监测容器中参数的系统和方法

文档序号:6124000阅读:139来源:国知局
专利名称:监测容器中参数的系统和方法
技术领域
本发明涉及用于监测容器内参数的系统。
背景技术
为了保持人们安全地远离可能对其有毒或有害的溶液,比如液体、 气体和固体,采用不同的设备来对这些溶液进行测试以确定它们是否有 害。这些设备包括将识别标记物和抗体连接的化学或生物传感器。例如, 一些化学/生物传感器包括连接到抗体上的芯片,其中所述芯片包括用于 识别所述特定抗体的荧光标记物。
如下的化学或生物传感器是已知的它们包括由对特定分析物选择 性响应的材料形成的结构元件,比如美国专利No.6359444所示。其它 已知的化学或生物传感器包括位于传感器上特定位置中的电磁活性材 料,其可以通过外部条件而改变,比如美国专利No.6025725所述。一 些已知的化学或生物传感器系统包括用于测量多于一种电参数的部件, 如美国专利No.6586946所示。
上述传感器并不解决如下需求在人、传感器和溶液之间保持无菌 阻挡,同时溶液中的材料被测试以确定哪种化学或生物材料位于所述溶 液中。通过保持无菌阻挡,对和所述溶液接触的人而言污染风险较小。 相反,容器的内含物如果无菌,则没有外来污染的风险。另外,上述传 感器不允许人们如需对溶液中的各种化学、物理和生物参数进行测试。 所以,需要如下系统它使得用户可以简单地、非侵入性地测试溶液中 的化学和/或生物物质,同时溶液处于无菌阻挡中,由此用户可以安全获 得对所述材料的测量。

发明内容
本发明已经根据上述技术背景得以完成,本发明的目标是提供用于监测生物容器中参数的系统和方法。
在本发明的优选实施方案中,公开了用于测量容器中参数的系统。
用于测量多个参数的系统包括具有溶液的容器,和标记(tag)连接的至
少一个传感器和构成测量设备的阻抗分析器和读取器相邻。所述至少一 个传感器经构造以确定溶液的至少一个参数。所述标记经构造以提供和
所述传感器相关的数字ID,其中所述容器和所述读取器和阻抗分析器相
围的频率,并基于所述响i来:十算参数改变。 ;二,、
在本发明的另一优选实施方案中,公开了用于测量容器中参数的装 置。有和测量设备相邻的具有溶液、至少一个传感器以及标记的容器。 所述至少一个传感器经构造以确定溶液的至少一个参数。所述测量设备 经构造以从所述至少一个传感器读取所述至少一个参数。


当结合附图阅读下列描述时,本发明的这些和其它优点将变得更加 明显,其中
图1示出了根据本发明实施方案用于监测容器中参数的系统的方框图。
图2A、 2B、 2C和2D是根据本发明构造的用于RFID系统线路的 示意图。
图3示出了根据本发明的图1的射频识别(RFID)标记的展开图。
图4是根据本发明如何采用监测溶液中参数的系统的流程图。
图5是根据本发明如何采用用于监测溶液中参数的系统的另 一流程图。
图6是根据本发明采用图1的用于监测溶液中参数的系统的示例的 图示。
图7是根据本发明采用图1的用于监测溶液中参数的系统的示例的 图示。
图8仍然是根据本发明采用图1的用于监测溶液中参数的系统的示 例的图示。
图9是根据本发明的图4的Zp响应的示例的图示。
图IOA、 IOB、 IOC和IOD是根据本发明和图4相关的已测量参数的变化的示例图示。
图IIA、 IIB、 IIC和IID是根据本发明和图4相关的已测量参数
的校正曲线的示例图示。
图12是根据本发明和图4相关的测量参数的多变量分析的示例图示。
具体实施例方式
将参考附图描述本发明的目前优选的实施方案,其中相同的部件用 相同的附图标记表示。所述优选实施方案的描述是示例性的,并不旨在 限制本发明的范围。
