发动机测试台的监控系统的制作方法

文档序号:5939685阅读:205来源:国知局
专利名称:发动机测试台的监控系统的制作方法
技术领域
本发明涉及发动机测试台监控系统的领域。发动机可以是任意类型的并且它可被设计用于安装在陆地、海洋或航空运载工具上。本发明所披露的信息可应用于航空器发动机,尽管该实施例不是限制性的。
现有技术发动机使用非常复杂的技术并且在测试台上系统地测试。在测试台上测试的过程中,使用大量的传感器监控发动机或发动机组件以及该测试台。发动机研发阶段的一些测试可能需要记录超过一千个测量,包括在至多100赫兹的低频率下的性能测量(例如压力,温度,仪表等),在至多50千赫的高频率下的动态测量(例如加速度计的测量输出,麦克风等)以及一些描述测试过程的测量值或数据。目前,存在一种被称为SPC (统计过程控制)的控制系统,能够记录每个传感器(在不同的采集频率下)的测量并呈现实时的具有预警或安全阈值的测量图。然而,该SPC测试系统只是简单地收集监控测量并核实它们仍然处于两个安全阈值之间。由于不考虑测量环境的变化,SPC测试系统的安全阈值必须非常大。因此,对于这种系统来说检测到操作错误是非常困难的,并且它只是通过在非常严重的故障的情况下触发警告从而简单地保护测试台。然而,测试台操作员通常试图在极端的操作条件下测试发动机。这可能产生安全问题和破坏非常昂贵的测试台的重大风险,其可能导致发动机研发延误。本发明的目的是披露一种用于监控测试台的系统,该系统能够精确地和安全地监控在测试下的测试台和发动机或发动机组件的运转。

发明内容
本发明由一种用于至少一个发动机组件的测试台的监控系统所确定,包括:-采集装置,在连续时刻采集对应于对测试台和发动机组件的组合特定的内生和外生参数测量的时间信号包,-处理装置,在所述连续时刻的每一时刻,使用早于所述时刻的时间信号包构造内生指标向量和相关联的外生指标因子,-处理装置,识别所述外生指标向量的上下文分类,以及-处理装置,使用至少一个异常检测器,计算所述内生指标向量的风险概率,内生指标向量由识别所述相关外生指标向量的上下文分类进行调节,以产生所述测试台和发动机组件组合的状态的诊断。因此,该监控系统是一个自适应系统能够管理变化的和多上下文环境。该系统通过自动检测上下文变化适应变化的配置,使异常检测器能够根据所识别的上下文,对被监控的测量做出局部诊断。在测试台上使用异常检测器也有助于在使用它之前对其验证,例如在机载发动机上。有利地,该监控系统包括:-处理装置,在学习阶段从顺序的初始外生指标向量开始,构造上下文分类的集合,以及-处理装置,在执行阶段从新外生指标向量的输入开始,更新所述上下文分类的集
口 ο因此,从上下文数据开始,系统学会执行对上下文的自动和非监控分类,以确定测试台和发动机组件组合的不同操作模式。这使得监控系统能够管理所有随机操作,其可被应用到在测试下的发动机或在测试下的发动机组件。有利地,通过检查是否新检测的外生指标向量属于先前构造的上下文分类,并且如果直到已经检测到适当数量的类似外生指标向量形成新的上下文分类时,才存在与新检测相对应的上下文分类,那么在数据库中记录新检测的外生指标向量,处理装置被配置成更新所述上下文分类的集合。因此,系统不断地再学习以改善上下文的非监控分类,以在一定时间之后达到稳定的和相当健全的分类。此外,处理装置被配置成更新所述上下文分类的集合,验证外生指标向量的新检测是否属于先前构造的上下文分类并在相应的上下文分类中记录至少一些所述的新检测。例如,这使得可能定期对每个分类做新的更新,为了考虑操作模式的缓慢改变以进一步改善对测试台和发动机组件组合的监控。有利地,通过计算所述外生指标向量相对于每个上下文分类的匹配值,处理装置被配置成识别外生指标向量的上下文分类。匹配值用于验证外生指标向量的新检测是否与已被用于学习的向量相似。因此,匹配值是关于外生指标向量是否属于上下文分类的可信和可量化的指标,其随时间流逝而迅速变得更加可靠。因此,当匹配值变得足够高时,监控系统可以开始做精确和相关的诊断。根据本发明的一个方面,处理装置被配置成使用似真最大化准则构造所述上下文分类的集合。