全光纤腔衰荡吸收光谱检测传感装置的制作方法

文档序号:6142460阅读:123来源:国知局
专利名称:全光纤腔衰荡吸收光谱检测传感装置的制作方法
技术领域
本发明是一种采用腔衰荡原理的光纤检测传感技术。本发明属于光学测量传感技术领域,主要应用于应变、压力、电流等物理量以及液体、气体浓度和折射率等化学量的传感检测。
背景技术
光纤传感器由于具有抗电磁干扰能力强、灵敏度高、电绝缘性好、安全可靠、耐腐蚀、可构成光纤传感网等诸多优点,因而在工业、农业、生物医疗、国防等各领域均有广阔应用前景。
腔衰荡光谱技术(Cavity Ring Down Spectroscopy)是近几年发展起来的的一种吸收光谱新型检测技术。腔衰荡光谱技术基本原理是测量光脉冲入射到由两个高反射镜组成的高精细度光学谐振腔(一般地,高反射镜的反射率R≥0.9999),一小部分(1-R,约10-5)的入射光通过其中一个高反射镜耦合进入光学谐振腔,在腔中来回反射,在腔镜反射损耗、腔内固有损耗以及腔内被测物质(如气体、液体等化学吸收体)吸收损耗的作用下,腔内光子数在来回振荡中慢慢衰减(即衰荡,ringdown)。腔内光脉冲每来回反射一次,一小部分(1-R,约10-5)腔内光子通过后腔镜传输至腔外并由一个高灵敏度光电探测器探测,探测器的输出将呈现指数衰减,其时间常数τ决定于腔镜的反射率和被测物质的吸收大小,如公式1所示,
τ=Lneffc[(1-R)+l]----(1)]]>式中,L为光学谐振腔长度,neff为腔内有效折射率,R为腔镜的反射率,l为腔内被测物质引起的吸收损耗。由此通过测量光衰减的时间常数,来探测被测物质的吸收大小,并进而可根据比尔朗伯特定理获得其浓度,如公式2l=αL=σLC(2)这里,α为被测物质的吸收系数,σ为被测物质的吸收截面,C为被测物质的浓度。
腔衰荡光谱技术的主要优点在于1.采用高精细度光学谐振腔,极大地增加了吸收光程,大大提高了测量的灵敏度;2.通过测量腔内脉冲的衰减时间常数,对输入光强波动不敏感,是一种对腔内损耗的直接测量,无需转换校准。
为了将腔衰荡光谱原理引入光纤传感领域中,结合两者的优点,形成新型光纤腔衰荡传感技术,人们已经提出了若干技术方案。在先技术之一[Tuomo von Lerber等,APPLIED OPTICS,2002,413567-3575],是在1米长的光纤的两个光纤连接器端面进行抛光,镀上高反射率介质膜构成高精细度光纤谐振腔,观察到了1微秒左右的腔衰荡时间,并进行了光纤弯曲损耗和光纤倏逝波传感实验,获得了初步成功。但这一方法的缺点是在光纤端面上进行抛光和镀高反射率介质膜的技术复杂,成本高,而且高反射率介质膜的带宽受限,一般在10纳米左右,限制了腔衰荡的光谱测量范围。在先技术之二[Manish Gupta等,OPTICSLETTERS,2002,271878-1881],是采用两个高反射率光纤布拉格光栅构成高精细度光纤谐振腔,在10米腔长的情况下获得了2微秒左右的腔衰荡时间。这一方法的缺点是作为高反射腔镜的两个光纤光栅的波长和带宽必须很好的匹配,另外,该方法的光谱测量范围受光纤光栅的反射带宽限制,一般在几个纳米左右。同时,上述在先技术还有一个共同的缺点入射光脉冲耦合进入光纤谐振腔的效率取决于输入腔镜的反射率,反射率越高,耦合效率越低,进入光电探测器的光强越弱,而光电探测器都存在探测下限,另一方面从公式1知道,腔镜反射率越高,腔衰荡时间就越长,测量灵敏度就越高。也就是说存在腔镜反射率和输入耦合效率的矛盾,这就限制了光纤腔衰荡传感装置测量灵敏度的进一步提高。

