用于微束形成器的发射变迹控制的制作方法

文档序号:6090263阅读:223来源:国知局
专利名称:用于微束形成器的发射变迹控制的制作方法
技术领域
本发明通常涉及用于医学成像的超声换能器,并且更具体地涉及用于超声换能器中的变迹(apodization)控制的系统,也就是用于控制特别在子阵列波束形成的情境中的超声换能器的发射波束的形状。
子阵列波束形成或微束形成(microbeamforming)包括对分组成各子阵列的超声换能器的发射和/或接收阵列的使用。在此引用以作参考的美国专利No.5,997,479描述了一种微束形成的应用,其中多个换能器元件被分组成几个发射子阵列,并且接收阵列包括被分组成几个接收子阵列的多个换能器元件。‘479专利的图2也示出了连接至发射子阵列的几个组内发射处理器,并且其产生被导引进入感兴趣的区域的发射声束,并且几个组内发射处理器连接至接收子阵列。每一个组内接收处理器被设置成从所连接的子阵列的换能器元件接收响应于来自发射声束的回波的换能器信号。每一个组内接收处理器包括延迟及求和所接收的换能器信号的延迟及求和元件。接收波束形成器包括连接至组内接收处理器的几个处理通道,并且每一处理通道包括一个波束形成器延迟和一个波束形成器加法器,该波束形成器延迟通过延迟从所述组内接收处理器接收的信号合成来自回波的接收波束,该波束形成器加法器接收并求和来自所述处理通道的信号。
此外,在此引用以作参考的美国专利No.6,013,032描述了另一种微束形成器,其中换能器阵列的每一个子阵列连接至一个子阵列波束形成器,每一个子阵列波束形成器包括一个子阵列处理器和一个连接至该子阵列处理器的输出端的相移网络(见图2及其说明)。一个基本的波束形成器包括一个求和各波束形成器通道的输出的求和单元,其中各子阵列波束形成器的输出被提供至所述各波束形成器通道,从而提供一个表示沿着期望的扫描线接收的超声能量的波束形成器信号。
在下文中通常使用的术语“微束形成器”描述了集成于换能器的手柄中的子阵列波束形成器,从而便利于连接至被排列在2D阵列中的非常大量的压电传感器元件。当与主机架波束形成器和后端显示子系统相结合地使用时,这种结构允许实时体成像。替代将子阵列波束形成器的电子装置集成入换能器的手柄中的情况,所述电子装置可被设置于主机架中。术语“微束形成”也可被应用于1D阵列。
在微束形成中,对发射波述的形状的控制是多线成像换能器的成功实施的一个重要方面,特别是对于实时体采集,其中需要高阶多线成像以达到充分的体采集率。对发射波束的形状的控制是可能的,因为在当前超声换能器中,换能器阵列中的每一元件典型地连接至控制电子装置,从而每一元件都是单独可控制的。
此外,在微束形成和包括换能器阵列的其它波束形成应用中,仅仅换能器阵列中元件总量的一部分是在任何时候可操作的。这被称作控制换能器阵列的孔径。换能器阵列的孔径指的是在任何时刻处于工作状态的换能器元件的结构。换能器中的每一元件的电子控制允许对发射和接收信号进行整形和延迟,以提供用于所执行的成像的类型的合适信号。
参照图8,常常利用多个微束形成器贴片(patch)100构造微束形成器,每一微束形成器贴片(或子阵列)100包括至少一个(通常是多个)微束形成器通道102。每一微束形成器通道102连接至一个换能器106,并且包括一个用于驱动换能器106的微束形成器发射器104和一个用于接收来自该换能器的信号的微束形成器接收器108。优选地,也配备一个延迟110以延迟所接收的换能器信号,并且配备一个控制电路122以激励发射器104。关于微束形成器通道的工作方式的附加细节可以在上面讨论的专利中找到。因此,微束形成器具有用于每一微束形成器通道102的单独发射器,以提供波束导引和聚焦控制。虽然在主机架112上典型地配备附加的发射器时,但是这些主机架发射器不用于驱动换能器106。此外,在主机架112上的接收器116和微束形成器贴片102之间连接同轴电缆114,以使同轴电缆114仅用于接收路径而不用于发射路径。单个电源118经由同轴电缆120耦合至全部微束形成器贴片100。
在如图8中示出的微束形成器中,已知通过控制定时和提供至一些或全部微束形成器通道(通常被称作“发射波束形成”)的发射能量,可以对发送进入被检查对象的超声询问脉冲进行整形,以便例如在不同深度下提供高分辨率。类似地,通过电子地改变接收权重和延迟(称作“接收波束形成”),所接收的能量可以被用于形成不同深度下的高质量图像。
已知用于控制换能器元件的一种方式为变迹。超声换能器孔径的变迹是从孔径的中心至孔径的边缘逐渐减小发射幅度和/或接收增益,最终使波束旁瓣电平得到减小。
实践中,应用不同的变迹方法。例如已知利用具有在整个有效孔径上改变的电源电压的方波脉冲,并且也已知利用波整形发射器来应用每通道的变迹。通过功率管理部件或各个发射器中的附加的复杂度来获得所述能力。
当设计用于实时3D的微束形成器时,空间是非常珍贵的,因为必须将微束形成器集成电路(IC)装入换能器的手柄。此外,由于对微束形成器电子装置的冷却方面的困难,必须限制功率耗散。如此,微束形成器中的发射器应当尽可能简单和基础的结构,并且应当避免对发射器进行复杂的修改以提供变迹。
现有技术系统中的微束形成器IC利用单极脉冲器,其在每元件的基础上提供两个变迹电平,即开或者关。该系统大都存在显著缺陷变迹是受限制的,并常常不能提供充分的波束旁瓣控制。因此,提供用于从微束形成器进行发射的新的变迹控制技术是有利的,所述微束形成器将允许充分的波束旁瓣控制,而不显著复杂化必须置于换能器手柄中的电路。