该迭代准则可用于相当快地获得精确的上下文相关的分类。根据本发明的另一个方面,处理装置被配置成基于被应用到外生指标向量的最优化准则,选择合适数量的上下文分类。这用于确定分类的最优数量以获得操作模式的最优分类。有利地,监控系统包括:-缓冲存储器,对于每个内生或者外生参数来说,在早于所述时刻缓冲至少一个时间信号包,-处理装置,使得每个所述时间信号包根据至少一个范围以形成表示所述包的曲线,-处理装置,再采样所述代表性的曲线,以及-处理装置,压缩所述再采样的曲线以构造所述内生或者外生指标向量。因此,从测试台和发动机组件组合的数据流输出能够可靠地被转化为指标向量,其考虑了测量的局部和全部变化,从而产生对操作模式的非监控的,自适应和精确的分类。有利地,处理装置被配置成计算所述风险概率的质量值。然后,这可以通过可量化的方式被用于评估风险概率的相关性。根据第一实施例,异常检测器实施正态行为模型并通过似真计算生成常态测量(分数)。测试台和发动机的异常操作因此可被检测到。根据第二实施例,异常检测器实施轴承损坏检测模型。该第二检测器可以脱机工作,或者定期地,产生对测试台和发动机轴承的磨损和损坏的诊断。根据第三实施例,异常检测器实施间歇事件检测模型。该第三检测器能够在测试台和发动机内检测间歇振动事件的发生。有利地,监控系统包括监控装置,其中所述异常检测器被封装,所述监控装置被配置成启动所述异常检测器,获得每个所述异常检测器的输入数据,接收来自每个所述异常检测器的输出消息并管理与每个所述异常检测器的参数设置和标准选择相对应的实例。这使得能够对在不同时间被安装在测试台上的不同的异常检测器和不同的发动机或发动机组件进行简单和高效的管理。本发明还涉及一种管理系统,包括被连接到发动机测试台的控制系统,该控制系统被配置成控制测试台并记录存储装置内该测试台和的发动机的至少一个组件的数据输出,管理系统还包括根据任一前述特征的监控系统,所述监控系统通过控制系统被连接到测试台,该控制系统从测试台和发动机组件组合发送数据到其输出。这避免了对测试台操作的干扰。例如,控制系统可被配置在第一计算机中,并且监控系统可被配置在与第一计算机有距离的第二计算机上。本发明还涉及一种监控用于至少一个发动机组件的测试台的方法,包括以下步骤:-在连续时刻获取对应于对测试台和发动机组件组合特定的内生和外生参数测量的时间信号包,-在所述连续时刻的每一时刻,使用早于所述时刻的时间信号包以构造内生指标向量和相关外生指标向量,-识别所述外生指标向量的上下文分类,以及-使用至少一个异常检测器计算所述内生指标向量的风险概率,内生指标向量由识别所述相关联的所述外生指标向量的上下文分类进行调节,以产生所述测试台和发动机组件组合的状态的诊断。本发明也涉及一种计算机程序,包括用于实施当其由计算机执行时的根据权利要求的方法的代码指令。


图1示意性地示出了根据本发明的用于至少一个发动机组件的测试台的监控系统;图2是根据本发明的一个特定实施例的流程图,示出了构造内生指标向量和相关外生指标向量的步骤;图3是根据本发明的一个特定实施例的流程图,示出了构造上下文分类集合的步骤;图4为示出了根据本发明的选择上下文分类最优数量的步骤的流程图;图5为示出了根据本发明的在监控系统内异常检测器的示例性封装的流程图;图6示意性地示出了根据本发明的在监控系统内异常检测器的封装;以及图7示意性地示出了根据本发明的用于发动机组件的测试台的管理系统。
具体实施例方式本发明的基本构思是提出一种测试台监控系统,使用被设计用于机载航空器发动机的监控机构。这些监控机构(机载的)被配置成检测异常,提前了解发动机的操作模式。应该指出的是,机载发动机总以同样的方式运行以下清楚限定的飞行阶段:启动发动机,滑行,起飞,攀爬,巡航,接近,着陆,反转和停止发动机。因此,基于如发动机速度、高度和航空器姿势的基本标准,通过相当简单的指标很容易识别发动机的运转模式。然而,在测试台上机器(换句话说,发动机组件或整个发动机)的运转可能非常不确定。为了简明,“发动机组件”的表达将在本说明书的其余部分中使用,以表示整个发动机或简单地一个发动机组件。