制造压力容器的方法和压力容器与流程

文档序号:30236414发布日期:2022-06-01 20:54阅读:187来源:国知局
制造压力容器的方法和压力容器与流程

1.本发明涉及一种制造压力容器的方法以及相应的压力容器。


背景技术:

2.压力容器,特别是用纤维复合材料增强的压力容器的市场持续增长。增加天然气和压裂气的产量使得需要储存在压力容器中,特别是在没有相应管道网络的国家中。此外,在燃料电池交通工具的开发中涉及的汽车工业要求燃料以气态氢的形式在高压下存储在压力容器中。使用氢气的其它类型的交通工具可以是铁路交通工具,飞行器或船只。即使在航天器中,应用也是可以想象的。关于压力容器的运输,希望它们应该是重量轻的压力容器,因为运输重量重的压力容器与不必要的大量能量的消耗有关,从而导致过高的运输成本。
3.目前使用的圆柱形纤维增强的压力容器具有由纤维复合材料构成的增强层,该纤维复合材料由嵌入基体材料中的纤维制成,该基体材料通过缠绕方法被缠绕在压力容器的内部容器(称为衬垫)上,该内部容器用作缠绕芯。缠绕是用于制造纤维复合材料层的优选方法,在时间和成本方面都是有效的。虽然内部容器例如保证了压力容器的气密性,但是由纤维复合材料制成的增强层为压力容器提供了必要的机械刚度。对于3类压力容器,采用由铝或钢组成的金属内容器(金属衬垫);在4类压力容器的情况下,非承重内部容器(衬垫)由塑料制成。塑料衬垫通常通过吹塑,滚塑或单独部件的焊接来生产。特别地,可以使用对氢具有良好渗透特性的材料,例如聚酰胺或聚乙烯,特别是高密度聚乙烯。压力容器必须承受非常高的内部压力。当前,例如,汽车的氢罐在大约700巴的压力下被填充。特别地,压力容器即使在碰撞的情况下也不会爆裂。因此,这种压力容器被设计成具有在两侧由所谓的“杆帽”封闭的圆柱形中心部分。为了补偿制造公差,增强层相应地尺寸过大。增强层可以例如用长丝缠绕方法制造,其中压力容器的缠绕在一次单独的操作中进行。换句话说,纤维在一次操作中被周向地或交叉地或以螺旋层的形式被缠绕到塑料衬垫上。这使得这种压力容器的制造更加精心和昂贵。
4.因此,希望使生产更有效。


技术实现要素:

5.本发明的目的是提供一种纤维增强的4类压力容器的制造方法,其可以比现有技术中已知的方法更有效和更廉价地进行,其中至少对压力容器作出相同的要求。此外,本发明的目的是公开相应的压力容器。
6.第一个目的是通过一种制造方法来实现的,在该方法中,首先生产压力容器坯件,该压力容器坯件包括至少一个4类衬垫和可操作地连接到其上的圆柱形管,并且随后将纤维复合材料,例如,缠绕到坯件上。
7.术语“压力容器”包括所有类型和形状的压力容器,压力容器包括也称为衬垫的内部容器。4类压力容器包括由热塑性材料制成的衬垫,该衬垫被外部的纤维复合材料机械地
增强,使得压力容器在耐压性方面满足要求。通常,这些压力容器是圆柱形的,在圆柱形中心部分的两侧上具有凸起的端子。这些端子被称为杆帽,并用于中心部分的压力密闭的密封。为了增强压力容器,将由纤维复合材料制成的外层缠绕在内部容器的外侧上,可能同时形成压力容器的外侧。内部容器可以通过各种技术制造,例如通过焊接,注射成型或作为吹塑部件。在生产之后,例如通过焊接,杆帽也可以被放置在中心部分上。单独的杆帽可以例如通过注射成型来制造。一方面,具有热塑性内部容器的压力容器具有非常低的重量,这是例如对于运输的应用是很重要的;另一方面,由于合适的热塑性塑料具有足够低的氢渗透性,并且通过由纤维复合材料制成的外层提供所需的刚性,因此例如氢的所含物可以在高压下以低损失存储。