为了控制由换能器产生的声学信号,利用具有改变的持续时间和占空比的简单方波(矩形波串)类型的电压激励信号,一些现有技术的超声成像系统驱动换能器中的阵列元件。现有技术已知如何在给出固定或可变的主机架电源的情况下产生这些电压激励信号。常常改变电压或脉冲宽度,以试图改变声学信号的幅度。改变驱动电压改变了可被提供来驱动换能器的总功率,而改变驱动电压的脉冲宽度改变了换能器共振的方式,并且不同的声学信号幅度是可能的。为了整个阵列的变迹,在每一换能器上具有不同驱动电压的工作效果良好。然而,对于那些被命令输出低电压的驱动器,驱动器电路自身耗散了大量的能量,因为输出电压和系统高电压总线可能会是非常不同的。对于微束形成器,这种低效率是不能容忍的(因为相关的探头加热),因此提供一种允许不同的输出电压脉冲的有效驱动技术将是有利的。
为了产生到换能器的方波电压脉冲,发射器需要充当大量电流的电流源(source)或电流宿(sink),以便对与该换能器相关的电容进行充电。不幸的是,通过上拉和下拉MOSFET装置的电流直接与它们的宽度成比例,因此需要非常大(宽)的装置来充当大电流的电流源或电流宿。由于在微束形成器中空间是非常珍贵的,因此开发一种不需要大驱动器电流、从而可以使用较小装置的脉冲技术将是有利的。
换能器设计的现有技术中已知提供至换能器的电流与该换能器的表面的速度成比例,并因此与在发射到其中的介质中产生的压力(声学幅度)成比例。为改变整个阵列的变迹,可以利用换能器驱动电流的该灵敏性,同时保持微束形成器的相对小的尺寸。
本发明的一个目的是提供一种用于对由微束形成器驱动的超声换能器阵列进行变迹控制的新系统。
本发明的另一目的是利用与多个脉冲器电源电压相结合的上拉/下拉装置,提供一种用于对由微束形成器驱动的超声换能器阵列进行变迹控制的新的系统。
本发明的另一目的是利用用于驱动超声换能器的多个可开关电流源来提供变迹控制。
本发明的又一目的是利用在改变的时间量内驱动超声换能器的一个或多个可开关电流源来提供变迹控制。
为了实现这些目标和其它目标,依据本发明的用于微束形成器的变迹控制的系统包括被分组或配置成多个微束形成器贴片的多个微束形成器通道,每一微束形成器通道包括到换能器的连接、用于激励换能器的微束形成器发射控制和驱动器电路、用于接收换能器信号的微束形成器接收器和通常用于延迟所接收的换能器信号的延迟。每一贴片中的各微束形成器发射器连接至一个公共电源节点,但具有单独的定时控制电路。主机架波束形成器具有多个主机架通道,每一主机架通道包括主机架接收器和用于发射脉冲电压的主机架发射器。每一微束形成器贴片连接至各自的主机架通道,例如通过连接至贴片的公共节点的电缆,从而使主机架接收器输入来自微束形成器接收器数据路径的贴片的信号。
存在用于实现本发明的目标的几种不同的方法,并且其中包括提供到各微束形成器贴片的各唯一电源电压连接,或者提供各唯一驱动器电子装置,以控制驱动到/驱动自每一相关换能器的电流。第一技术利用主机架发射驱动器来为每一贴片提供不同的高压电源,所述高压电源然后被用于将该贴片中的各单独换能器驱动至不同的电压。第二技术在主机架中配置连接至一个或多个微束形成器贴片的多个可变高压电源(与主机架发射驱动器分离或除主机架发射驱动器之外)。第三技术利用一个用于全部微束形成器贴片的单个固定高压电源,但提供每贴片或每换能器的不同的电流驱动输出,以控制所发射的声学波形的幅度。最后,第四技术利用一个用于全部微束形成器贴片的单个固定高压电源和单个电流驱动输出,但是向各换能器声明(assert)的电流的时间的长度是可变的,以将变化的电功率量积蓄至换能器,从而激励不同的声学幅度。可以单独地或在各种组合中使用和实施这些技术,以实现具有各种驱动能力的多种不同微束形成器发射器结构。为提供对超声换能器阵列的变迹控制,每一技术完成了本发明的目标,下面将对这些内容进行概括。
用于对微束形成器阵列应用变迹的第一技术利用主机架波束形成器中的各主机架发射驱动器向每一贴片提供不同的高压电源,所述高压电源然后被用于驱动各单独的换能器。每一微束形成器通道中的定时控制电路确定该贴片中的相关的微束形成器发射器在什么时候激励换能器。在该结构中可以任意改变主机架发射器通道电压,并因此可以任意改变贴片电源电压,因为主机架发射器被设计成提供一个宽范围的输出电压。可将每一主机架通道中的发射器设置成由微束形成器发射器在每一发射脉冲串的持续时间内发射单极脉冲,以使由各微束形成器发射器驱动的脉冲具有等于来自该主机架通道的单极脉冲的幅度。以该方式,各主机架发射器变成用于该微束形成器中的各发射器的贴片的可变电源。
该第一技术的复杂细节包括发射事件与接收事件的分离,发射事件固有地是高电压,而接收事件固有地是低电压。具体而言,为了避免发射器噪声污染接收数据路径,在各微束形成器发射器和电缆之间配备二极管,并在电缆和各主机架发射器之间配备二极管。此外,为了在发射器操作时保护接收器,可以在从各微束形成器接收器的输出路径和主机架接收器的输入路径中配备诸如开关的保护装置。
通过经由主机架发射器向每一贴片提供一个独立电源电压,每一贴片可以发射不同幅度的波形,并从而提供对发射波束的增强整形。
在本发明的另一实施例中,所述贴片被分组为多个群集(cluster),每一群集优选地包括多个贴片。通过多个单独可调节的电源(或主机架发射器)从主机架向各微束形成器发射器供电,并且每一群集连接至对应的电源,比如通过电缆。施加至每一群集的电源电压是独立可调节或独立可设置的,例如对于每一脉冲重复间隔调节或设置到不同的电压。