图1示出了用于监测容器中溶液参数的系统的方框图。系统100包 括容器101、标记102和标记102上的传感器103、阵列103形式的多 个传感器、读取器105、阻抗分析器107、标准计算机109和测量设备 111。测量设备lll由读取器105和阻抗分析器107制成。多个传感器 103可以以阵列形式形成在标记102上。传感器103或传感器阵列103 位于容器101中,其通过无线连接或电线连接而连接到阻抗分析器107 和计算机109上。传感器103、标记102或传感器阵列103通过无线连 接或电线连接而连接到测量设备111和计算机109上。阻抗分析器107 通过无线连接或电线连接而连接到计算机109上。容器101可以是一次 性容器、不锈钢容器、塑料容器、聚合物材料容器、预先消毒的聚合物 材料容器或本领域普通技术人员公知的可以容纳溶液101a的任何类型 容器。溶液101a位于所述容器101内,溶液101a可以是液体、流体或 气体、固体、膏、或者液体和固体的组合。例如,溶液101a可以是血 液、水、生物緩沖液或气体。溶液101a可以包含毒性工业物质、化学 战用试剂、气体、蒸气、或者在呼气中的爆发式疾病标记物、水中的生 物病原体、病毒、细菌和其它病原体。如果溶液101a是血液,那么它 可以包含各种物质,比如肌酸酐、脲、乳酸脱氢酶、碱式磷酸盐、钾、 全蛋白、钠、尿酸、溶解的气体和蒸气比如C02、 02、 NOx、乙醇、曱 醇、卣烷、苯、氯仿、曱苯、化学战用试剂、蒸气或爆发性物质等。另 一方面,如果溶液101a是气体或蒸气,那么它可以是。02、 02、 NOx、 乙醇、甲醇、卣烷、苯、氯仿、曱苯或者化学战用试剂。如果溶液101a 是可以呼入并溶解在血液中的毒性工业试剂,那么它可以是氨、丙酮羟腈、三氯化砷、氯、或硫化羰等。在溶液101a是化学战用试剂的情况 下,它可以是Tabun、 Sarin、 Saman、 Vx、发泡剂、芥子气、窒息剂或 血液试剂。如果溶液101a是呼气中的疾病标记物,那么它可以是乙醛、 丙酮、 一氧化碳等。如果溶液101a包括生物病原体,那么它可以是炭 疽、布鲁菌病、志贺氏杆菌、或者兔热病等。另外,容器中的溶液101a 可以包括原核细胞和真核细胞以表达蛋白质、重组蛋白、病毒、质体、 疫苗、细菌、病毒、和活组织等。容器101可以具有不同尺寸,例如, 单生物细胞(a single biological cell)、微流体通道、微滴定板、皮氏培 养皿、手套箱、罩子、人可以进入的罩子、建筑物中的房间、建筑物。 因此,容器可以是任何尺寸,传感器和标记置于其中以测量容器中的环 境。传感器和标记可以在容器中固定不同或者连接到容器内的一些部件 上,其中所述部件随着时间的变化而移动。部件的示例是单个病毒、单 个细胞、宠物、人等。
阵列103形式的多个传感器和溶液101a紧密相邻或位于溶液101a 中。读取器105位于容器101之外的测量设备111中。标记102的天线 301 (图3)当被聚合物、无机材料、复合物或其它类型的膜、纳米纤维 网格或纳米结构涂层覆盖时,是传感器103或传感器阵列103。阵列103 中的多个传感器可以是本领域普通技术人员公知的典型传感器或典型 传感器阵列,或者阵列中的所述多个传感器可以是射频识别(RFID)传 感器阵列103。阵列103中的RFID传感器是有责任基于来自溶液101a 的参数产生有用信号的设备。参数包括电导率测量值、pH水平、温度、 血液相关测量、离子性测量、非离子性测量、非导电性、电磁辐射水平 测量、压力和可以从典型溶液获取的其它类型的测量值。阵列103中的 所述多个传感器覆盖有或者包覆在典型的传感器膜中,所述传感器膜使 得其能够获得溶液101a的参数。每个传感器和相同或不同的传感膜相 关。典型的传感器膜是聚合物、无机的、有机、生物的、复合的、或者 纳米复合膜,其基于它位于其中的溶液101a而改变电性质。传感器膜 可以是水凝胶,比如(聚曱基丙烯酸(2-羟乙基)酯)、磺化的聚合物 比如Nafion、粘合性聚合物比如硅酮粘合剂、无机膜比如溶胶-凝胶膜、 复合膜比如碳黑-聚异丁烯膜、纳米复合膜比如碳纳米管-Nafion膜、金 纳米颗粒-水凝胶膜、电纺丝聚合物纳米纤维、金属纳米颗粒氢膜电纺丝 无机纳米纤维、电纺丝复合纳米纤维、和任何其它传感器材料。为了防200680054725.2
止传感器膜中的材料泄漏到容器101中,将传感器材料使用标准技术连 接到所述多个传感器阵列103的表面上,所述标准技术比如共价键合、 静电结合和其它本领域普通技术人员公知的标准技术。阵列103中的所
述多个RFID传感器的每一个可以单个地测量参数,或者每个传感器103 可以测量所有参数。例如,RFID传感器阵列103的传感器阵列可以仅 仅测量溶液101a的温度,或者所述多个RFID传感器阵列103的传感器 阵列可以测量溶液101a的电导率、pH和温度。另外,阵列103中的所 述多个RFID传感器是转发器,其包括用于接收信号的接收器和用于发 送信号的发送器。传感器103可以用作被动式、半主动式或者主动式的 典型RFID传感器。