8.通常,用于纤维复合层的纤维复合材料由两个主要成分组成,它们在本文中是纤维,嵌入在基体材料中,该基体材料在纤维之间产生强粘结。其中,纤维复合材料可以由一种纤维或由多种纤维缠绕,其中纤维紧靠彼此缠绕并相互接触。缠绕的纤维已经用基质材料浸渍。这产生纤维层,在该纤维层上附加的纤维缠绕在另外的纤维层中,直到纤维复合材料具有所需的厚度并形成具有该厚度的相应纤维层。外层缠绕在由纤维复合材料制成的几个层中,其中不同的层可以包含相对于压力容器的圆柱体轴线以不同的纤维角度布置的纤维。在一个实施例中,由第一和/或附加纤维(例如第二纤维)制成的每个纤维层包括多个纤维层。该复合材料提供了比所涉及的两个单独成分中的任何一个能提供的更高质量的纤维复合材料特性,例如更高的强度。当纤维在纵向上的弹性模量超过基质材料的弹性模量时,当基质材料的断裂伸长率超过纤维的断裂伸长率时,以及当纤维的断裂阻力超过基质材料的断裂阻力时,实现纤维在纤维方向上的增强效果。可以使用的纤维是任何种类的纤维,例如玻璃纤维,碳纤维,陶瓷纤维,钢纤维,天然纤维或合成纤维。用于纤维复合材料层的基质材料通常是硬质体。纤维和基体材料的材料性能是本领域技术人员已知的,其结果是本领域技术人员可以选择合适的纤维和基体材料的组合来生产用于特定应用的纤维复合材料。在本文中,纤维复合材料区域中的单个纤维层可以包括单个纤维或多个相同或不同的纤维。
9.术语“热塑性塑料”表示可以在特定温度范围内热塑性变形的塑料。该过程是可逆的,即,通过冷却和再加热到熔融状态,可以重复不定的次数,条件是材料不会由于过热而发生热分解。这将热塑性塑料与热固性塑料(或硬质体)和弹性体区分开来。热塑性塑料的另一个独特的特征是它们可以被焊接,这与例如硬质体相反。
10.本发明提出首先制造压力容器坯件。以这种方式,压力容器坯件的制造与压力容器整体的制造分开。因此,压力容器毛坯被单独生产。这里和下文中,“单独的生产”表示与压力容器的实际生产分开的生产,特别是在压力容器的实际生产之前。压力容器的实际生产是通过将例如纤维复合材料缠绕在压力容器坯件上来进行的。通过单独提供压力容器坯件,可以确保生产的最佳条件,提高该部件的效率和质量,从而提高整个压力容器的质量。此外,以这种方式,压力容器的几何形状仅由预制的圆柱形管确定,而不再由衬垫确定,因此增加了压力容器的长度和直径方面的制造精度。
11.详细地说,生产方法可以包括以下步骤:制造和加工杆帽增强件,制造和加工圆柱形管,在衬垫中安装连接件(凸台),将圆柱形管和杆帽与衬垫连接,固定圆柱形管和杆帽增强件的位置,例如通过精确的粘合剂粘合,在如此生产的坯件上缠绕由纤维复合材料构成
的螺旋和周向层,以及固化整个系统。
12.在另一个有利的实施例中,圆柱形管是单独制造的。这允许使用最适于相应材料的制造方法由各种材料制造管。此外,圆柱形管的制造可以以这种方式容易地自动化,进一步提高了制造效率。
13.在另一个有利的实施例中,圆柱形管由纤维复合材料卷绕而成。这种材料例如可以是碳纤维增强塑料(cfc)。一方面,由cfc制成的部件重量轻,但是它们也具有非常高的硬度。如果圆柱形管由相同组的材料制成,其随后被卷绕在压力容器坯件上,这使得在将压力容器坯件与卷绕在其上的层连接时具有优点,从而增加了压力容器的整体硬度。通过在单独的缠绕机上制造作为纤维复合部件的圆柱形管,可以增加卷绕速度和同时卷绕的纤维的数量。以这种方式,圆柱形管也可以由与压力容器的其余部分不同类型的纤维制成。这对于特定的应用可以是有利的。此外,通过将纤维缠绕在压力容器坯件上,随后在其上制造压力容器的实际容器缠绕机的循环时间显著减少。这是特别有利的,因为由于其简单的圆柱形几何形状,圆柱形管可以在比压力容器更简单且因此更便宜的缠绕机上被制造。压力容器具有杆帽,螺旋层必须卷绕在该杆帽上,而在一个实施例中,圆柱形管只能通过缠绕周向层来生产。此外,通过单独制造圆柱形管,可以将不同的纤维角度引入到周向层中,或者与常规生产相比,可以更容易地将具有不同硬度的不同类型的纤维引入到产品中。