尽管不通过上面实施例中的专用电源向每一微束形成器贴片中的各发射器供电,但是通过一个公共电源并通过将各微束形成器贴片适当地分配到各群集来向各微束形成器贴片的群集供电,从而可以有效并有利地控制发射波束的形状。在不显著增加向不同贴片发射器供电所需要的电缆数量的情况下消除二极管和开关是本实施例的首要优点。
该实施例的一个直接明了的扩展是在各微束形成器发射器中包括高压开关(或其它开关装置),其可以从少量的主机架供电的高压功率轨中作出选择。也就是说,不是将各贴片或微束形成器通道群集在一起以共享一个公共高压电源,而是每一微束形成器通道可以包括一个或多个高压开关,以从少量的功率轨中选择。可以在逐通道的基础上选择要使用哪个功率轨、从而选择所施加的驱动电压,并且对于每一脉冲重复间隔可以作出不同的选择。
在本发明的第三实施例中,可以特别设计各微束形成器发射驱动器,以便利用一个可变电流源(而不是电压源)来驱动特定的换能器。与必须能够驱动多种不同类型换能器的主机架发射器不同,可以为了最佳地、有效地驱动特定换能器而设计各微束形成器发射器。如此,可以使用每一微束形成器发射器中的多个可开关的电流源和电流宿来驱动该换能器,其中较高的电流激励较大的声学幅度,并且较小的电流激励来自换能器的较小的声学幅度。利用为全部微束形成器通道所共有的单个高压电源可以实现这些变迹技术。此外,通过选择特定源电流和宿电流而进行的变迹控制可以容易地在每个微束形成器通道下实现,而不是被分组成贴片或者贴片群集。
本发明的该实施例包括多个可开关的电流源,每一个所述电流源包括串联开关和上拉装置以及多个可开关的电流宿,每一电流宿包括串联开关和上拉装置。可开关的电流源和电流宿的这种结构对本领域的熟练技术人员已知为电流模式数字-模拟转换器(DAC)。前述上拉装置可以是PMOSFET(也称为PMOS)装置,所述PMOSFET装置被偏置,以提供从高压电源至换能器的恒定电流。所述PMOSFET装置也可以被偏置关断,从而充当开关,或者可以串联配置一个单独的PMOSFET装置,以实现开关功能。类似地,下拉装置可以是NMOSFET(也称为NMOS)装置,所述NMOSFET装置被偏置,以提供从换能器至地(或负电源)的恒定电流。所述NMOSFET装置也可以被偏置关断,从而充当开关,或者可以串联配置一个单独的NMOSFET装置,以实现开关功能。
本领域的熟练技术人员已知PMOS和NMOS装置的电流承载能力与它们的宽度成比例,并且也是所施加的栅极偏置的函数。因此,在本实施例中,微束形成器发射器将优选地包括少量的PMOS和NMOS装置,所述少量的PMOS和NMOS装置可被选择性地启用(通过它们的栅极偏置),以向每一换能器或者从每一换能器提供不同的驱动电流。为了最大的效率,上拉和下拉装置可以不同时传导电流,然而不同的、不那么高效的操作模式也是可能的。
在本发明的优选实施例的正常操作过程中,启用PMOS装置的一个所选择的子集,以便驱动换能器。可以单独地在每一微束形成器通道上控制被启用的装置的数量,从而控制可用驱动电流。优选地,启用PMOS装置的持续时间近似地是将要激励的声学信号的波长的四分之一。随后,NMOS装置的所选择的子集将被启用,以对换能器进行放电,其持续时间近似等于所激励的声学信号的波长的四分之一。然而需要注意,如果所选择的上拉和下拉电流不是相等的,则上拉和下拉事件的持续时间可能不是相等的。在换能器上产生的电压是所施加的驱动电流和换能器电容的函数,但它通常将斜升至某一电压,随后斜降。由驱动器电流和换能器电容限定这些斜坡的斜率。
本发明的该实施例的关键部分是在上拉和下拉事件过程中,驱动电流是可编程的,但这些事件的持续时间是固定的(对于特定的期望的声学频率)。也就是说,为了实现在整个阵列上的不同变迹电平,每一微束形成器通道可以在指定的上拉和下拉持续时间内驱动不同的电流,所述指定的上拉和下拉持续时间在全部通道中是公共的。各通道驱动换能器的时刻取决于期望的延迟,并且被驱动至各换能器的所选择的电流取决于期望的变迹。
对上面的实施例的一个直接明了的扩展是提供本发明的又一个实施例,其中在每一微束形成器通道上配置一个上拉装置和一个下拉装置,以便在根据整个阵列上的期望变迹而改变的持续时间内驱动换能器。该脉冲宽度调制方法改变了启用上拉和下拉装置的时间量,并因此控制被输送至换能器的总功率。所得到的声学波形幅度将粗略地与所施加的电流脉冲的宽度成比例。
该实施例和先前的多电流实施例之间的关键差别是控制微束形成器发射器的方式。在多电流实施例中,变迹功能指定电流设置,但脉冲上升和脉冲下降序列在全部通道中是相同的(虽然所述序列的开始时间在各通道之间不同)。在该实施例中,变迹功能指定上升和下降事件的脉冲宽度,但上拉和下拉电流在全部通道中是相同的(同样,所述序列的开始时间在各通道之间不同)。明显地,在这些实施例之间存在定时控制复杂度方面的折衷,并且必须相对于高压电流源复杂度(尺寸)差别对此进行折衷。
对本领域的熟练技术人员显而易见的是,这些实施例当中的每一个构成了可以以各种不同配置相组合的新颖电源连接范例、高压驱动器电流设计和驱动器定时控制技术。取决于具体应用和实施约束条件,这些不同的实施例或其组合当中的一个可能是最佳的或理想的。可以理解,本发明覆盖了所述的各单独实施例及其任意组合。
参照与附图相结合的下面的描述可以更好地理解本发明及其进一步的目的和优点,其中相同的附图标记表示类似的元件,并且其中