图3示出了射频识别(RFID)标记。RFID标记102也可以称作无 线传感器。RFID标记102包括在其上设置有天线301和电容器305的 芯片或衬底303。各种市售标记可以用于沉积传感器结构。这些标记在 从大约125kHZ到大约2.4GHz的不同频率操作。合适的标记可以获自不 同的供应商和分销商,比如Texas Instruments, TagSys、 Digi Key、 Amtel、 Hitachi和其它。合适的标记可以以:故动、半^皮动和主动才莫式运行。;故动 式RFID标记无需电源来操作,而半被动式和主动式RFID标记依赖于 使用机载电源来运行。RFID标记102具有数字ID, RFID标记102的天 线线路的频率响应可以测量为具有复阻抗实部和虛部的复阻抗。另外, RFID标记102可以是转发器,其是接收、放大和以不同频率重新发送 信号的自动设备。另外,RFID标记102可以是另一类型的转发器,其 响应预定的接收到的信号发送预定的消息。该RFID标记102等同于在 2005年10月26日提交并分配有美国专利申请号11/259710的"Modified RF Tags and their Applications for Multiplexed Detection"中和2005年10 月26日提交并分配有美国专利申请号11/259711的"Multivariates Methods of Chemical and Biological Detection Using Radio-Frequency Identification Tags"公开的各种RFID标记,其公开在此通过引用全文结 合进来。
天线301是传感器103的一体式部分。多个RFID传感器130位于 距离读取器105和阻抗分析器107大约1 - 100cm的距离。在本发明的 另一实施方案中,RFID天线301包括用作天线材料的一部分以调制天 性性能的化学或生物敏感性材料307。这些化学和生物材料是传导性的、敏感性材料,比如无机的、聚合物的、复合的传感器材料等。复合传感 器材料包括和传导性可溶或不溶性添加剂混合的基础材料。该添加剂是 提供电导的颗粒、纤维、片和其它形式。在本发明的另一实施方案中,
RFID天线301包括用作天线材料的一部分以调制天线电性能的化学或
生物敏感性材料。该化学或生物敏感性材料通过阵列化、喷墨打印、丝 网印刷、气相沉积、喷雾、拖曳涂覆和本领域普通技术人员公知的其它
典型沉积方法来沉积在RFID天线301上。在本发明的另一实施方案中 (其中测量溶液101a (图1 )的温度),覆盖天线301的化学或生物材 料可以是经选择以在温度变化时收缩或膨胀的材料。这种类型的传感器 材料可以包含导电性的添加剂。添加剂可以是微米颗粒或纳米颗粒形 式,例如,碳黑粉末或碳纳米管或者金属納米颗粒。当传感器膜307的 温度改变时,添加剂的这些单个颗粒改变,这样影响传感器膜307的整 个电导率。
除了用传感膜307涂覆传感器103以外, 一些物理参数比如温度、 压力、溶液传导率和其它参数的测量是在未用传感膜307涂覆传感器 103的情况下进行的。这些测量依赖于天线性质随着物理参数的变化而 发生的变化,没有在传感器103上施加特定的传感膜。
尽管示出了无线传感器102的数种实施方案,但是应该认识到其它 实施方案落在本发明的范围内。例如,在无线传感器中包括的电路可以 来用来自照明RF能量的电力来驱动高Q谐振线路,比如在图2A中所 述的基于电容的传感器201中的线路203。高Q谐振线路203具有通过 传感器201或传感器102确定的振荡频率,结合了电容随着所述感知的 量而变化的电容器。照明RF能量的频率可以变化,观察到了该传感器 的反射能量。 一旦最大化所述反射能量后,确定线路203的谐振频率。 该谐振频率随后可以转变成传感器201或102的如上所述的参数。