14.而且,圆柱形管可以被制造成具有比整个容器更低的壁厚,从而降低了纤维波纹的风险,并因此增加了纤维的抵抗力。
15.在另一个有利的实施例中,圆柱形管缠绕在金属缠绕芯上。纤维的沉积可以在金属缠绕芯上比在塑料衬垫上更精确地进行。以这种方式可以改进纤维的使用。此外,可以非常精确地制造金属缠绕芯,这也允许非常精确地生产缠绕在其上的圆柱形管或圆柱形半成品管的内径。这导致制造公差的减小,继而又导致具有相等组装空间的压力容器的填充体积的增加。
16.在另一个有利的实施例中,圆柱形管被制造在长的缠绕芯上,使得一次缠绕导致几个面板。换句话说,首先缠绕圆柱形半成品管,圆柱形管从该半成品管切成一定长度。特别是如果使用金属缠绕芯,它们的硬度允许缠绕非常长的圆柱形半成品管。特别长的圆柱形半成品的缠绕和之后将其切割成一定长度以生产金属管进一步提高了生产效率。然而,也可以借助于“板盘”在缠绕芯上制造最终尺寸的圆柱形管,从而不需要切割长度或其它精加工工艺。
17.在另一个有利的实施例中,圆柱形管至多仅部分固化。这使得其易于操作和机械加工,并且在缠绕后的最终固化期间,其可以产生与绕线的物质-物质结合。这里,通常,优选使用部分固化的管而不是完全固化的管,然而,不完全排除使用完全固化的管。
18.在另一个实施例中,圆柱形管被挤压。这是一种非常经济的制造方法。特别地,通过挤压,可以生产非常长的半成品管,相应的圆柱形管可以从该半成品管切割成一定长度。然而,特别是长纤维增强材料以及硬塑料材料不能被挤压,使得对于挤压,例如可以使用短纤维增强热塑性塑料,例如纤维增强聚酰胺,其在硬度方面可能带来关于卷绕管的缺点。
19.在另一个实施例中,圆柱形管是拉挤的。通过拉挤,可以加工具有比可以用挤压方法加工的材料更长的纤维,甚至直到连续的纤维的材料。由于较长的纤维,这样制造的管相对于挤压的管的硬度可以增加。
20.在另一个有利的实施例中,衬垫具有用于容纳圆柱形管的外部几何形状,使得圆柱形管能够与衬垫主动接合。特别地,如果这种主动接合发生在从压力容器的圆柱形部分到杆帽的过渡处,特别是如果杆帽具有杆帽增强件,则可以避免在冷填充期间的问题。如果仅在压力容器的一侧发生主动接合,则可以将圆柱形管从另一侧推到衬垫上。如果衬垫的外部几何形状具有圆柱形管可以靠在其上的凹槽,即,如果在衬垫的两侧上发生主动接合,则圆柱形管可以通过收缩过程而连接到衬垫。
21.通常,凸台,衬垫和圆柱形管形成一个表面。然后通过卷绕在一起来覆盖这三个部件。在一个实施例中,圆柱形管可以与金属凸台直接接触。然后,塑料衬垫将不与增强卷绕物直接接触。在另一个有利的实施例中,在压力容器坯件被卷绕物覆盖之前,在衬垫的至少一个杆区上施加杆帽增强件。与压力容器坯件一样,杆帽增强件也可以单独制造,便于杆帽增强件的制造,从而获得最佳的增强效果。在这种情况下,圆柱形管通常不与金属凸台直接接触。