图1是依据本发明利用变迹控制的超声换能器的微束形成器部分的第一实施例的示意图;图2是依据本发明利用变迹控制的超声换能器的微束形成器部分的第二实施例的示意图;图3是示出了依据本发明第二实施例将各微束形成器贴片分组成各群集的一种可能分组方式的图示;图4A是依据本发明的驱动电压控制电路的第一实施例的示意图4B是依据本发明的驱动电压控制电路的第二实施例的示意图;图5是依据本发明的第一驱动电流控制电路的示意图;图6是依据本发明的第二驱动电流控制电路的示意图;图7是依据本发明的第三驱动电流控制电路的示意图;以及图8是现有技术超声换能器的微束形成器部分的示意图。
下面描述用于超声换能器的微束形成器的变迹控制的几种技术。这些技术的共同目标是,通过调节被提供至每一换能器或被提供至微束形成器贴片中的多个换能器的驱动电压或驱动电流来提高对发射波束进行整形的能力。可以独立使用这些技术,或者在可能的程度下彼此组合地使用这些技术。
在用于如图1所示的微束形成器的变迹控制的系统的第一实施例中,被提供至每一微束形成器贴片的电压是可调节的。超声成像系统的主机架波束形成器10包括多个主机架通道12,每一主机架通道12包括一个主机架发射器14和一个主机架接收器16。同轴电缆18将每一主机架通道12连接至对应的子阵列波束形成器(在此也称为微束形成器贴片20)。每一贴片20包括多个微束形成器通道22,每一个所述微束形成器通道包括一个微束形成器发射器24、一个发射器定时控制电路24A、一个由来自该微束形成器发射器24的信号驱动的换能器26、一个接收来自该换能器26的信号的微束形成器接收器28和一个延迟元件30A。取代同轴电缆18,可以使用如本领域已知的其它电缆和电连接部件。也常常为微束形成器发射器24配备一个延迟元件30B。
每一主机架发射器14经由电缆18提供电源电压至对应的贴片20。因此,主机架发射器14和主机架接收器16都经由节点32连接至电缆18。通过耦合每一个主机架发射器14至对应的贴片20,一个单独可调节的电压可被提供至每一贴片20的微束形成器通道22中的各微束形成器发射器24,从而允许对每一贴片20中的各微束形成器通道22进行控制,并且提供对由每一贴片20中的换能器26产生的发射波束的任何期望的整形。
在操作中,至少在每一发射脉冲串的持续时间内,由主机架发射器14发射单极脉冲至微束形成器贴片20,更具体地说是发射至每一微束形成器贴片20中的各微束形成器发射器24。由每一微束形成器贴片20中的各微束形成器发射器24间歇地施加该单极脉冲的电压,以产生到每一微束形成器贴片20中的各换能器26的单极脉冲。在每一个微束形成器通道22内唯一地并且单独地控制各微束形成器发射器24将换能器26驱动至高或低的时刻以及出现多少这种脉冲,但通过由主机架发射器14所施加的电压来设置所述脉冲的幅度,该电压对于一个贴片内的全部微束形成器发射器24来说是相同的。因此,主机架发射器14和微束形成器发射器24都有助于用于换能器26的驱动信号。
在主机架通道12和微束形成器贴片20中,与发射器电源分支串联地添加二极管34,以在接收模式过程中使主机架发射器14和微束形成器发射器24与信号路径隔离。尽管如图1中所示,在每一微束形成器贴片20中设置一组二极管34,以在接收模式过程中使该微束形成器贴片中的全部微束形成器发射器24与信号路径隔离,但是可替代地,可以使用几组二极管。在主机架发射器14和节点32之间的每一主机架通道12中设置第二组二极管34。取代二极管34,如本领域的熟练技术人员已知的那样,可以使用其它隔离装置。
在主机架通道12和贴片20中,在接收器分支中配备开关36,以添加对主机架接收器16的输入和微束形成器接收器28的输出的高压保护,从而使它们可以经得起发射事件。尽管如图1中所示,在每一贴片20中的每一微束形成器通道22中设置一个开关36,在贴片20中可以使用多开关的替代设置,只要将高压保护添加至微束形成器接收器28的输出即可。
依据本发明的用于变迹控制的系统的另一实施例具有比在图1中示出的实施例更简单的结构,其中它不需要附加的二极管和接收器输入/输出保护(例如开关)。尽管二极管的设置和接收器输出保护提供了优于现有技术变迹控制技术的优点,但它添加了附件部件和控制复杂度。
现在参照图2,该实施例不提供用于每一贴片20的单独变迹,而是提供用于贴片20的多个离散组或群集38A、38B(在图2中仅示出其两个)的独立变迹。在该实施例中,贴片20被分组成多个群集38A、38B,至少其中一个(并且可能是全部群集38A、38B)具有多个贴片20。每一群集38A、38B具有电源电压40A、40B,所述电源电压40A、40B使得群集38A中的各贴片20的发射电压能够独立于其它群集38B中的各贴片20的发射电压。在图2中,为了简化,在每一贴片20中仅示出一个微束形成器通道22,但可以理解,每一贴片20包括多个微束形成器通道22(例如如图1中所示)。
同轴电缆42将每一电源电压40A、40B连接至对应群集38A、38B的节点44,该节点被硬布线至该群集中的每一贴片20的各微束形成器发射器24。取代同轴电缆42,可以使用其它电缆或电连接部件。
该实施例影响了微束形成器IC体系结构,其必须被设计成提供多个单独电源至管芯(但仅提供一个至每一贴片),并以提供有用变迹的方式设置各单独电源。例如,图3描述了用于将各贴片20分配到群集38的可能设置,其中使用16个管芯以用于形成集成电路46、48(双线描绘了16个IC之间的边界)。128个贴片20被分组成8个群集38(通过编号)。中心两行中的四个IC 46利用全部八个电源,而其它IC 48利用较少的电源。然而,如果用于每一贴片20的电源电压在这种情况下可作为输入引脚/焊盘而获得,则IC 46、48仍可以是相同的,可以在IC 46、48之间的互联级别下以及在更容易定制的电缆线路下将电源电压分配给每一贴片20。因此,在该实施例中,多个专用电源被硬布线至群集38,每一个所述群集包括至少一个(并优选是多个)贴片20。