在其它实施方案中,照明RF能量以接近高Q振荡器的谐振频率的 一定重复频率脉冲化。例如,如图2B中所示,该脉冲化能量在无线传 感器205或102 (图1 )中整流,并用于驱动高Q谐振线路207,所述 高Q谐振线路207具有通过和其连接的传感器205确定的振荡谐振频 率。在一段时间之后,所述脉沖RF能量停止,发射稳定水平的照明RF 能量。高Q谐振线路207用于采用存储在该高Q谐振线路207中的能量 来调节天线209的阻抗。接收反射的RF信号,并检测边带。边带和照线路201的谐振频率。图2C示出了用于驱动高 Q谐振线路的无线传感器的另一实施方案。图2D示出了无线传感器, 它可以包括谐振天线线路和传感器谐振线路,后者可以包括LC储能线 路。天线线路的谐振频率是比传感器线路的谐振频率高的频率,例如, 4 - 1000倍高。传感器线路具有可以随着某一感知的环境条件而改变的 谐振频率。这两个谐振线路可以连接起来,连接方式使得当通过天线谐 振线路接收交流(AC )能量时,它将直流能量施加到传感器谐振线路上。 AC能量可以通过使用二极管和电容器施加,AC能量可以通过LC储能 线路通过或者该LC储能线路的L中的分支或者LC储能线路的C中的 分支被发送给传感器谐振线路。另外,这两个谐振线路可以经连接以使 来自传感器谐振线路的电压可以改变天性谐振线路的阻抗。天线线路的 阻抗的调节可以通过使用晶体管例如FET来完成。
或者,照明射频(RF)能量以一定的重复频率脉冲化。该脉沖化的 能量在无线传感器(图2A-2D)中整流,用于驱动具有由和其连接的传 感器确定的振荡谐振频率的高Q谐振线路。在一段时间之后,所述脉冲 化的RF能量停止,发送稳定水平的照明RF能量。
谐振线路用于采用在高Q谐振线路中存储的能量来调节天线阻抗。 接收反射的RF信号并检测边带。对于多个不同的脉沖重复频率重复该 过程。使返回的信号的边带幅值最大化的脉沖重复频率被确定为谐振线 路的谐振频率。随后,该谐振频率转变成在该谐振线路上的参数或测量 值。
参见图1, RFID读取器105和阻抗分析器107 (测量设备111)位 于RFID标记102下方,所述阻抗分析器基于从RFID天线301读取信息 来提供有关RFID标记102的实部阻抗和复阻抗的信息。另外,读取器 105读取来自RFID标记102的数字ID。读取器105也可以称作射频识 别(RFID )读取器。RFID标记102通过无线连4妻或者电线连接到RFID 读取器105和阻抗分析器107上。RFID读取器105和阻抗分析器107 (测量设备lll)通过无线或电线连接连接到标准计算机109上。该系 统可以以三种方式运行,包括1、 RFID读取器105的读取系统,其中, RFID读取器105从多个RFID传感器阵列103读取信息以获得化学或生 物信息,RFID读取器105读取RFID标记102的数字ID; 2、 RFID读取 器105读取RFID标记102的数字ID,阻抗分析器107读取天线301以获取复阻抗;和3、如果有多个具有或不具有传感器膜的RFID传感器 103,其中RFID读取器105从所述多个RFID传感器阵列103读取信息 以获取化学或生物信息,RFID读取器105读取RFID标记102的数字ID, RFID读取器105读取RFID标记102的数字ID,阻抗分析器107读取天 线301以获得复阻抗。
测量设备111或计算机109包括模式识别子部件(未示出)。模式 识别技术包括在模式识别子部件中。针对从传感器103或阵列103中的 多个RFID传感器的每一个上收集的信号的这些模式识别技术,可以用 于找出测量的数据点之间的相似和不同。这种方法提供了用于报警在测 量的数据中出现反常情况的技术。这些技术可以揭示大型数据系列中的 相关性模式,可以确定筛选成功(screeninghit)之间的结构相关性,并 可以明显减少数据维度以使其更能够在数据库中进行管理。模式识别的 方法包括主成分分析(PCA)、分层族分析(HCA)、软独立建^t分类 法(soft independent modeling of class analogies, SIMCA)、神经网络和 本领域普通技术人员熟知的其它模式识别方法。读取器105和阵列103 中的多个RFID传感器或传感器103之间的距离保持不变或者可以改变。 阻抗分析器107或测量设备111周期性地测量从阵列103中的所述多个 RFID传感器反射的射频(RF)信号。从同一传感器103或阵列103中 的该多个RFID传感器的周期性测量提供了有关传感器信号变化速度的 信息,其与阵列103中的该多个RFID传感器周围的化学/生物/物理环境 的状态相关。在该实施方案中,测量设备lll能够从阵列103中的该多 个RFID传感器读取和量化信号的强度。