22.在另一个有利的实施例中,圆柱形管被按压到衬垫上。通过这种方法,可以将单独制造的圆柱形管连接到具有底切的衬垫上,该底切可以与圆柱形管主动接合。此外,按压允许在衬垫和圆柱形管之间建立偏置连接,这在压力容器的操作中可能在衬垫和圆柱形管之间形成间隙方面是有利的。按压可以机械地进行,例如通过对衬垫的内部施加部分真空。这导致衬垫直径的暂时收缩。管现在可以在衬垫上滑动。当去除部分真空时,衬垫抵靠管内部膨胀。
23.在另一个有利的实施例中,圆柱形管与衬垫热连接。为此目的,衬垫可以基本上被冷却和/或圆柱形管可以在连接之前被加热。通过冷却,衬垫收缩,即,其直径减小。在可选的方法中,圆柱形管的直径在加热过程中增加。当连接后的温度均衡时,产生收缩接头。
24.在另一个有利的实施例中,圆柱形管粘结到衬垫上。以这种方式,除了收缩接头之外,可以产生整体连接,这可以最小化或者甚至完全防止在压力容器的操作期间在衬垫和圆柱形管之间形成间隙。
25.对于粘合剂粘结,已经证明有利的是,在粘结之前,圆柱形管的内圆周至少部分地被预处理。这可以例如通过化学预处理或机械预处理来实现。例如,圆柱形管的内圆周可以通过研磨方法被粗糙化。以这种方式,圆柱形管的内圆周的表面增加,这有助于实现更强的粘合剂粘结。这种处理的另一个例子是用激光进行处理。
26.此外,可以构造内圆周的表面。这种措施可以帮助带走可能进入衬垫和圆柱形管之间的任何气体,从而避免衬垫弯曲。
27.圆柱形管的内圆周的处理仅通过其单独的制造是可能的。
28.本发明还涉及一种用上述方法制造的压力容器。
29.上面列出的实施例可以单独或以任何组合使用,以实现根据本发明的设备,这与权利要求中的参考文献不同。
附图说明
30.本发明的这些和其它方面在以下附图中详细示出。
31.图1:通过根据本发明的压力容器的一部分的横截面,
32.图2:通过根据本发明的另一压力容器的一部分的横截面。
具体实施方式
33.图1示出了根据本发明的压力容器的一部分的横截面。特别地,该图显示了通过根据本发明的压力容器的壁的截面。在其外部,压力容器壁具有由纤维复合材料构成的绕线1。绕线1被施加在压力容器坯件上,该压力容器坯件包括圆柱形管2和作为内层的衬垫。圆柱形管2位于压力容器的圆柱形中心部分6的区域中。衬垫3具有用于容纳圆柱形管2的外部几何形状,使得圆柱形管2与衬垫3主动接合。该主动接合位于从压力容器的圆柱形中心部分6到杆帽区域7的过渡处。衬垫3的外部几何形状具有凹槽,圆柱形管2靠在该凹槽上。该主动接合可以例如在轴向和/或径向上起作用。
34.图2示出了通过根据本发明的不同压力容器的一部分的横截面。压力容器在杆帽区域7中具有杆帽增强件4,在绕线被施加在压力容器坯件上之前,该杆帽增强件4被施加在杆帽区域7上。与压力容器坯件一样,杆帽增强件4也可以单独制造,便于杆帽增强件4的制造,并允许杆帽增强件4的制造,从而获得最佳的增强效果。连接件5(也称为凸台)插入到杆帽增强件4和绕线1中,该连接件5用于填充压力容器和用于去除所含物,例如气体。凸台5以衬垫缠绕在其周围的方式被插入压力容器。在图2所示的实施例中,衬垫3没有用于容纳圆柱形管2的特殊外部几何形状,而是具有没有任何底切的圆柱形外部几何形状的标准衬垫。
35.这里所示的实施例仅仅是本发明的示例,因此不应被理解为限制。本领域技术人员所考虑的替代实施例同样包括在本发明的保护范围内。
36.参考数字列表
37.1绕线
38.2圆柱形管
39.34类衬垫
40.4杆帽增强件
41.5凸台
42.6圆柱形中心部分
43.7杆帽区域
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1