在主机架中提供的电源电压40A、40B可以是用于提供可调节功率至微束形成器发射器24的任何已知结构。
依据本发明的用于变迹控制的系统的另一实施例具有被提供至每一微束形成器发射器的少量高压轨(例如两个)。当发射器驱动相关的换能器时,可以命令该发射器在这些电源之间进行选择。如图4A所示,两个HV轨88、90连接至单个PMOS上拉装置或晶体管92A。HV轨88(表示为HV1)具有比HV轨90(表示为HV2)更高的电压。在HV轨88和上拉装置92A之间插入高压开关94,同时在HV轨90和上拉装置92A之间插入二极管96。上拉装置92A在节点98处连接至换能器26。下拉装置或晶体管92B连接至节点98,以对换能器26进行放电。
通过将HV2设置在一个低于HV1的电压处,可以在每元件(或每贴片)的基础上通过激活该单个开关94来选择任一电压源,以便产生具有由所选择的任一电压源设置的幅度的单极脉冲。在一个可能的操作实施例中,发射孔径的外围附近的各换能器26将具有所选择的较低的HV2电源。二极管96也可以是类似于开关94的开关,但需要附加电路以接通该装置。通过包括与开关94并联的附加的开关和相关电源,可以支持多于两个的HV电源。
取代将两个HV轨连接至单个上拉装置(如图4A所示,其中一个经由开关,另一个经由二极管),对于每一HV轨88、90可以使用单独的上拉装置92A,如图4B所示。上拉装置92A在该实施例中充当开关,因此不需要单独的开关(图4A中的元件94)。
在将电压提供至各微束形成器发射器24的全部情况中,可以应用如图4A所公开的技术,其利用上拉装置提供多个电压源和各电压源之间的开关。因此,可以与参照图1至3在上面所讨论的电源群集技术一起使用该技术。例如,可以对每一贴片提供两个或多个HV轨电源,以允许在各HV电源之间切换被提供给该贴片的电压。以这种方式,可以在逐贴片的基础上将任何电源电压用于特定的发射孔径。此外,可以提供多个HV轨电源至单个贴片20中的每一微束形成器发射器24,从而可以在逐换能器26的基础上将任何电源电压用于特定的发射孔径。
在本发明的一些实施例中,为了调节到换能器26的驱动信号,除了或取代调节到各微束形成器发射器24的电压,可以调节由各微束形成器发射器24提供的驱动电流。在传统的微束形成器中,仅调节由各微束形成器发射器24提供的电压。然而,通过利用驱动电流模型,利用了换能器26对电流的敏感性。也就是说,不是只利用电压激励(具有无限制的电流)来驱动换能器26,而是在所涉及的电压能被换能器26允许的程度下利用电流来驱动换能器26。以这种方式,可以形成非常小的驱动器电路,并且可以将其集成到紧近换能器26设置的IC中。在这种高度集成的微束形成器中,不需要在驱动电路和将要被充电和放电的换能器26之间插入大电缆,从而进一步提高了依据本发明的微束形成器的效率。
用于本发明的驱动电流电路通常包括可开关的电流源和电流宿,其允许被提供至换能器26的电流出现变化。由于进入换能器26或从换能器26出来的电流粗略地对应于声速,所以通过改变驱动电流可以合成不同的声学信号。
在图5中示出电流控制的超声微束形成器发射器24的第一实施例,并且其包括一个具有多个可开关电流源的数字-模拟转换器(DAC)单元50,每一个所述电流源包括在一端连接至输入电压的上拉装置52和连接至该上拉装置52的另一端的对应开关54。各开关54经由输出节点56连接至换能器26。换能器26是大体上是电容性的,因此通过电容器58表示。以二元方式控制各开关54,以便提供高达8个不同的电流输出,当各电流输出通过上拉装置52时,在输出节点56处提供8个不同的电流。
鉴于换能器26的电容,如果启用任何上拉装置52,则在负载两端产生的电压持续增长。为了对电容器58进行放电,提供多个可开关的电流宿,每一电流宿包括下拉装置60和对应的开关62。控制所述电流宿,以提供高达8个不同的放电电流。为了最佳的效率,有利地是不允许上拉装置52和下拉装置60同时被启用。输出节点56处的电压是转移到电容器58的板上并从其上转移走的累积电荷的函数,并因此其是电流52和60以及启用这些装置以驱动节点56的持续时间的函数。
上拉装置52和下拉装置60可以是在饱和状态下工作的高压MOSFET装置。通过“ON(接通)”的MOSFET的电流与它的宽度成比例。如此,为了实现DAC单元50,需要三个高压PMOSFET上拉装置52,其优选地具有不同的宽度,例如具有宽度1x、2x和4x,并且需要三个具有相应宽度(1x、2x和4x)的NMOSFET下拉装置60。可替代地,与公共栅极连接并联的多个上拉或下拉装置可以用于提供这些不同的驱动电流。对本领域的熟练技术人员来说,控制MOSFET装置52、60的栅极的方式和可以获得类似的上拉和下拉电流的方式将是容易确定的。对本领域的熟练技术人员来说同样显而易见的是,如果电流源/电流宿MOSFET装置52、60的栅极本身被驱动以禁止电流流向节点56或从节点56流出,则可以去除串联开关54、62。本领域的熟练技术人员已知的其它上拉和下拉装置(例如双极型晶体管)也可以用于DAC单元50。
应用驱动电流控制电路的DAC单元50的前述结构对于控制超声换能器(特别是微束形成器换能器)特别有利,因为DAC单元50比可比较的电压控制电路(其需要大的源/宿电流)占据较小的尺寸,并具有更合适的功率限制。另一优点是,由于不存在驱动器和微束形成器换能器之间的调谐网络或电缆电容(在标准的电缆连接的换能器中有),所以声学响应是更可预测的。