阻抗分析器107靠近RFID读取器105,前者是用于分析电网络的 依赖于频率的性质,尤其是和电信号的反射和透射相关的那些性质,的 仪器。而且,阻抗分析器107可以是实验室装备或便携式特制设备,其 扫面给定范围的频率以测量RFID标记102的谐振天线301线路的复阻 抗的实部和虚部。另外,该阻抗分析器107包括针对和上述溶液101a 相关的各种材料的频率数据库。进而,该阻抗分析器107可以是网络分 析器(例如,Hewlett Packard 8751A或者Agilent E5062A )或者精确阻 抗分析器(Agilent 4249A )。
计算机109是包括下列的典型计算机处理器、输入/输出(I/O) 控制器、大容量存储器、存储器、视频适配器、连接接口、和将上述系统部件有效地通过电方式或无线方式连接到处理器的系统总线。另外, 系统总线通过电的或无线方式将典型的计算机系统部件有效地连接到 处理器。处理器可以称作处理单元、中央处理单元(CPU)、多个处理 单元或者并行处理单元。系统总线可以是和常规计算机相关的典型总
线。存储器包括只读存储器(ROM)和随机访问存储器(RAM) 。 ROM 包括典型的输入/输出系统,其包括基本的常规程序,帮助在起动过程中 在计算机的部件之间传递信息。
在存储器上方是大容量存储器,其包括1、用于从硬盘读取和写 入的硬盘驱动部件和硬盘驱动接口 , 2、万兹盘驱动和硬盘驱动接口 ,和3、 用于从可移动光盘比如CD-ROM或其它光学介质读取或写入的光盘驱 动器和光盘驱动接口 (未示出)。上述驱动器和它们相关的计算机可读 介质提供了对计算机可读指令、数据结构、程序模块和其它用于计算机 109的数据的固守存储。而且,上述驱动可以包括用于获取溶液101a的 参数的算法、软件或等式,其将在和计算机109的处理器一起工作的图 4、 5和6的流程图中进行描述。在另一实施方案中,获取溶液101a参 数的算法、软件或公式可以存储在处理器、存储器或者本领域技术人员 公知的计算机109的任何其它部件中。
图4是显示如何采用检测溶液中参数的系统的流程图。该过程开始 于图1,其中容器101具有传感器103。传感器103用连接到计算机109 的阻抗分析器107读取。如上所述,在方框401处,阻抗分析器107以 无线或电方式连接(接线到)到阵列103的该多个RFID传感器上,阻 抗分析器107以预定获取速度、预定频率分辨率从阵列103中的多个 RFID传感器读取作为选定频率范围内的频率函数的复阻抗Z。可以针对 测量预先设置的其它非限制性参数可以包括平均数、平滑化等。阻抗分 析器107包括接收天线107a (图1 ),其激发阵列103中的多个RFID 传感器,该接收天线收集来自阵列103中的多个RFID传感器的反射的 射频信号。阵列103中的多个RFID传感器能够获取参数,比如传导率、 温度、pH、和上面基于检测溶液101a中的这些参数的聚合物或传感器 膜307或没有传感器膜307所公开的其它参数。
在方框403处,在阻抗分析器107 (图1 )处,复阻抗Z测量值的 预定参数和参数变化以阵列103中的多个RFID传感器进行计算。这些 参数的非限制性示例包括复阻抗虛部的最大值Fl的频率和频移、复阻抗的虚部的最小值F2的频率和频移、复阻抗实部的最大值Fp的频率和 频移,复阻抗实部的大小是Zp,如图7所示。谐振线路的等价电线路参 数(图2A-2D)通过阻抗分析器107或计算机109计算。如图8和9所 示,有执行来举例说明图1中所用部件的使用的实验结果。对图8而言, 当将50微升的1M NaCl加入到容器101的100mL水中时,RFID传感 器103信号如同所示那样变化。对于图9而言,RFID传感器103响应 的动力学通过NaCl扩散到水中提供,如图所示。
