一种基于fpga的超声波温度计的制作方法

文档序号:5912201阅读:92来源:国知局
专利名称:一种基于fpga的超声波温度计的制作方法
技术领域
本实用新型属于精密传感器和检测技术领域,具体涉及一种用超声波技术精密测量温度的温度计。
背景技术
超声波有两个重要的性能第一是定向性。因为超声波的频率很高,波长很短,所以它可以像光波那样沿直线传播,而不像频率较低的声波要绕物体前进。第二是超声波能在气体、液体和固体中传播,在同一种物质中传播速度相同,在不同的物质中传播速度各不相同,在遇到不同物质的界面时会象光线一样反射。随着电子技术的发展,超声波技术越来越多的应用于温度等的精密测量。超声波在介质中传播时,传播速度随温度、压强等状态参量的变化而变化。超声波在气体中传播时传播速度每秒约数百米,随温度升高而增大,0°c时空气中音速为331. 4 米/秒,15°C时为340米/秒,温度每升高1°C,音速约增加0. 6米/秒。测得传输距离不变时超声波在不同温度下的传播时间,就可以测得温度。例如,20°C时超声波的速度是344 米/秒,21°C时超声波的速度是344. 6米/秒,如果超声波的传输距离是0. 3米,则在20°C 时超声波的传输时间是8. 7209 X 10_4秒,在21°C时超声波的传输时间是8. 7057 X 10_4秒, 在21°C时和20°C时超声波的传输时间差为1. 52 ΧΙΟ"6秒。要保证测量达到0. 001°C的测量分辨率,要求超声波传输时间测量的分辨率要达到广2纳秒才能实现。如果用常规的定时计数电路测量超声波的传输时间,则时钟电路的频率至少要达到1G,这对于仪器开发来讲显然很难实现。
发明内容本实用新型针对上述问题,公开了一种测量分辨率可达0. oorc的超声波温度计,其采用超声波温度传感器、FPGA电路和软件细分插补算法,可以在保证测量实时性的前提下实现纳秒级超声波传输时间的测量,从而实现高精度温度测量。本实用新型采用的技术方案是一种高灵敏度超声波温度计,用于实现测量分辨率优于0. OOrC的精密温度测量。 由此,本实用新型提出的高精度超声波温度计包括超声波温度传感器、现场可编程门阵列 FPGA、信号放大电路、滤波电路、A/D转换电路、D/A转换电路、功率放大电路;所述超声波温度传感器是由超声波换能器E1、超声波换能器E2和一管体构成。所述超声波换能器El与超声波换能器E2相对安装在管体内的两端,管体中充满作为超声波介质的气体。所述现场可编程门阵列FPGA内包括有信号发生器、随机存储区、处理器等电路, 处理器控制信号发生器输出正弦波驱动信号,连接到D/A转换电路,由D/A转换电路对所述正弦波驱动信号进行转换,D/A转换电路再连接功率放大电路,对信号进行放大,功率放大电路与超声波换能器El连接,将信号输入至所述超声波换能器E1,该超声波换能器El将所述该输入信号转换成机械振动产生超声波信号。所述超声波换能器E2接收所述超声波换能器El发出的超声波信号,把机械振动转换为电信号,输出超声波回波信号,并通过与其依次连接的放大电路、滤波电路和A/D转换电路,使所述超声波回波信号依次经放大、滤波和A/D转换后输入至现场可编程门阵列 FPGA ;D/A转换器用于把FPGA发出的数字正弦信号转换为模拟正弦信号,功率放大电路用于放大该正弦信号的功率,使之有足够的能量驱动超声波换能器El。所述A/D转换器主要用于把超声波回波模拟信号转换为数字信号,并输入FPGA。所述现场可编程门阵列FPGA同时采样输出的正弦波驱动信号和输入的超声波回波信号,并将采样数据存放在内存中;所述FPGA电路主要功能有两个第一个功能是其内部构建的处理器控制信号发生器产生数字正弦信号,该信号经D/A转换器转换成模拟信号,并经功率放大电路放大后驱动换能器E1。