发明内容
为了克服上述在先技术的缺点和不足,本发明提出一种采用光纤环形镜构成的全光纤腔衰荡吸收光谱检测传感装置,该装置应具有腔镜反射率高、谐振腔精细度高、反射带宽宽、光谱测量范围宽、测量灵敏度高、结构简单的优点。
本发明的技术解决方案一种全光纤腔衰荡吸收光谱检测传感装置,其特点是于它依次由光源及其第一驱动器、光纤谐振腔、光电探测器和信号采集处理系统连接而构成。
所述的光纤谐振腔由第一光纤环形镜通过光纤与第二光纤环形镜相连构成;所述的第一光纤环形镜由第一光纤耦合器同侧的第三端口和第四端口与第一光纤环路连接构成;所述的第二光纤环形镜由第二光纤耦合器同侧的第三端口和第四端口与第二光纤环路连接构成;所述的光源的输出端与第一光纤耦合器的第一端口相连,第一光纤耦合器的第二端口与所述的光纤的一端相连;该光纤的另一端连接第二光纤耦合器的第一端口,该第二光纤耦合器的第二端口经光电探测器和信号采集处理系统相连。
所述的光纤谐振腔,由一环形镜开关的第二端口通过所述的光纤与第二光纤耦合器的第一端口相连构成,所述的第二光纤环形镜由第二光纤耦合器同侧的第三端口和第四端口与第二光纤环路连接构成;所述的光源的输出端与该环形镜开关的第一端口相连;该环形镜开关的第二端口与所述的光纤的一端相连;该光纤另一端连接第二光纤耦合器的第一端口,该第二光纤耦合器的第二端口经光电探测器和信号采集处理系统相连。
所述的环形镜开关的构成是所述的第三光纤耦合器同侧的第三端口和第四端口与第三光纤环路的两端连接,在第三光纤环路偏离中心位置接入光调制单元,该光调制单元设有第一驱动电源,该第一驱动电源与所述的第一驱动器相连并同步运转。
所述的环形镜开关的构成是所述的第三光纤耦合器同侧的第三端口和第四端口与第三光纤环路的两端连接,在第三光纤环路偏离中心位置接入一个半导体光放大器和第三光纤耦合器,所述的半导体光放大器具有第二驱动电源,所述的第三光纤耦合器的第三端口连接一控制激光器,该控制激光器连接第三驱动电源,所述的第三驱动电源与所述的第一驱动电源连接并同步工作。
所述的环形镜开关的构成是所述的第三光纤耦合器同侧的第三端口和第四端口与第三光纤环路的两端连接,在第三光纤环路中偏离中心位置接入一段高非线性光纤和第四光纤耦合器,该第四光纤耦合器连接一超短脉冲激光器,该超短脉冲激光器在脉冲发生器的驱动下工作,该脉冲发生器与第一驱动器相连并同步工作。
所述的环形镜开关的构成是所述的第三光纤耦合器同侧的第三端口和第四端口与第三光纤环路的两端连接,在第三光纤环路中偏离中心位置接入一波分复用器和一段有源光纤,所述的波分复用器的第三端连接一泵浦激光器,该泵浦激光器设有第二驱动器,所述的第二驱动器与第一驱动器相连并同步工作。
本发明的特点和优点如下1、本发明全光纤腔衰荡吸收光谱检测传感装置,与在先技术相比,具有腔镜反射率高、谐振腔精细度高的优点,而且反射带宽很宽,可达几十纳米,具有光谱测量范围宽的优点;2、本发明的全光纤腔衰荡吸收光谱检测传感装置,与在先技术相比,腔镜反射率可以动态调制,从而在保证高精细度的条件下,又可以获得高的光功率耦合效率,降低了光电探测器的要求,能够获得更高的测量灵敏度;3、本发明的全光纤腔衰荡吸收光谱检测传感装置,与在先技术相比,结构简单,制作容易,成本低廉。