接下来,在方框405处,具有模式识别子部件的计算机109或阻抗 分析器107将单变量和多变量分析应用到从阵列103中的多个RFID传 感器收集的信息或数据上。单变量分析提供计算目标单参数的能力。多 变量分析方法可以包括例如上述模式识别技术,比如主成分分析 (PCA)、分层族分析(HCA)、软独立建冲莫分类法(soft independent modelingof class analogies, SIMCA)和神经网络。另外,多变量分析提 供改善下列情况的能力阵列103中的多个RFID传感器或传感器103 的量化能力,用于强功能识别的外部检测,和利用单一传感器103进行 的单参数或多参数分析物检测(非限制性示例为温度、pH、传导率), 其中目标参数在方框407处量化。在这种情况下,物理或化学参数通过 温度和pH表示,而传导率通过环境参数表示。为了验证利用涂有传感 膜(Nafion聚合物)307的单一RFID传感器103进行的多分析物测量, 测试了四种分析物,每种测量6个浓度。这些分析物包括乙醇(EtOH)、 曱醇(MeOH)、乙腈(ACN)和水(H20)蒸气,所有的浓度(分压P) 范围是饱和蒸汽压(P。)的0-0.2,在图9-12中描述。精确浓度是0、 0.02、 0.04、 0.07、 0.10、 0.15和0.20P/P。。相似地,不同纯液体或液体 混合物以及物理参数的测量可以通过本领域技术人员进行。
图9验证了四种分析物(H20、 EtOH、 MeOH和ACN )各自6种浓 度下测量到的Zp响应。如图9所示,RFID传感器103的单一参数(比 如Zp)的测量不能在不同分析物之间区分开。例如,如果信号Zp从大 约820变到大约8050hm,那么这种改变可能是由于水的0.1P/P。或 MeOH的0.15P/P。或EtOH的0.2P/P。。因此,RFID传感器103的单参数 测量值不能在不同分析物和它们的浓度之间区分开。
图IOA、 IOB、 IOC和IOD分别证实了在RFID传感器103暴露于四 种分析物(H20、 EtOH、 MeOH和ACN)时所有测得参数F1、 F2、 Fp和Zp的动态变化,每种分析物6种浓度。显然,多参数测量为用单一
RFID传感器103选择性确定多于一种分析物提供了另外工具。例如, 对于图10B而言,对1120的F2响应初始显示了当暴露于H20的小浓度 时信号降低。但是,当暴露于较大浓度H20时,响应变化。这种行为是 由于传感器膜(Nafion)的本质和被测分析物(H20 )的组合效应。但 是,当测量另一更加非极性的分析物(比如ACN)时,F2响应通常随 着暴露到ACN中而减少。
图IIA、 IIB、 IIC和IID分别验证了将RFID传感器103暴露于四 种分析物(H20、 EtOH、 MeOH和ACN)时所有测量参数F1、 F2、 Fp 和Zp的校正曲线,每种分析物6个浓度。取决于测量的参数和分析物, 响应是线性的或非线性的,下降的或增加的,或者甚至具有更复杂的行 为。信息的这种丰富性、其复杂性、多样性和其非相关性本质,提供了 用单一 RFID传感器103选择性确定分析物的能力。图12给出了 RFID 传感器103对H20、 EtOH、 MeOH和ACN (每种分析物6个浓度)的 变化的多参数响应的多变量分析结果。这些结果是通过采用主成分分析 方法学采用具有PLS Toolbox软件的Matlab分析测量的参数Fl、 F2、 Fp和Zp获得的。
参见图4,在方框407处,来自多变量分析的检测数据从测量设备 111或阻抗分析器107传送到计算机109,其中计算机109显示来自阵 列103中的多个RFID传感器的给定一个或多个传感器的目标数据。数 据显示是目标环境参数的量化测量值形式,比如温度、pH、传导率和上 述其它参数。来自天线301的给定频率范围从阻抗分析器传送到计算机 109。显示为在合适的屏幕上或电信号的形式。在此点,用于可以决定 是否该过程应该结束,或者是否该数据应该传送到合适的控制设备。如 果用户选择不发送数据到控制设备,那么该过程结束。在方框409处, 控制设备对从例如阻抗分析器107接收量化的信号值起作用或做出反 应,来一旦接收到来自阵列103中多个RFID传感器的温度读书就使容 器101冷却或加热,然后该过程结束。控制设备可以是电驱动流体开关、 阀门、泵、愈合器(healer)、或冷却器等。