被应用到安装在测试台上的发动机组件的该操作可能非常变化无常和不可预测的,并可包括极端条件。此外,往往需要测试新的设备。因此,无法提前预测或对测试台和发动机组件的运转模式分类,从而,正常的机载航空器发动机的监控机构不能在这样的环境中工作。因此,本发明的一个目的是在一个包括测试台和发动机组件的环境中,对上下文做非监控分类和自动识别。图1示意性地示出了根据本发明的监控系统I用于航空器发动机的至少一个组件5的测试台3。该系统I包括数据采集装置7和如计算机的信息处理装置9,以执行一个或多个计算机程序,包括被存储在计算机的存储装置10内的程序代码指令,以及被设计使用测试台3和发动机组件5的组合11的监控系统。发动机组件5被安装在测试台3上并且使用大量的(几百个)传感器13用于获得测量台3和发动机组件5上的测量。这些测量通过在恒定频率下的采集总线或通道15被以数字通道的形式获得并被传输到监控系统I。一些测量(例如振动测量)在高频率(50千赫的数量级)下被记录而其他测量(例如压力测量)在低频率(约I赫兹到100赫兹)下被记录。考虑到对测试台3和发动机组件5的组合11所作出的测量的数量可能非常高(几百个),不同时处理所有的测量是有利的。因此,基于专业知识所产生的标准,所述测量的集合可被再分为与测试台3和发动机组件5的组合11的不同元件相关的测量的子集。例如,当知道了由测试台3所旋转的轴驱动旋转发动机后,要监控的一个重要元素是对应于测试台13和发动机5之间的机械耦合的轴线。因此,在该实施例中,测量相对于轴线的子集被选中,可能包括低频率测量(例如旋转速度,压力,温度等)和高频率测量(例如加速度,位移)。
还要注意的是,测量包括内生和外生参数的测量。外生参数是表示测试台3和发动机组件5的组合11的上下文(换句话说,运转模式或功能条件)的上下文相关的参数。另一方面,内生参数是可被观察的参数并根据其观察的上下文监控和分析它以检测异常。基于专业知识所产生的标准,内生参数和外生参数可被识别。考虑轴线的实施例,外生参数测量包括旋转速度,进气压力,温度等。另一方面,内生参数测量包括振动测量,能量,轴位移,不均衡质量等。显然,关于能量或不均衡质量的信息在不同的上下文中是相当不同的。根据本发明,监控系统I被配置成将来自测试台3和发动机组件5的组合11的参数测量数据流转换为指标,以自动识别上下文并根据上下文检测异常。更特别地,采集装置7被配置成在连续时刻(例如在定期的时刻),采集对测试台3和发动机组件5的组合11特定的对应于内生和外生参数的测量的时间信号包。在连续时刻中的每一时刻,处理装置9被配置成从早于当前时刻的时间信号包开始,构造内生指标向量和相关外生指标向量。如下所述参照图2,可以通过压缩时间信号包构造内生或者外生指标向量。因此,例如,可根据过去的数据定期计算每个指标向量(内生和外生)。此外,处理装置9被配置成识别在当前时刻被构造的外生指标向量的上下文分 类。例如通过计算在当前时刻的外生指标向量相对于在先前时刻被构造的外生指标向量的距离,通过由确定数量的最接近的外生向量来确定分类,上下文分类可被自动地识别。作为一种变型,上下文分类也可被自动没有监控地识别,但要通过学习其所属而构造的分类集合中的一个类进行分析,如参照图3以下所述。因此,处理装置9可以使用至少一个异常检测器(例如,设计用于在机载航空器发动机使用的)计算由所识别的用于相关外生指标向量的上下文分类所调节的当前内生指标向量的分数或风险概率,以对测试台3和发动机组件5的组合11的状态做诊断。有利地,处理装置9也被配置成计算风险概率的质量或精确值,其可帮助评估风险的相关性。图2是根据一个特定实施例的流程图,示出了构造内生指标向量和相关外生指标向量的步骤。在步 骤El中,处理装置9分析对应于在连续时刻被接收的参数A,B,…,G,H的测量的时间信号包,并识别内生参数A、B等和外生参数G、H等的测量,内生参数测量用于构造内生指标向量并且外生参数的测量用于构造外生指标向量。