图1本发明实施例一采用光纤环形镜构成高精细度光纤谐振腔的光纤腔衰荡传感装置示意图;图2本发明实施例二采用高速光纤环形镜光开关作为高精细度光纤谐振腔输入腔镜的光纤腔衰荡传感装置示意图;图3本发明实施例三采用半导体光放大器构成的非线性光纤环形镜实现高反射和高透过特性高速切换的光纤腔衰荡传感装置示意图;图4本发明实施例四采用高非线性光纤构成的非线性光纤环形镜实现高反射和高透过特性高速切换光纤腔衰荡传感装置示意图;图5本发明实施例五采用光纤放大器构成的非线性光纤环形镜实现高反射和高透过特性高速切换的光纤腔衰荡传感装置示意图。
具体实施例方式
下面结合附图和实施例对本发明作进一步说明。
实施例一如图1所示,全光纤腔衰荡吸收光谱检测传感装置,它依次由光源1及其第一驱动器11、光纤谐振腔、光电探测器5和信号采集处理系统6连接而构成。
所述的光纤谐振腔由第一光纤环形镜2通过光纤4与第二光纤环形镜3相连构成;所述的第一光纤环形镜2由第一光纤耦合器21同侧的第三端口213和第四端口214与第一光纤环路22连接构成;所述的第二光纤环形镜3由第二光纤耦合器31同侧的第三端口313和第四端口314与第二光纤环路32连接构成;所述的光源1的输出端与第一光纤耦合器21的第一端口211相连,第一光纤耦合器21的第二端口212与光纤4的一端相连;该光纤4另一端连接第二光纤耦合器31的第一端口311,该第二光纤耦合器31的第二端口312经光电探测器5和信号采集处理系统6相连。
本实施例是基于采用光纤环形镜作为光纤谐振腔,构成宽带高精细度光纤谐振腔的光纤腔衰荡传感装置。将3dB第一光纤耦合器21的同侧的两端口213和214同第一光纤环路22连接构成第一光纤环形镜2。将3dB第二光纤耦合器31的同侧的两端口313和314同第二光纤环路32连接构成第二光纤环形镜3。第一光纤耦合器21的另一侧第二端口212连接到光纤4。该光纤4的另外一端连接到第二光纤耦合器31另一侧第一端口311。从光源1发出的光波注入第一光纤耦合器21的第一端口211,从第三端口213和第四端口214分束输出,以顺时针和逆时针方向经过第一光纤环路22,回到第一光纤耦合器21,并在其中发生干涉;再从第一端口211和第二端口212输出。由于干涉的结果,从第二端口212输出的光波强度为I1=(1-2η)I0exp(-αl);而从第一端口211向入射方向反射的光波强度可以表示为I1B=4η(1-η)I0exp(-αl)。式中I0为入射光强;(1-η)∶η为光纤耦合器的分束比;l为光纤环路的长度;α为光纤环路的损耗系数。因此,用分束比为1∶1的3dB第一光纤耦合器21构成的光纤环形镜2,理想反射率可以达到100%。通过调整第一光纤耦合器21的分束比,可以获得腔衰荡所要求的反射率,比如达到99.9%以上。而且,具有宽带特性分束比的光纤耦合器已经商品化,因此可以获得反射带宽达到几十个纳米的光纤环形镜。第二光纤环形镜3具有相同的性质。这样,第一光纤环形镜2、第二光纤环形镜3和光纤4构成一个光脉冲在其中来回振荡的高精细度谐振腔。光源1发出的光脉冲进入第一光纤耦合器21的第一端口211,由于第一光纤环形镜2的高反射率,一小部分透射光耦合进入由第一光纤环形镜2、光纤4和第二光纤环形镜3构成的宽带高精细度光纤谐振腔,在腔内来回反射并慢慢振荡衰减(即衰荡)。腔内光脉冲每来回反射一次,一小部分腔内光子通过第二光纤环形镜3从第二光纤耦合器31的第二端口312传输至腔外并由光电探测器5探测。光电探测器5的输出电信号进入信号采集处理系统6。根据公式1,通过分析测量到的腔衰荡时间常数,可以实现对腔内损耗的高精度测量。