图5的流程图显示了如何采用用于监测溶液中参数的系统的另 一方 式。该流程图包括图4的所有部件,因此这些部件在此不描述。另外, 该图5包括方框413,在天线上具有传感器膜307而使之成为传感器103的RFID标记102或者天线301上没有传感器膜307的RFID标记102, 其中RFID读取器105 (测量设备111)请求来自RFID标记102的芯片 303的数字id,并且如果天线301覆盖有传感器膜307则可以获得分析 物数据或参数数据。在方框415处,RFID读取器105 (测量设备)获取 由RFID标记102传给它的数字ID和来自具有传感器膜307的天线301 的分析物数据或参数数据。在方框409处,RFID读取器105将该数字 ID和分析物数据或参数发送给计算机109,然后该过程按照和图4相同 的方式运行。对于图4和5而言,传感器103可以是单一传感器或传感 器阵列。
针对合适的化学或生物识别选择传感器涂层。传感器转导原理经选 择以与涂层对目标物种的响应机制相匹配。为了在RFID传感器103中 沉积化学或生物敏感材料,采用喷墨印刷、丝网印刷、化学和物理气相 沉积、喷雾、拖曳涂覆、湿溶剂涂覆、辊对辊涂覆(狭缝一莫头涂覆、凹 版印刷涂覆、辊涂、浸涂等)、热叠层和其它沉积方法。为了防止传感 器涂层的组分泄漏到容器环境中,应用已知的技术比如离子配对、共价 键合等。任选的,可以使用另外致密的、微孔或中孔的涂层,比如膨胀 PTFE ( e-PTFE )、纳米渗透和超渗透膜作为保护层或选择渗透层,来减 少生物污染,并将待检测的物种(一种或多种)浓缩。
在一个实施方案中,生物容器101优选但不限于由下列材料单独或 以多层膜形式的任何组合制备乙烯乙酸乙烯酯(EVA)、低或极低密 度聚乙烯(LDPE或VLDPE)、乙基乙烯基醇(EVOH)、聚丙烯(PP), 所有这些都是本领域公知的。RFID标记典型地包括前天线和具有塑料 背衬(例如,聚酯、聚酰亚胺等)的微芯片。
为了将RFID传感器阵列103和该多层塑料膜/片结合起来,采用超 声叠层、热叠层、热熔融叠层。在超声叠层方法中,用于制备一次性袋 子的多层塑料膜/片网幅(第一片)的至少一部分用超声波沖击;在前天 线侧涂有合适传感材料的RFID标记(第二片)的背面被粘合到该多层 塑料膜/片上。任选的,在该叠层过程之前,进行该塑料膜/片的电暈处 理、等离子体处理和火焰处理。在另一实施方案中,可以使用粘合剂比 如压敏粘合剂、水分固化粘合剂和辐射固化粘合剂来将RIFD标记102 粘合到生物容器101上。
本发明提供允许用户简单地确定容器中的是哪一种溶液以及目标
16化学、物理和生物参数的浓度和水平的系统。该容器包括射频识别
(RFID )传感器,该传感器具有能够使该传感器有效确定溶液中材料的
传感器膜。
上面对本发明的详细描述旨在被认为是示例性的而不是限制性的, 并且应该理解是下列权利要求(包括所有等价物)旨在限定本发明的范围。
权利要求
1. 用于测量多个参数的系统,包括具有溶液、至少一个传感器和标记的容器,和构成测量设备的阻抗分析器和读取器相邻;其中所述至少一个传感器经构造以确定所述溶液的至少一个参数;所述标记经构造以提供和所述至少一个传感器相关的数字ID,其中所述容器和所述读取器和阻抗分析器相邻;和其中所述阻抗分析器经构造以基于所述参数从所述至少一个传感器接收给定范围的频率,并基于所述频率计算参数变化。
2. 权利要求l的系统,其中所述容器和计算机连接。
3. 权利要求2的系统,其中所述测量设备经构造以从所述至少一个 传感器读取所述至少一个参数。
4. 权利要求3的系统,其中所述计算机经构造以显示来自所述至少 一个传感器的所述参数。
5. 权利要求l的系统,其中所述容器是一次性容器。
6. 权利要求l的系统,其中所述容器是塑料容器。
7. 权利要求l的系统,其中所述溶液选自流体、血液和气体。
8. 权利要求7的系统,其中所述溶液是包含下列物质的血液肌酸 酐、脲、乳酸脱氢酶和碱性钾。
9. 权利要求7的系统,其中所述溶液是气体或溶解的气体,所述气 体或溶解的气体包括C02、 02、 NOx。
10. 权利要求7的系统,其中所述溶液包括毒性工业试剂,所述毒 性工业试剂包括氨、丙酮羟腈。
11. 权利要求1的系统,其中所述读取器是射频识别(RFID)读取器。
