明精神和范围的前提下,本发明还有各种变化和改变,本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1