出于简洁性的原因,在本说明书剩余部分中的术语“参数”无差别地表示“内生参数”或“外生参数”,同样术语“指标向量”用于无差别地表示“内生指标向量”或“外生指标向量”。在步骤E2中,不同参数测量的时间信号包在确定的频率下被记录在缓冲存储器21a-21h内。更特别地,处理装置9被配置成早于当前时刻在可变尺寸缓冲存储器21内对于每个参数缓冲至少一个时间信号包。因此,对于每个参数A,B,……,G,H,至少一个时间间隔被确定以记录相应的时间信号。例如,对于参数A,相应时间信号的最后十秒钟可被记录在第一缓冲存储器21a并且过去的20秒可被记录在第二缓冲区存储器21b中,等等。换句话说,对于每个参数,具有不同的和/或相同尺寸的一些缓冲存储器可被确定。根据图2所示的该实施例,参数A的第一时间信号Al和第二时间信号A2记录在第一和第二缓冲存储器21a,21b中,等等。同样,参数B,…G,H的时间信号BI,B2,-,Gl,G2,HI, H2分别被记录在缓冲存储器21c,21d,…,21h中。换句话说,对于每个参数,相应信号的几个包可在几个缓冲存储器21a-21h中被缓冲。在步骤E3中,处理装置9被配置成在至少一个范围,平滑每个时间信号包,以形成代表这些包的曲线A11,A21,…H11,H12。平滑是一种卷积操作,其在选定的范围下产生全部或局部的时间信号包。强大的平滑描述了信号的变化或总的趋势,而弱平滑确定了信号的局部特性。在步骤E4中,处理装置被配置成再采样在前一步骤中所形成的代表性曲线All,A21,…H11,H12。一旦可获得平滑的曲线,对应于第一压缩的几个代表性点可能足够了。因此,在该步骤的结束时,每个参数A,…H的时间信号包被转变成顺序的再采样曲线all,a21..., h21,其为几个点的小曲线(例如大约10个点的数量级)。更准确地说,前面的步骤E2-E4,包括确定缓冲存储器(21a,…21h)的尺寸n,重采样速率r,以及平均多项式滤波器a = [a0, a1;..., ap]的等级p,对于在给定参数(A,或B,...,或H)的当前时刻t的时间信号包Xt (换句话说,Al,或A2,...,或H2)而言。经过这些步骤的再采样曲线Yt(换句话说,all,或a21,...,或h21)然后被Yt = [yt, yt_r,...,yt_(n_DJ确定,其中,根据以下公式,Yt为Xt和滤波器a的卷积:Vf = α * X = H CtiXhi
i=0.
在步骤E5中,处理装置9被配置成压缩再采样曲线all,a21...,h21,以构造内生或外生指标向量。对 于每个再采样曲线Yt (换句话说,对于每个小曲线all,a21,…,h21),压缩是被独立完成的。例如,可使用主成分分析来压缩每个再采样曲线Yt。第一步骤包括,通过计算均值μ t和再采样曲线上的所有η个点的方差σ t确定标准曲线^
权利要求
1.一种用于至少一个发动机组件的测试台的监控系统,其特征在于:它包括: -采集装置(7 ),在连续时刻采集对应于对测试台(3 )和发动机组件(5 )的组合(11)特定的内生和外生参数测量的时间信号包, -处理装置(9),在所述连续时刻的每一时刻,使用早于所述时刻的时间信号包构造内生指标向量和相关联的外生指标因子, -处理装置(9),识别所述外生指标向量的上下文分类,以及 -处理装置(9),使用至少一个异常检测器计算所述内生指标向量的风险概率,内生指标向量由所述识别所述相关联的外生指标向量的上下文分类进行调节,以产生所述测试台和发动机组件组合(11)的状态的诊断。
2.根据权利要求1所述的系统,其特征在于:它包括: -处理装置(9),在学习阶段从顺序的初始外生指标向量开始,构造上下文分类的集合,以及 -处理装置(9),在执行阶段从新外生指标向量的输入开始,更新所述上下文分类的集合。
3.根据权利要求2所述的系统,其特征在于:通过检查外生指标向量的新检测是否属于先前构造的上下文分类,并且如果直到已经检测到适当数量的类似外生指标向量以形成新的上下文分类时,才存在与新检测相对应的上下文分类,那么在数据库(10)中记录新检测的外生指标向量,处理装置(9)被配置成更新所述上下文分类的集合。