本实施例具有腔镜反射率高、光谱测量范围宽的优点,而且光纤环形镜是由3dB光纤耦合器构成,成本非常低。
实施例二如图2所示,本发明全光纤腔衰荡吸收光谱检测传感装置,所述的光纤谐振腔由一环形镜开关7的第二端口712通过光纤4与第二光纤耦合器31的第一端口311相连构成,所述的第二光纤环形镜3由第二光纤耦合器31同侧的第三端口313和第四端口314同第二光纤环路32连接构成;所述的光源1的输出端与该环形镜开关7的第一端口711相连;该环形镜开关7的第二端口712与所述的光纤4的一端相连;该光纤4另一端连接第二光纤耦合器31的第一端口311,该第二光纤耦合器31的第二端口312经光电探测器5和信号采集处理系统6相连。所述的环形镜开关7的构成是所述的第三光纤耦合器71同侧的第三端口713和第四端口714与第三光纤环路72的两端连接,在第三光纤环路72偏离中心位置接入光调制单元73,该光调制单元73设有第一驱动电源74,该第一驱动电源74与所述的第一驱动器11相连并同步运转。光调制单元73由第一驱动电源74驱动控制。
接入了调制单元73的光纤环形镜72是一个反射率可调的光纤环形镜开关。从而构成一个高输入耦合效率、宽带、高精细度的光纤谐振腔的光纤谐振腔,实现高灵敏度和高精度的腔衰荡检测传感。
在该结构中,将第三光纤耦合器71同侧的第三端口713和第四端口714通过光纤环路72连接,构成光纤环形镜。在环中接入光调制单元73,形成可控光纤环形镜7。该可控光纤环形镜7的工作特征是在光开关单元73处于“全通”状态时,从第一端口711或第二端口712输入到可控光纤环形镜7的光信号,将分别反射回原第一端口711或第二端口712。此时,可控光纤环形镜7相当于一个高反射镜,它与光纤4和光纤环形镜3构成一个高精细度的光纤谐振腔。在光调制单元73处于“全反射”状态时,从第一端口711输入到可控光纤环形镜7的光脉冲将从另一端口712输出,注入光纤4。此时可控光纤环形镜7相当于一个透过率很高的耦合器,它可以将光脉冲功率高效率地耦合进谐振腔。一旦光脉冲注入光纤4,立即切换光开关单元的状态,使光纤谐振腔恢复到高精细度状态。在该结构中,第二光纤环形镜3的构成和作用原理与图1中的第二光纤环形镜3相同。这样,可控光纤环形镜7、光纤4和光纤环形镜3就构成了一个高输入耦合效率、宽带、高精细度的光纤谐振腔。
本实施例的工作过程如下光源1发出的光脉冲进入第三光纤耦合器71的第一端口711,可控光纤环形镜光7的光调制单元73在第一驱动电源74的驱动下,同步地切换到高透过率状态。切换的持续时间足够短,在输入至光纤4中的光脉冲经第二光纤环形镜3反射回光纤4,到达可控光纤环形镜7的第二端口712之前,可控光纤环形镜7已切换为高反射状态。此后,光脉冲就在由可控光纤环形镜7、光纤4和第二光纤环形镜3构成的谐振腔内来回反射并慢慢振荡衰减(即衰荡)。腔内光脉冲每来回反射一次,一小部分腔内光子通过第二光纤环形镜3的光纤耦合器31的第二端口312传输至腔外,并由光电探测器5探测。光电探测器5的输出电信号进入信号采集处理系统6。根据公式1,通过分析测量到的腔衰荡时间常数,可以实现对腔内损耗的高精度测量。