第二个功能是完成超声波回波信号的采样,并把数据存在构造于FPGA内部的随机存储区内。所述构建于现场可编程门阵列FPGA内的处理器从随机存储区中读取采样数据, 通过细分插补算法精确计算出超声波传播时间终点所对应的时刻;然后,根据输出的正弦波驱动信号确定超声波传播时间起点所对应的时刻。从而精确确定超声波在两个换能器 EU E2之间的传输时间。最后处理器根据超声波在超声波温度传感器管体中两个换能器 El、E2之间的不同传输时间精确确定温度传感器的温度。所述换能器El是压电式传感器,可以把具有一定能量的电信号转换为机械振动, 当信号的频率在超声波的频率范围内时,换能器El把电信号转换为超声波信号。换能器 E2也是压电式传感器,把机械振动转换为电信号,当超声波信号作用到超声波换能器E2上时,它把超声波信号转换为电信号,该信号可以称之为超声波回波信号。超声波换能器El发射一定数量的周期性正弦超声波信号,该信号在气体中传播到达换能器E2后,激励换能器E2产生超声波回波信号,回波信号的幅值随着换能器接收到的超声波信号的连续激励而逐渐增大,当激励信号停止时,换能器的机械振动在惯性的作用下仍然会持续并逐渐衰减,回波信号的幅值也逐渐减小,因此超声波回波信号是一个变幅周期性信号,其周期对应于超声波信号的周期。回波信号幅值最大的那个周期对应于换能器El最后发出的那个超声波信号的周期。超声波的传播时间就是换能器El发出的超声波信号上的任意一点与换能器E2接收到的回波信号上相对应的那一点之间的时间间隔。超声波传输时间测量的关键是确定传播时间的起点和终点。传播时间的起点可以是换能器El发出的超声波信号上特定所对应的时刻,时间的终点是回波信号上与超声波信号特征点相对应的那一点所对应的时刻。回波信号是一个变幅值周期性信号,其波形中最有特征的波是幅值最大的那个波,可以称之为特征波,特征波对应于超声波信号的最后一个波。在特征波中,最有特征的点是过零点和峰值点,可以选择过零点作为回波信号的特征点。特征点对应的时刻就是传播时间的终点,与之相对应,超声波信号波形中最后那个波的过零点所对应的时刻可以确定为传播时间的起点。由于超声波信号是FPGA内的处理器的控制下产生的,传播时间的起点,也就是超声波信号最后那个波的过零点对应的时刻很容易由处理器精确确定,其精度取决于FPGA 的运行频率。
4[0017]传播时间的终点,也就是回波信号特征波中过零点所对应的时刻通过细分插补算法来确定。细分插补算法根据FPGA中存储的超声波回波的A/D采样信号首先确定回波信号中峰值幅值最大的那个周期内的波形;然后确定过零点前后两个采样点(一个比零大,一个比零小)所对应的时刻;最后以过零点前后两个采样点为基准,用拟合的方法对采样点进行细分插补,确定回波信号过零点所对应的时刻,即超声波传播时间终点所对应的时刻,其精度主要取决于A/D采样的分辨率。本实用新型提出的基于FPGA的超声波温度计工作原理如下超声波换能器El与超声波换能器E2相对安装在管体两端,编程门阵列FPGA内构建的处理器控制现场可控制信号发生器输出正弦波驱动信号,让信号依次通过D/A转换电路和功率放大电路输入至所述超声波换能器El,该超声波换能器El将所述该输入信号转换成机械振动产生超声波信号。所述超声波换能器E2接收所述超声波换能器El发出的超声波信号,并输出超声波回波信号,由滤波电路对超声波换能器E2发出的超声波回波信号进行滤波,再由放大电路进行放大后,由A/D转换电路对回波信号进行采样,采样数据先存储在构造于FPGA内的存储区内。