驱动电流控制电路的另一个修改是基于这样的认识提供至各换能器26的总功率、并因此被发射进入主体的总功率不仅是驱动电流的函数,而且是时间的函数。因此,可以使用高压DAC单元(比如参照图5在上面所述的DAC单元50),其利用脉冲宽度调制控制来产生不同的发射波形。也可以将脉冲宽度调制概念与单个电流源/电流宿对一起使用,其中声明这些电流的时间可以控制输出声学幅度。
图6示出了应用脉冲宽度调制的DAC单元70。DAC单元70包括单个上拉装置72和单个下拉装置74,每一个所述装置被提供有恒定的电流,并且被启用不同的时间量。这为连接至输出节点76的换能器提供了可以合成不同波形幅度或形状的不同电流脉冲。
提供了一个控制计算机或处理器78,以便指定对应于控制变化的事件或者对应于成像处理的每一线和帧的事件,并且也可以任选地产生这种事件。控制计算机78将所需要的事件命令引导至定时发生器80,并可选地引导至各主机架发射器。各主机架发射器可以经由电源轨以及在上面所述的任何结构中提供全功率波形至DAC单元70。所述超声成像系统也可以包括用于为提供本领域已知的期望发射波形而产生事件命令的其它部件。
定时发生器80确定每一个脉冲串中的脉冲数量、脉冲群频率、脉冲宽度和延迟(用于聚焦),并产生合适的定时信号,所述定时信号将使得DAC单元70在接收到该定时信号后从电源产生期望的波形。
更具体地说,定时发生器80产生一个用于开关82、84的定时信号或脉冲宽度调制信号。开关82接通或关断的程度(也就是开关82接通的时间)确定来自上拉装置72的电流脉冲的宽度。开关84接通或关断的程度(也就是开关84接通的时间)确定通过下拉装置74到地的电流脉冲的宽度。
所示出DAC单元70具有单个上拉装置72和单个下拉装置74。如图7所示,也可以构造具有多个上拉和下拉装置的DAC单元86,以便提供多个不同的电流。因此,如果MOSFET装置被用作上拉装置72和下拉装置74,则各MOSFET装置的宽度是不同的,例如所示出的x、2x。以这种方式,通过打开和闭合开关82、84的不同组合提供不同的电流。
当上拉和下拉装置72、74驱动换能器时,这些装置72、74的定时的控制是复杂的,但可被本领域的熟练技术人员确定。电容性负载应当被从一个通道至下一通道适当地控制,从而可以获得一致的声学输出。
当在微束形成器发射器24的输出处产生的电压没有达到高压电源轨(HV轨)时,参照图4-6在上面讨论的电流模式定标/变迹技术是适当的。当输出电压逼近HV轨的电压时,PMOSFET上拉装置72脱离饱和状态,并当HV轨等于换能器26上的电压时,最终停止传导电流。因此,这是一个缺陷当换能器电压一直充电到HV轨时,电流调制和电流脉冲宽度调制技术是无效的。然而,为了最大化声学功率输出,尽可能地充电到接近HV轨是期望的。由于在驱动器电流和实际元件负载中固有地存在一些不确定性,所以获得最大输出声学功率、同时仍然具有对发射波形的良好控制是非常困难的。
参照图5-7在上面讨论的电流模式技术对元件负载和导致操作缺陷的驱动器可变性是敏感的,因此不适用于全部应用。为了克服这些缺陷,在图1-4中较早提出的电源(电压源)控制技术也可以与上面讨论的电流模式技术相结合地使用。例如,图4A中的双HV轨电路中的上拉装置92A和下拉装置92B可以实现图7中的电流源72和74。可以利用合适的经脉冲宽度调制的信号驱动以图4中的UP(上)和DOWN(下)标注的上拉装置92A和下拉装置92B的栅极,从而在特定持续时间内为换能器26提供固定的源电流和宿电流。如果脉冲持续时间对于将输出节点98驱动到所选择的HV轨(88或90)而言不足够长,则可以使用脉冲宽度调制技术。另一方面,如果脉冲持续时间对于将输出节点98完全充电到所选择的HV轨而言足够长,则可以使用电压源技术(群集等)。
尽管参照附图于此描述了本发明的各说明性实施例,但是可以理解,本发明不局限于这些精确的实施例,在不脱离本发明的范围和精神的情况下,本领域的熟练技术人员可以实现各种其它变化和修改。
权利要求
1.一种用于微束形成器的变迹控制的系统,其包括一个主机架波束形成器,其具有多个主机架通道,每一个所述主机架通道包括一个主机架接收器和一个用于发射脉冲电源电压的主机架发射器;多个微束形成器贴片,每一个所述微束形成器贴片包括多个微束形成器通道,每一个所述微束形成器通道包括一个换能器、一个用于驱动所述换能器的微束形成器发射器和控制电路、一个用于接收来自所述换能器的信号的微束形成器接收器以及一个用于延迟所接收的换能器信号的延迟元件,所述微束形成器贴片的每一个中的所述微束形成器发射器连接至一个公共节点;多个单独的电连接器,每一个所述连接器将各个所述微束形成器贴片中的所述公共节点连接至对应的所述主机架通道,从而使所述对应的主机架通道中的所述主机架发射器经由所述连接器向所述微束形成器贴片中的全部所述微束形成器发射器提供脉冲电源电压;隔离装置,其用于当所述微束形成器接收器和所述主机架接收器处于操作状态时隔离所述微束形成器发射器和所述主机架发射器;以及保护装置,其用于当所述微束形成器发射器和所述主机架发射器处于操作状态时保护所述微束形成器接收器和所述主机架接收器。
2.权利要求1的系统,其中在每一个所述连接器和对应的一个所述主机架通道中的所述主机架发射器之间以及在每一个所述连接器和对应的一个所述微束形成器贴片的所述公共节点之间设置所述隔离装置。
3.权利要求1的系统,其中所述隔离装置包括二极管。
4.权利要求1的系统,其中在每一个所述连接器和对应的一个所述主机架通道中的所述主机架接收器之间以及在每一个所述连接器和每一个所述微束形成器通道中的所述微束形成器接收器之间设置所述保护装置。