本实施例不但具有腔镜反射率高、光谱测量范围宽和低成本的优点,而且通过输入腔镜的反射率的调制,使得入射光脉冲注入光纤谐振腔时具有高的耦合效率,注入后腔镜即恢复高的反射率,从而解决了高精细度同光耦合效率之间的矛盾,克服了在先技术的缺点,降低了光电探测器的要求,提高了测量信号的信噪比,获得更高的测量灵敏度。
本发明实施例三图3为本发明实施例三采用半导体光放大器构成的非线性光纤环形镜实现高反射和高透过特性高速切换的光纤腔衰荡传感装置示意图;图中74为一个半导体光放大器,741为它的第二驱动电源。半导体光放大器74不仅具有光放大的作用,而且在不同入射光强的情况下,由于光学非线性效应而改变有效折射率。742为一个控制用激光器。它发出的脉冲激光信号经过第三光纤耦合器743注第三入光纤环路72。744为控制用激光器742脉冲运转的第三驱动电源,其脉冲频率和相位与信号光源1同步并可调。
本实施例的工作原理如下半导体光放大器74在一定的工作电流下具有相应的增益,补偿第三光纤环路72的损耗,使光纤环形镜第一端口711和第二端口712来看起到一个高反射镜的作用。当从激光器742发出的控制光脉冲通过第三光纤耦合器743注入到第三光纤环路72时,控制光脉冲和光源1发出的测试光脉冲在半导体光放大器74上将发生非线性相互作用。该半导体光放大器74的安装位置偏离第三光纤环路72的中点,因此从第三光纤耦合器71的第三端口713和第四端口714出射的测试光脉冲将在不同时刻到达半导体光放大器74。调节第三驱动电源744的脉冲延迟时间,使控制激光器742发出的控制光脉冲到达半导体光放大器74的时刻只同顺时针和逆时针传输的测试光脉冲中的一个光脉冲同步到达半导体光放大器74并与之发生非线性相互作用。这样顺时针和逆时针传输的测试光脉冲通过第三光纤环路72时经历的相位变化就不相同。在此情况下,可控光纤环形镜7对于从光源1入射的光脉冲就起一个高透过率的作用,使光脉冲高效地进入光纤4。然后立即切断控制光脉冲,可控光纤环形镜7恢复到高反射率的状态,构建一个高精细度的振荡腔。由于半导体光放大器74的非线性响应时间极短,大致在小于纳秒量级,因此可以实现高速的切换,满足高灵敏度、高精度的腔衰荡测量。
本发明实施例四图4为本发明实施例四采用高非线性光纤构成的非线性光纤环形镜实现高反射和高透过特性高速切换光纤腔衰荡传感装置示意图;图中754为一段高非线性光纤,与光纤环路72直接相连接。751是一个产生起控制作用的超短脉冲激光器,它在脉冲发生器752的驱动下工作。脉冲发生器752与第一驱动器11同步,并具有可调的时延特性。超短脉冲激光器751发出的激光通过第四光纤耦合器753注入高非线性光纤754。
该结构的工作原理如下高非线性光纤具有比常规光纤高得多的光学非线性效应。当测试光脉冲从激光光源1发出经过第三光纤耦合器71分束,分别以顺时针和逆时针方向通过第三光纤环路72;控制激光脉冲与测试脉冲同步发出,控制延时使其与顺时针光波同时到达高非线性光纤段754;而逆时针光波在控制光波到达非线性光纤段754之前已经通过该光纤段。逆时针光波没有受到高非线性光纤754的作用,而顺指针光波经受了非线性效应的交叉相位调制效应,获得了有较大差别的相位变化。这样,这二束光波回到第三光纤耦合器71时,不会由于干涉而全部从入射端口711反射回去,而是以较高的透过率注入光纤4。在这一脉冲通过光纤环形镜开关7之后,控制激光器751处于脉冲间隔期。此时,高非线性光纤段754对于顺时针和逆时针光波没有区别,产生相同的相移。当它们回到第三光纤耦合器71时,将由于干涉而向入射端口反射,对于从其第一端口711和第二端口712入射的光波都起到一个高反射镜的作用。从而达到高效率注入高Q值衰荡腔的目的。