采样完成后,处理器首先根据信号发生器发射超声波的数据确定超声波传播时间起点所对应的时刻,然后从FPGA内读取超声波回波信号的A/D采样数据,采用通过细分插补算法精确计算出超声波传播时间终点所对应的时刻,进而精确确定超声波在两个换能器 EU E2之间的传输时间。然后处理器根据超声波在超声波温度传感器管体中两个换能器 E1、E2之间的不同传输时间精确计算出其对应的温度。本实用新型由于采用了基于FPGA的硬件电路和软件细分算法,可以实现纳秒级精度的超声波传输时间的测量,从而实现分辨率优于0. oorc的高精度温度测量,并保证很好的实时性,降低了温度计的成本,同时采用高精度超声波传输时间测量方法,可实现精密温度测量。本实用新型可广泛的用于精密温度测量和控制等领域。

图1是一种基于FPGA的超声波温度计结构框图;图2是加在换能器El上的驱动信号示意图;图3是换能器E2上接受到的超声波回波信号示意图;图4是一种基于FPGA的超声波温度计硬件工作原理示意图;图是确定超声波传播时间终点所对应时刻的示意图。
具体实施方式
下面结合说明书附图对本实用新型的技术方案作进一步详细说明。参见图1,本温度计主要包括管体10、超声波换能器E111、换能器E212、现场可编程门列阵FPGE118、A/D转换电路17、滤波电路16、放大电路15、功率放大电路14、D/A转换电路13、显示电路22和键盘电路23。管体10、超声波换能器El 11、换能器E212构成温度传感器,管体10中充满气体。显示电路22用于显示处理器计算出的温度值,键盘电路23 用于向输入温度计的参数及操作人员的权限。[0029]参见图2是超声波换能器El上的驱动信号,它是在FPGA中产生的数字正弦信号经D/A转换电路转换成模拟正弦信号,然后再经功率放大电路放大而成,图中的V代表信号的电压,t代表时间。该信号的频率为1MHz,电压约10V,电流约1. 5A,具有约15瓦的电能, 驱动超声波换能器El将电能转换为机械能,发出超声波信号。参见图3是在换能器E2上输出的超声波回波信号,图中的V代表信号的电压,t 代表时间。换能器El发出的超声波信号经过一定的传播时间后传播到换能器E2上时,换能器E2将超声波信号的机械能转换为电能,输出超声波回波信号。换能器E2输出的电信号在超声波没有传播到换能器E2上以前,幅值为零,换能器E2接收到超声波信号后,输出的电信号幅值逐渐增加,然后逐渐减小衰减至零,是一个变幅周期信号,幅值最大的那个波对应于超声波信号的最后一个波。超声波回波信号的频率取决于超声波信号的频率,也是 IMHz。参见图4,处理器21向FPGA18中的同步电路431发出开始采样命令后,FPGA18同时启动对超声波换能器Elll的驱动和对超声波换能器E212输出信号的采样。构建于FPGA内的信号发生器20发送频率为IMHz的8个周期的正弦信号,该信号经过D/A转换电路13转换为模拟信号,再经功率放大电路14放大后,加载在换能器Elll 上,发出超声波信号。换能器E212输出的电信号经过运算放大电路15放大后,经过滤波电路16滤波后连接到A/D转换电路17。FPGA内部的采样控制电路432控制A/D转换电路17 将模拟信号转换为数字信号,并把采样值逐一存入构建于FPGA内的随机存储区19中。采样完成后,采样控制电路向处理器21发送采样结束状态信息,处理器21接收到采样结束状态信息后,结束一次采样。采样结束后,处理器21首先根据FPGA内的信号发生器431的数据精确确定超声波信号中起点所对应的时刻TQD。然后处理器21发出读数据命令,读取暂存于RAM存储区19中的数据,精确计算超声波传播时间终点所对应的时刻。超声波传输时间终点所对应的时刻是通过对回波信号所有采样数据用细分插补算法进行分析和计算而实现的。