5.权利要求1的系统,其中所述保护装置包括开关。
6.权利要求1的系统,其中所述连接器包括电缆。
7.权利要求1的系统,其中将每一个所述主机架通道中的所述主机架发射器设置成通过对应的一个所述微束形成器贴片中的所述微束形成器发射器在每一个发射脉冲串的持续时间内发射单极脉冲。
8.权利要求7的系统,其中所述主机架发射器为对应的一个所述微束形成器贴片中的每个所述微束形成器发射器提供电源电压,并因此定义施加到对应的一个所述微束形成器贴片中的每个所述换能器的脉冲幅度。
9.权利要求8的系统,其中将所述主机架发射器设置成改变所发射的电压。
10.权利要求1的系统,其中至少一个所述微束形成器通道中的所述微束形成器发射器包括多个可开关的电流源,每一个所述电流源包括一个被设置成接收脉冲电源电压的上拉装置和一个被插入在所述上拉装置与所述微束形成器通道的所述换能器之间的开关;以及多个可开关的电流宿,每一个所述电流宿包括一个下拉装置和一个被插入在所述下拉装置与地之间的开关,所述下拉装置被设置成通过所述开关对所述换能器进行放电。
11.权利要求10的系统,其中所述上拉装置是在饱和状态下操作的PMOSFET装置,所述PMOSFET装置具有不同的宽度,并且提供与宽度成比例的电流。
12.权利要求10的系统,其中所述下拉装置是具有不同宽度并且提供与宽度成比例的电流的NMOSFET装置。
13.权利要求1的系统,其中至少一个所述微束形成器通道中的所述微束形成器发射器包括至少一个可开关的电流源,所述至少一个电流源当中的每一个包括一个被设置成接收脉冲电源电压的上拉装置和一个被插入在所述上拉装置与所述微束形成器通道的所述换能器之间的开关;至少一个可开关的电流宿,所述至少一个电流宿当中的每一个包括一个下拉装置和一个被插入在所述下拉装置与地之间的开关,所述下拉装置被设置成通过所述开关对所述换能器进行放电;以及控制装置,用于控制所述至少一个电流源和所述至少一个电流宿当中的每一个之内的所述开关,以便对由所述微束形成器发射器产生的发射波形进行脉冲宽度调制。
14.权利要求13的系统,其中所述控制装置包括一个用于产生信号以控制所述至少一个电流源和所述至少一个电流宿当中的每一个之内的所述开关的定时发生器,以及一个用于控制所述定时发生器的控制计算机。
15.权利要求13的系统,其中所述至少一个电流源包括多个电流源,所述电流源中的所述上拉装置是在饱和状态下操作的PMOSFET装置,所述PMOSFET装置具有不同的宽度并且提供与宽度成比例的电流。
16.权利要求15的系统,其中所述至少一个电流宿包括多个电流宿,所述电流宿中的所述下拉装置是在饱和状态下操作的NMOSFET装置,所述NMOSFET装置具有不同的宽度并且提供与宽度成比例的电流。
17.权利要求16的系统,其中所述控制装置包括一个用于产生信号以控制所述电流源和所述电流宿当中的每一个之内的所述开关的定时发生器,以及一个用于控制所述定时发生器的控制计算机。
18.一种用于微束形成器的变迹控制的系统,包括多个微束形成器贴片,每一个所述微束形成器贴片包括多个微束形成器通道,每一个所述微束形成器通道包括一个换能器、一个用于驱动所述换能器的微束形成器发射器和控制电路、一个用于接收来自所述换能器的信号的微束形成器接收器以及一个用于延迟所接收的换能器信号的延迟元件,所述微束形成器贴片被分组成多个群集,从而使每一个所述群集包括多个所述微束形成器贴片,每一个所述群集中的所述微束形成器发射器被连接至一个公共节点;一个主机架波束形成器,其具有多个单独可调节的电源和多个主机架通道,每一个所述通道包括一个主机架接收器;第一连接装置,其用于将每一个所述微束形成器贴片中的所述微束形成器接收器连接至对应的一个所述主机架通道;以及第二连接装置,其用于将每一个所述群集连接至对应的一个所述电源。
19.权利要求18的系统,其中所述第一和第二连接装置包括电缆。
20.权利要求18的系统,其中被施加至每一个所述群集的电源电压是独立可调节的。
21.权利要求20的系统,其中被施加至每一个所述群集的电源电压对于每一个脉冲重复间隔可以被调节到一个不同的电压。
22.权利要求18的系统,其中至少一个所述微束形成器通道中的所述微束形成器发射器包括多个可开关的电流源,每一个所述电流源包括一个被设置成接收脉冲电源电压的上拉装置和一个被插入在所述上拉装置与所述微束形成器通道的所述换能器之间的开关;以及多个可开关的电流宿,每一个所述电流宿包括一个下拉装置和一个被插入在所述下拉装置与地之间的开关,所述下拉装置被设置成通过所述开关对所述换能器进行放电。
23.权利要求22的系统,其中所述上拉装置是在饱和状态下操作的PMOSFET装置,所述PMOSFET装置具有不同的宽度并且提供与宽度成比例的电流。
24.权利要求22的系统,其中所述下拉装置是具有不同的宽度并且提供与宽度成比例的电流的NMOSFET装置。
25.一种微束形成器通道,包括一个换能器;一个被提供有电源电压以用于驱动所述换能器的微束形成器发射器;一个用于驱动该微束形成器发射器的控制电路;一个用于接收来自所述换能器的信号的微束形成器接收器;以及一个用于延迟所接收的换能器信号的延迟元件,所述微束形成器发射器包括多个可开关的电流源,每一个所述电流源包括一个被设置成接收脉冲电源电压的上拉装置和一个被插入在所述上拉装置与所述微束形成器通道的所述换能器之间的开关;以及多个可开关的电流宿,每一个所述电流宿包括一个下拉装置和一个被插入在所述下拉装置与地之间的开关,所述下拉装置被设置成通过所述开关对所述换能器进行放电。