12. 权利要求l的系统,其中所述至少一个传感器是阵列中的多个 传感器。
13. 权利要求l的系统,其中所述阵列中的所述多个传感器是阵列 中的多个RFID传感器。
14. 权利要求1的系统,其中所述至少一个参数包括传导率测量值、 pH水平、温度、血液相关测量值、生物测量值、离子测量值、非离子 测量值、和非传导率测量值。
15. 权利要求1的系统,其中所述至少一个传感器覆盖有传感器膜,其中所述传感器膜确定所述溶液的所述至少一个参数。
16. 权利要求15的系统,其中所述传感器膜选自聚合物膜、有机膜、 无机膜、生物复合膜和纳米复合膜。
17. 权利要求15的系统,其中所述传感器膜选自水凝胶膜、溶胶凝 胶膜、碳黑-聚合物膜、碳纳米管-聚合物膜、金属纳米颗粒-聚合物膜、 和电纺丝纳米纤维、膜。
18. 权利要求7的系统,其中所述溶液包含原核细胞。
19. 权利要求7的系统,其中所述溶液包含真核细胞。
20. 权利要求7的系统,其中所述溶液是包含C02和02的气体。
21. 权利要求7的系统,其中所述溶液是包含C02和02的溶解的气体。
22. 权利要求l的系统,其中所述容器由聚合物材料制备。
23. 权利要求22的系统,其中所述容器由预先消毒的聚合物材料制备。
24. 权利要求l的系统,其中所述溶液包括选自细菌、重组蛋白质、 病毒、疫苗或活体组织的生物材料。
25. 用于测量容器中参数的装置,包括具有溶液、至少一个传感器和标记的容器,其和测量设备相邻; 其中所述至少一个传感器经构造以确定所述溶液的至少一个参数;和所述测量设备经构造以从所述至少一个传感器读取所述至少一个参数。
26. 用于测量多个参数的系统,包括 具有溶液和至少 一个传感器的容器;和所述至少 一 个传感器通讯的测量设备;其中所述至少一个传感器经构造以确定所述溶液的至少一个参数; 所述测量设备经构造以从所述至少一个传感器接收所述参数; 其中所述容器和所述测量设备相邻;和所述测量设备经构造以基于所述参数从所述至少一个传感器接收 给定范围的频率以测量阻抗,并且基于所述阻抗来计算参数变化。
27. 权利要求26的系统,其中所述阻抗是复阻抗。
28. 用于测量多个参数的系统,包括具有溶液和至少一个具有数字ID标记的传感器的容器;和具有所述标记的所述传感器相通讯的测量设备;其中所述至少一个传感器经构造以确定所述溶液的至少一个参数; 所述测量设备经构造以从所述至少一个传感器接收所述参数,和从 所述标记接收数字ID;其中所述容器和测量设备相邻;和所述测量设备经构造以基于所述参数从所述至少一个传感器接收 给定范围的频率以观'J量阻抗,和基于所述阻抗计算参数变化。
29、 权利要求28的系统,其中所述至少一个传感器是被动式的。
30、 权利要求28的系统,其中所述至少一个传感器是半主动式的。
31、 权利要求28的系统,其中所述至少一个传感器是主动式的。
32、 用于测量多个参数的系统,包括 具有溶液和至少一个传感器的容器; 和所述至少一个传感器相通讯的测量i殳备;其中所述至少一个传感器经构造以确定所述溶液的至少一个参数; 所述测量设备经构造以从所述至少一个传感器接收所述参数; 其中所述容器和所述测量设备相邻;和所述测量设备经构造以基于所述参数从所述至少一个传感器接收 给定范围的频率以测量阻抗,和基于所述阻抗计算参数变化;和 所述测量设备发送预定信号到控制设备。
全文摘要
公开了用于测量容器中参数的系统。用于测量多个参数的系统包括具有溶液、至少一个传感器和标记的容器,其和构成测量设备的阻抗分析器和读取器相邻。所述至少一个传感器经构造以确定溶液的至少一个参数。所述标记经构造以提供和所述传感器相关的数字ID,其中所述容器和所述读取器和阻抗分析器相邻。所述阻抗分析器经构造以基于所述参数从所述传感器发送和接收给定范围的频率,并基于所述响应计算参数变化。
文档编号G01D9/00GK101449133SQ200680054725
公开日2009年6月3日 申请日期2006年9月28日 优先权日2006年5月26日
发明者R·A·波蒂雷洛, V·F·皮兹, 华 王 申请人:通用电气医疗集团生物科学公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1