本发明实施例五图5本发明实施例五采用光纤放大器构成的非线性光纤环形镜实现高反射和高透过特性高速切换的光纤腔衰荡传感装置示意图。图中764为一段稀土掺杂有源光纤;它与第三光纤环路72相连接。761为向有源光纤提供激励能量的泵浦激光器。泵浦激光器在第二驱动器762推动下工作。第二驱动器762与测试光源的第一驱动器11同步,并具有可调的时延特性。泵浦激光脉冲通过波分复用器763注入有源光纤764,使其具有光放大的作用。
该结构的工作原理如下稀土掺杂有源光纤764在泵浦激光的作用下,吸收泵浦激光光子能量,获得粒子数的反转;它对于同时注入的信号光具有放大作用。当测试光脉冲从激光光源1发出经过第三光纤耦合器71分束,分别以顺时针和逆时针方向通过第三光纤环路72;泵浦激光脉冲从泵浦激光器761与测试脉冲同步发出,经过波分复用器763注入有源光纤764;控制延时使其与顺时针光波同时到达有源光纤段764,从而使顺时针光波获得放大。而逆时针光波在泵浦光脉冲到达有源光纤段764之前已经通过该光纤段。逆时针光波没有受到有源光纤764的放大作用。这样,这二束光波回到第三光纤耦合器71时,由于两束光波的强度不同,干涉的结果是一部分光从入射端口711反射回去,另外一部分光波向端口712输出进入光纤4。在这一脉冲通过光纤环形镜开关7之后,泵浦激光器761处于脉冲间隔期,但是维持一个低功率水平的直流输出,使有源光纤764维持不损耗零增益的状态。这样,它对于顺时针和逆时针光波没有区别,既无吸收,也无增益,并经历相同的相移。当它们回到第三光纤耦合器71时,将由于干涉而向入射端口反射,对于从其第一端口711和和第二端口712入射的光波都起到一个高反射镜的作用。从而达到高效率注入高Q值衰荡腔的目的。
本发明的全光纤腔衰荡吸收光谱检测传感装置可以实现对腔内损耗的高精度测量,可以用来进行多种参量的传感测量,只要被测参量能够引起光纤谐振腔的损耗改变,或者被测参量的变化能够通过转换机构转换为光纤谐振腔的损耗改变,例如弯曲、应变、压力、气体/液体的浓度/折射率等,都能够用本发明的全光纤腔衰荡吸收光谱检测传感装置进行测量。
权利要求
1.一种全光纤腔衰荡吸收光谱检测传感装置,其特征在于它依次由光源(1)及其第一驱动器(11)、光纤谐振腔、光电探测器(5)和信号采集处理系统(6)连接而构成。
2.根据权利要求1所述的全光纤腔衰荡吸收光谱检测传感装置,其特征在于所述的光纤谐振腔由第一光纤环形镜(2)通过光纤(4)与第二光纤环形镜(3)相连构成;所述的第一光纤环形镜(2)由第一光纤耦合器(21)同侧的第三端口(213)和第四端口(214)同第一光纤环路(22)连接构成;所述的第二光纤环形镜(3)由第二光纤耦合器(31)同侧的第三端口(313)和第四端口(314)同第二光纤环路(32)连接构成;所述的光源(1)的输出端与第一光纤耦合器(21)的第一端口(211)相连,第一光纤耦合器(21)的第二端口(212)与光纤(4)的一端相连;该光纤(4)另一端连接第二光纤耦合器(31)的第一端口(311),该第二光纤耦合器(31)的第二端口(312)经光电探测器(5)和信号采集处理系统(6)相连。