26.权利要求25的系统,其中所述上拉装置是在饱和状态下操作的PMOSFET装置,所述PMOSFET装置具有不同的宽度并且提供与宽度成比例的电流。
27.权利要求25的系统,其中所述下拉装置是具有不同的宽度并且提供与宽度成比例的电流的NMOSFET装置。
28.一种微束形成器通道,其包括一个换能器;一个被提供有电源电压以用于驱动所述换能器的微束形成器发射器;一个用于驱动该微束形成器发射器的控制电路;一个用于接收来自所述换能器的信号的微束形成器接收器;以及一个用于延迟所接收的换能器信号的延迟元件,所述微束形成器发射器包括至少一个可开关的电流源,所述至少一个电流源当中的每一个包括一个被设置成接收脉冲电源电压的上拉装置和一个被插入在所述上拉装置与所述微束形成器通道的所述换能器之间的开关;至少一个可开关的电流宿,所述至少一个电流宿当中的每一个包括一个下拉装置和一个被插入在所述下拉装置与地之间的开关,所述下拉装置被设置成通过所述开关对所述换能器进行放电;以及控制装置,用于控制所述至少一个电流源和所述至少一个电流宿当中的每一个之内的所述开关,以便对由所述微束形成器发射器产生的发射波形进行脉冲宽度调制。
29.权利要求28的微束形成器通道,其中所述控制装置包括一个用于产生信号以控制所述至少一个电流源和所述至少一个电流宿当中的每一个之内的所述开关的定时发生器,以及一个用于控制所述定时发生器的控制计算机。
30.权利要求28的微束形成器通道,其中所述至少一个电流源包括多个电流源,所述多个电流源中的所述上拉装置是在饱和状态下操作的PMOSFET装置,所述PMOSFET装置具有不同的宽度并且提供与宽度成比例的电流。
31.权利要求30的微束形成器通道,其中所述至少一个电流宿包括多个电流宿,所述多个电流宿中的所述下拉装置是在饱和状态下操作的NMOSFET装置,所述NMOSFET装置具有不同的宽度并且提供与宽度成比例的电流。
32.权利要求31的微束形成器通道,其中所述控制装置包括一个用于产生信号以控制所述电流源和所述电流宿当中的每一个之内的所述开关的定时发生器,以及一个用于控制所述定时发生器的控制计算机。
33.一种用于微束形成器的变迹控制的系统,包括一个主机架波束形成器,其具有多个主机架通道,每一个所述主机架通道包括一个主机架接收器;多个微束形成器通道,每一个所述微束形成器通道包括一个换能器、一个用于驱动所述换能器的微束形成器发射器、一个用于接收来自所述换能器的信号的微束形成器接收器以及一个用于延迟所接收的换能器信号的延迟元件;电源装置,其用于选择性地将多个不同电压当中的一个提供给所述微束形成器发射器。
34.权利要求33的系统,其中所述电源装置包括多个高压轨,所述轨当中的第一个提供比所述轨当中的第二个更高的电压;一个被插入在所述轨和所述换能器之间的上拉装置;一个被插入在所述第一轨和所述上拉装置之间的开关,控制所述开关,以便当在接通位置中时被提供至所述上拉装置的电压是所述第一轨的电压,并且当在关断位置中时被提供至所述上拉装置的电压是所述第二轨的电压;以及一个被插入在所述第二轨和所述上拉装置之间的二极管。
35.权利要求34的系统,进一步包括用于对所述换能器进行放电的至少一个电流宿,所述至少一个电流宿包括可连接至地的下拉装置。
36.权利要求34的系统,其中所述微束形成器通道被分组成多个微束形成器贴片,每一个所述微束形成器贴片包括多个所述微束形成器通道,利用所述轨当中的每一个,每一个所述微束形成器贴片中的所述微束形成器发射器被连接至对应的公共节点,从而通过所述电源装置将相同的电压提供给所述微束形成器贴片中的全部所述微束形成器发射器。
37.权利要求34的系统,其中所述微束形成器通道被分组成多个微束形成器贴片,每一个所述微束形成器贴片包括多个所述微束形成器通道,并且所述微束形成器贴片被分组成多个群集,每一个所述群集包括多个所述微束形成器贴片,利用所述轨当中的每一个,每一个所述群集中的所述微束形成器发射器被连接至对应的公共节点,从而通过所述电源装置将相同的电压提供给所述群集中的全部所述微束形成器发射器。
38.权利要求34的系统,其中所述轨被连接至每一个所述微束形成器发射器,在每一个所述微束形成器发射器中设置所述上拉装置、所述开关和所述二极管。
39.权利要求33的系统,其中所述电源装置包括提供不同电压的多个高压轨;以及多个上拉装置,每一个所述上拉装置被插入在对应的一个所述轨和所述换能器之间。
全文摘要
用于微束形成器的变迹控制技术,所述微束形成器包括多个微束形成器通道(22),每一个所述微束形成器通道(22)包括一个换能器(26)、一个用于驱动所述换能器(26)的微束形成器发射器(24)、一个用于接收来自所述换能器(26)的信号的微束形成器接收器(28)和一个通常用于延迟所接收的换能器信号的延迟元件(30A)。为了改进通过换能器产生波形,对被提供到微束形成器发射器(24)的电压进行调节,以及/或者对由微束形成器发射器(24)提供的电流进行调节。各微束形成器通道(22)还可以被分组成贴片(20)和/或具有贴片(20)的群集(38A、38B),所述群集(38A、38B)被提供有公共电压源或电流。
文档编号G01S7/524GK1842724SQ200480024333
公开日2006年10月4日 申请日期2004年8月18日 优先权日2003年8月25日
发明者S·弗里曼, B·萨沃尔德, A·罗宾森, S·施米德 申请人:皇家飞利浦电子股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1