参见图fe,分析超声波换能器E2输出的超声波回波信号可知,为保证测量的重复性,应该在峰值幅值最大的波形中提取超声波传输时间的终点。在这个波形的整周期内,最明显的两个特征点是峰值点和过零点,把过零点确定为回波信号的时间参考点更容易获得高精度。参见图fe,本实用新型的超声波传输时间终点所对应的时刻的计算方法是首先逐点比较A/D采样点,找出采样点的最大值就可以很容易的确定幅值最大的波形,可以把这一波形称之为特征值波形;其次,参见图恥,确定超声波传输时间终点所对应的过零点Ptl前面一个采样点P 和后面一个采样点P+1,显然在特征波内采样点P的采样值大于零,采样点P+1的采样值小
于零;最后,以采样点P和P+1两点对应的时刻作为基准,用细分插补算法可以准确计算出过零点Ptl所对应的时刻,具体计算方法如下「设A/D的采样频率为FA/D,相邻两个采样点之间的时间即采样周期为TA/D ;从第一个采样点到采样点P之间的采样数为N,采样点P对应的采样值为VI,采样点P 所对应的时刻为Tl ;采样点P+1对应的采样值为V2 ;采样点P所对应的时刻为Tl,采样点 P与过零点Ptl之间的时间为T2,过零点Ptl对应的时刻为Tzd,超声波的传输时间为T,则
权利要求1. 一种基于FPGA的超声波温度计,其特征在于其包括超声波温度传感器、现场可编程门阵列FPGA、信号放大电路、滤波电路、A/D转换电路、D/A转换电路、功率放大电路;所述超声波温度传感器是由超声波换能器E1、超声波换能器E2和一管体构成,所述超声波换能器El与超声波换能器E2相对安装在管体内的两端,管体中充满作为超声波介质的气体;所述现场可编程门阵列FPGA内包含有信号发生器、随机存储区、处理器,处理器控制信号发生器输出正弦波驱动信号,连接到D/A转换电路,由D/A转换电路对所述正弦波驱动信号进行转换,D/A转换电路再连接功率放大电路,对信号进行放大,功率放大电路与超声波换能器El连接,将信号输入至所述超声波换能器E1,该超声波换能器El将所述该输入信号转换成机械振动产生超声波信号;所述超声波换能器E2接收所述超声波换能器El发出的超声波信号,把机械振动转换为电信号,输出超声波回波信号,并通过与其依次连接的放大电路、滤波电路和A/D转换电路,使所述超声波回波信号依次经放大、滤波和A/D转换后输入至现场可编程门阵列FPGA ; 所述现场可编程门阵列FPGA同时采样输出的正弦波驱动信号和输入的超声波回波信号,并将采样数据存放在随机存储区中;所述处理器从随机存储区中读取采样数据。
专利摘要本实用新型涉及一种基于FPGA的超声波温度计,主要由超声波换能器驱动电路、超声波温度传感器、超声波回波信号处理电路组成。超声波换能器驱动电路主要包括数模转换器D/A和功率放大电路。超声波温度传感器包括两个超声波换能器和充满气体的密闭高导热金属管体两部分。超声波回波信号处理电路主要由滤波电路、放大电路和、模数转换器(A/D)、现场可编程门列阵(FPGA)组成。在FPGA中构造信号发生器、随机存储区、处理器等电路。由于所述流量计在FPGA中构建了处理器等电路,降低了温度计的成本;同时采用高精度超声波传输时间测量方法,可实现精密温度测量。
文档编号G01K11/24GK202101788SQ20112012749
公开日2012年1月4日 申请日期2011年4月27日 优先权日2011年4月27日
发明者刘淑香, 向凤云, 张兴红, 张天恒, 蔡伟, 陈锡侯, 陈鸿雁, 高忠华 申请人:重庆理工大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1