3.根据权利要求1所述的全光纤腔衰荡吸收光谱检测传感装置,其特征在于所述的光纤谐振腔由一环形镜开关(7)的第二端口(712)通过光纤(4)与第二光纤耦合器(31)的第一端口(311)相连构成,所述的第二光纤环形镜(3)由第二光纤耦合器(31)同侧的第三端口(313)和第四端口(314)同第二光纤环路(32)连接构成;所述的光源(1)的输出端与该环形镜开关(7)的第一端口(711)相连;该环形镜开关(7)的第二端口(712)与所述的光纤(4)的一端相连;该光纤(4)另一端连接第二光纤耦合器(31)的第一端口(311),该第二光纤耦合器(31)的第二端口(312)经光电探测器(5)和信号采集处理系统(6)相连。
4.根据权利要求3所述的全光纤腔衰荡吸收光谱检测传感装置,其特征在于所述的环形镜开关(7)的构成是所述的第三光纤耦合器(71)同侧的第三端口(713)和第四端口(714)与第三光纤环路(72)的两端连接,在第三光纤环路(72)偏离中心位置接入光调制单元(73),该光调制单元(73)设有第一驱动电源(74),该第一驱动电源(74)与所述的第一驱动器(11)相连并同步运转。
5.根据权利要求3所述的全光纤腔衰荡吸收光谱检测传感装置,其特征在于所述的环形镜开关(7)的构成是所述的第三光纤耦合器(71)同侧的第三端口(713)和第四端口(714)与第三光纤环路(72)的两端连接,在第三光纤环路(72)偏离中心位置接入一个半导体光放大器(74)和第四光纤耦合器(743),所述的半导体光放大器(74)具有第二驱动电源(741),所述的第三光纤耦合器(743)的第三端口连接一控制激光器(742),该控制激光器(742)连接第三驱动电源(744),所述的第三驱动电源(744)与所述的第一驱动器(11)连接并同步工作。
6.根据权利要求3所述的全光纤腔衰荡吸收光谱检测传感装置,其特征在于所述的环形镜开关(7)的构成是所述的第三光纤耦合器(71)同侧的第三端口(713)和第四端口(714)与第三光纤环路(72)的两端连接,在第三光纤环路(72)中偏离中心位置接入一段高非线性光纤(754)和第四光纤耦合器(753),该第四光纤耦合器(753)连接一超短脉冲激光器(751),该超短脉冲激光器(751)在脉冲发生(752)的驱动下工作,该脉冲发生器(752)与第一驱动器(11)相连并同步工作。
7.根据权利要求3所述的全光纤腔衰荡吸收光谱检测传感装置,其特征在于所述的环形镜开关(7)的构成是所述的第三光纤耦合器(71)同侧的第三端口(713)和第四端口(714)与第三光纤环路(72)的两端连接,在第三光纤环路(72)中偏离中心位置接入一波分复用器(763)和一段有源光纤(764),所述的波分复用器(763)的第三端连接一泵浦激光器(761),该泵浦激光器(761)设有第二驱动器(762),所述的第二驱动器(762)与第一驱动器(11)相连并同步工作。
全文摘要
一种全光纤腔衰荡吸收光谱检测传感装置,其结构是它依次由光源及其第一驱动器、光纤谐振腔、光电探测器和信号采集处理系统连接而构成。该装置具有腔镜反射率高、谐振腔精细度高、反射带宽宽、光谱测量范围宽、光功率耦合效率高、测量灵敏度高和结构简单的优点。
文档编号G01N21/25GK1664517SQ20051002448
公开日2005年9月7日 申请日期2005年3月18日 优先权日2005年3月18日
发明者蔡海文, 瞿荣辉, 方祖捷, 王允韬 申请人:中国科学院上海光学精密机械研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1