4.根据权利要求2或3所述的系统,其特征在于:处理装置(9)被配置成更新所述上下文分类的集合,这是通过验证外生指标向量的新检测是否属于先前构造的上下文分类并在相应的上下文分类中记录至少一些所述的新检测。
5.根据权利要求2到4任一所述的系统,其特征在于:通过计算所述外生指标向量相对于每个上下文分类的匹配值,处理装置(9)被配置成识别外生指标向量的上下文分类。
6.根据权利要求2到5任一所述的系统,其特征在于:处理装置(9)被配置成使用似真最大化准则构造所述上下文分类的集合。
7.根据权利要求2到6任一所述的系统,其特征在于:处理装置(9)被配置成基于被应用到外生指标向量的最优化准则,选择合适数量的上下文分类。
8.根据权利要求1到7任一所述的系统,其特征在于:它包括: -缓冲储存器(21a-21h),对于每个内生或者外生参数来说,在早于所述时刻缓冲至少一个的时间信号包, -处理装置(9),根据至少一个范围平滑每个所述时间信号包,以形成代表所述包的曲线, -处理装置(9 ),再采样所述代表性的曲线,以及 -处理装置(9 ),压缩所述再采样的曲线以构造所述内生或者外生指标向量。
9.根据权利要求1到8任一所述的系统,其特征在于:处理装置(9)被配置成计算所述风险概率的质量值。
10.根据权利要求1到9任一所述的系统,其特征在于:异常检测器实施正常行为模型并通过似真计算生成常态测量。
11.根据权利要求1到10任一所述的系统,其特征在于:异常检测器实施轴承损伤检测模型。
12.根据权利要求1到11任一所述的系统,其特征在于:异常检测器实施间歇事件检测模型。
13.根据权利要求1到12任一所述的系统,其特征在于:它包括监控装置(61),其中所述异常检测器(51,52,53)被封装,所述监控装置被配置成启动所述异常检测器,获得每个所述异常检测器的输入数据,接收来自每个所述异常检测器的输出消息并管理与每个所述异常检测器的参数设置和校准选择相对应的实例。
14.管理系统,包括被连接到发动机测试台的控制系统,该控制系统(83)被配置成控制测试台(3)并记录存储装置(85)内的该测试台和发动机(5)的至少一个组件的数据输出,其特征在于:它还包括根据任一前述权利要求的监控系统(I ),所述监控系统通过控制系统被连接到测试台,该控制系统从测试台和发动机组件组合发送数据到其输出。
15.一种监控用于至少一个发动机组件的测试台的方法,其特征在于:它包括以下步骤: -在连续时刻获取对应于对测试台和发动机组件组合特定的内生和外生参数测量的时间信号包, -在所述连续时刻的每一时刻,使用早于所述时刻的时间信号包以构造内生指标向量和相关外生指标向量, -识别所述外生指标向量的上下文分类,以及 -使用至少一个异常检测器计算所述内生指标向量的`风险概率,内生指标向量由所述识别所述相关联的所述外生指标向量的上下文分类进行调节,以产生所述测试台和发动机组件组合的状态的诊断。
16.一种计算机程序,包括用于实施当其由计算机执行时根据权利要求15的方法的代码指令。
全文摘要
本发明涉及一种用于发动机至少一个组件的测试台的监控方法和系统,包括采集装置(7),在连续时刻采集对应于对测试台(3)和发动机组件(5)的组合(11)特定的内生和外生参数测量的时间信号包,处理装置(9),在所述连续时刻的每一时刻,使用早于所述时刻的时间信号包构造内生指标向量和相关联的外生指标向量,处理装置(9),识别所述外生指标向量的上下文分类,以及处理装置(9),使用至少一个异常检测器计算所述内生指标向量的风险概率,内生指标向量由识别所述相关联的外生指标向量的上下文分类进行调节,以诊断所述测试台和发动机组件组合(11)的状态。
文档编号G01M15/05GK103154693SQ201180049124
公开日2013年6月12日 申请日期2011年9月30日 优先权日2010年10月11日
发明者瓦莱里奥·盖尔兹, 杰罗姆·亨利·诺尔·拉凯 申请人:斯奈克玛
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1